Rev Protein Diversity in HIV-1 Group M Clades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strategy for Analysis
2.2. Sequence Dataset Compilation
2.3. Consensus Calculation
2.4. Amino Acid Frequencies and Diversity
2.5. Calculation of the Variability Index
2.6. Statistical Analysis
3. Results
3.1. Amino Acid Variability in HIV-1 Group M Clades
3.2. Changes in HIV-1 Consensus Sequences
3.3. Clade-Specific Amino Acid Substitutions in the Rev Protein of HIV-1 Group M
3.4. Wu–Kabat Protein Variability Index of the Rev Protein in the HIV-1 Group M
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Truman, C.T.; Järvelin, A.; Davis, I.; Castello, A. HIV Rev-isited. Open Biol. 2020, 10, 200320. [Google Scholar] [CrossRef]
- Stoltzfus, C.M. Chapter 1. Regulation of HIV-1 alternative RNA splicing and its role in virus replication. Adv. Virus Res. 2009, 74, 1–40. [Google Scholar] [CrossRef]
- Rausch, J.W.; Le Grice, S.F. HIV Rev Assembly on the Rev Response Element (RRE): A Structural Perspective. Viruses 2015, 7, 3053–3075. [Google Scholar] [CrossRef]
- Jayaraman, B.; Fernandes, J.D.; Yang, S.; Smith, C.; Frankel, A.D. Highly Mutable Linker Regions Regulate HIV-1 Rev Function and Stability. Sci. Rep. 2019, 9, 5139. [Google Scholar] [CrossRef]
- Jackson, P.E.H.; Dzhivhuho, G.; Rekosh, D.; Hammarskjold, M.L. Sequence and Functional Variation in the HIV-1 Rev Regulatory Axis. Curr. HIV Res. 2020, 18, 85–98. [Google Scholar] [CrossRef]
- Naji, S.; Ambrus, G.; Cimermančič, P.; Reyes, J.R.; Johnson, J.R.; Filbrandt, R.; Huber, M.D.; Vesely, P.; Krogan, N.J.; Yates, J.R.; et al. Host cell interactome of HIV-1 Rev includes RNA helicases involved in multiple facets of virus production. Mol. Cell Proteom. 2012, 11, M111.015313. [Google Scholar] [CrossRef]
- Jackson, P.E.; Tebit, D.M.; Rekosh, D.; Hammarskjold, M.L. Rev-RRE Functional Activity Differs Substantially Among Primary HIV-1 Isolates. AIDS Res. Hum. Retroviruses 2016, 32, 923–934. [Google Scholar] [CrossRef]
- Edgcomb, S.P.; Aschrafi, A.; Kompfner, E.; Williamson, J.R.; Gerace, L.; Hennig, M. Protein structure and oligomerization are important for the formation of export-competent HIV-1 Rev-RRE complexes. Protein Sci. 2008, 17, 420–430. [Google Scholar] [CrossRef]
- Hua, J.; Caffrey, J.J.; Cullen, B.R. Functional consequences of natural sequence variation in the activation domain of HIV-1 Rev. Virology 1996, 222, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Dzhivhuho, G.; Holsey, J.; Honeycutt, E.; O’Farrell, H.; Rekosh, D.; Hammarskjold, M.L.; Jackson, P.E.H. HIV-1 Rev-RRE functional activity in primary isolates is highly dependent on minimal context-dependent changes in Rev. Sci. Rep. 2022, 12, 18416. [Google Scholar] [CrossRef] [PubMed]
- Rodenburg, C.M.; Li, Y.; Trask, S.A.; Chen, Y.; Decker, J.; Robertson, D.L.; Kalish, M.L.; Shaw, G.M.; Allen, S.; Hahn, B.H.; et al. Near full-length clones and reference sequences for subtype C isolates of HIV type 1 from three different continents. AIDS Res. Hum. Retroviruses 2001, 17, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Oelrichs, R.; Tsykin, A.; Rhodes, D.; Solomon, A.; Ellett, A.; McPHEE, D.; Deacon, N. Genomic sequence of HIV type 1 from four members of the Sydney Blood Bank Cohort of long-term nonprogressors. AIDS Res. Hum. Retroviruses 1998, 14, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Papathanasopoulos, M.A.; Patience, T.; Meyers, T.M.; McCutchan, F.E.; Morris, L. Full-length genome characterization of HIV type 1 subtype C isolates from two slow-progressing perinatally infected siblings in South Africa. AIDS Res. Hum. Retroviruses 2003, 19, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Smyth, R.P.; Davenport, M.P.; Mak, J. The origin of genetic diversity in HIV-1. Virus Res. 2012, 169, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Bbosa, N.; Kaleebu, P.; Ssemwanga, D. HIV subtype diversity worldwide. Curr. Opin. HIV AIDS 2019, 14, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Foley, B.T.; Leitner, T.; Paraskevis, D.; Peeters, M. Primate immunodeficiency virus classification and nomenclature: Review. Infect. Genet. Evol. 2016, 46, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Désiré, N.; Cerutti, L.; Le Hingrat, Q.; Perrier, M.; Emler, S.; Calvez, V.; Descamps, D.; Marcelin, A.-G.; Hué, S.; Visseaux, B. Characterization update of HIV-1 M subtypes diversity and proposal for subtypes A and D sub-subtypes reclassification. Retrovirology 2018, 15, 80. [Google Scholar] [CrossRef]
- Mendes Da Silva, R.K.; Monteiro de Pina Araujo, I.I.; Venegas Maciera, K.; Gonçalves Morgado, M.; Lindenmeyer Guimarães, M. Genetic Characterization of a New HIV-1 Sub-Subtype A in Cabo Verde, Denominated A8. Viruses 2021, 13, 1093. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Vallari, A.; McArthur, C.; Sthreshley, L.; Cloherty, G.A.; Berg, M.G.; Rodgers, M.A. Brief Report: Complete Genome Sequence of CG-0018a-01 Establishes HIV-1 Subtype L. J. Acquir. Immune. Defic. Syndr. 2020, 83, 319–322. [Google Scholar] [CrossRef]
- Hemelaar, J.; Elangovan, R.; Yun, J.; Dickson-Tetteh, L.; Fleminger, I.; Kirtley, S.; Williams, B.; Gouws-Williams, E.; Ghys, P.D.; WHO–UNAIDS Network for HIV Isolation Characterisation. Global and regional molecular epidemiology of HIV-1, 1990-2015: A systematic review, global survey, and trend analysis. Lancet Infect. Dis. 2019, 19, 143–155. [Google Scholar] [CrossRef]
- Paraskevis, D.; Hatzakis, A. Global molecular epidemiology of HIV-1: The chameleon challenge. Lancet Infect. Dis. 2019, 19, 114–115. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, M.A.; Brenner, B.G. The Impact of HIV Genetic Polymorphisms and Subtype Differences on the Occurrence of Resistance to Antiretroviral Drugs. Mol. Biol. Int. 2012, 2012, 256982. [Google Scholar] [CrossRef] [PubMed]
- Shafer, R.W.; Rhee, S.Y.; Pillay, D.; Miller, V.; Sandstrom, P.; Schapiro, J.M.; Kuritzkes, D.R.; Bennett, D. HIV-1 protease and reverse transcriptase mutations for drug resistance surveillance. AIDS 2007, 21, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Ng, O.T.; Laeyendecker, O.; Redd, A.D.; Munshaw, S.; Grabowski, M.K.; Paquet, A.C.; Evans, M.C.; Haddad, M.; Huang, W.; Robb, M.L.; et al. HIV type 1 polymerase gene polymorphisms are associated with phenotypic differences in replication capacity and disease progression. J. Infect. Dis. 2014, 209, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Dvory-Sobol, H.; Shaik, N.; Callebaut, C.; Rhee, M.S. Lenacapavir: A first-in-class HIV-1 capsid inhibitor. Curr. Opin. HIV AIDS 2022, 17, 15–21. [Google Scholar] [CrossRef]
- Troyano-Hernáez, P.; Reinosa, R.; Holguín, Á. HIV Capsid Protein Genetic Diversity Across HIV-1 Variants and Impact on New Capsid-Inhibitor Lenacapavir. Front. Microbiol. 2022, 13, 854974. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.P.; Ajasin, D.O.; Ramasamy, S.; DesMarais, V.; Eugenin, E.A.; Prasad, V.R. A Naturally Occurring Polymorphism in the HIV-1 Tat Basic Domain Inhibits Uptake by Bystander Cells and Leads to Reduced Neuroinflammation. Sci. Rep. 2019, 9, 3308. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, S.M.; Rotta, I.; Vidal, L.R.R.; Dos Santos, J.S.; Nath, A.; Johnson, K.; Letendre, S.; Ellis, R.J.; HIV Neurobehavioral Research Center (HNRC) Group. HIV-1C and HIV-1B Tat protein polymorphism in Southern Brazil. J. Neurovirol. 2021, 27, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Kabat, E.A.; Wu, T.T.; Bilofsky, H. Unusual distributions of amino acids in complementarity-determining (hypervariable) segments of heavy and light chains of immunoglobulins and their possible roles in specificity of antibody-combining sites. J. Biol. Chem. 1977, 252, 6609–6616. [Google Scholar] [CrossRef]
- Abecasis, A.; Vandamme, A.M. Origin and Distribution of HIV-1 Subtypes. In Encyclopedia of AIDS; Hope, T.J., Stevenson, M., Richman, D., Eds.; Springer: New York, NY, USA, 2014; pp. 1–16. [Google Scholar] [CrossRef]
- Salvaña, E.M.T.; Dungca, N.T.; Arevalo, G.; Li, K.; Francisco, C.; Penalosa, C.; Tonga, A.D.; Leyritana, K.; Solante, R.; Tactacan-Abrenica, R.J.; et al. HIV-1 Subtype Shift in the Philippines is Associated With High Transmitted Drug Resistance, High Viral Loads, and Fast Immunologic Decline. Int. J. Infect. Dis. 2022, 122, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Bacqué, J.; Delgado, E.; Gil, H.; Ibarra, S.; Benito, S.; García-Arata, I.; Moreno-Lorenzo, M.; de Adana, E.S.; Gómez-González, C.; Sánchez, M.; et al. Identification of a HIV-1 circulating BF1 recombinant form (CRF75_BF1) of Brazilian origin that also circulates in Southwestern Europe. Front. Microbiol. 2023, 14, 1301374. [Google Scholar] [CrossRef] [PubMed]
- Maljkovic Berry, I.; Ribeiro, R.; Kothari, M.; Athreya, G.; Daniels, M.; Lee, H.Y.; Bruno, W.; Leitner, T. Unequal evolutionary rates in the human immunodeficiency virus type 1 (HIV-1) pandemic: The evolutionary rate of HIV-1 slows down when the epidemic rate increases. J. Virol. 2007, 81, 10625–10635. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.; Dimitrijevic, M.; Romero-Severson, E.; Leitner, T. Large Evolutionary Rate Heterogeneity among and within HIV-1 Subtypes and CRFs. Viruses 2021, 13, 1689. [Google Scholar] [CrossRef] [PubMed]
- Troyano-Hernáez, P.; Reinosa, R.; Holguín, Á. Genetic Diversity and Low Therapeutic Impact of Variant-Specific Markers in HIV-1 Pol Proteins. Front. Microbiol. 2022, 13, 866705. [Google Scholar] [CrossRef] [PubMed]
- Araújo, L.A.; Almeida, S.E. HIV-1 diversity in the envelope glycoproteins: Implications for viral entry inhibition. Viruses 2013, 5, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Rolland, M.; Nickle, D.C.; Mullins, J.I. HIV-1 group M conserved elements vaccine. PLoS Pathog. 2007, 3, e157. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, A.; Kim, K.; Tumanov, A.; Munchak, I.; Antonova, A.; Lebedev, A.; Ozhmegova, E.; Orlova-Morozova, E.; Drobyshevskaya, E.; Pronin, A.; et al. Features of Tat Protein in HIV-1 Sub-Subtype A6 Variants Circulating in the Moscow Region, Russia. Viruses 2023, 15, 2212. [Google Scholar] [CrossRef]
Clade a | Number of HIV-1 near Full-Length Genomes in the HIV Database | Number of Downloaded HIV-1 Sequences Used in Consensus | Number of Changes | Mean Changes per Sequence c | Variable Positions (%) | ||
---|---|---|---|---|---|---|---|
Insertions (95→96 Site) b | Deletions | Substitutions | |||||
A1 | 805 | 245 | 7 (*) | 322 | 3374 | 15.1 | 89.4 |
A6 | 222 | 187 | 6 (*) | 136 | 1664 | 9.6 | 82.1 |
B | 10,974 | 1716 | 61 | 700 | 24,897 | 14.9 | 98.3 |
C | 2420 | 865 | 58 (*) | 1435 | 9074 | 12.1 | 97.2 |
D | 219 | 156 | 6 | 23 | 1534 | 10.0 | 79.3 |
F1 | 79 | 74 | 29 | 4 | 942 | 12.8 | 70.7 |
F2 | 14 | 14 | 2 | 2 | 160 | 11.4 | 48.3 |
G | 101 | 91 | 4 (*) | 78 | 1343 | 15.6 | 75.6 |
H | 10 | 10 | 1 | 0 | 135 | 13.5 | 46.5 |
01_AE | 2105 | 613 | 65 (*) | 777 | 6999 | 12.7 | 96.7 |
02_AG | 232 | 204 | 13 (*) | 424 | 2722 | 15.4 | 87.0 |
06_cpx | 25 | 17 | 0 | 6 | 167 | 10.2 | 47.4 |
07_BC | 46 | 40 | 0 (*) | 39 | 327 | 9.1 | 57.0 |
08_BC | 37 | 33 | 0 (*) | 8 | 191 | 6.0 | 49.5 |
11_cpx | 25 | 23 | 27 | 1 | 323 | 14.1 | 64.6 |
12_BF | 14 | 14 | 4 | 4 | 141 | 10.3 | 40.5 |
13_cpx | 10 | 10 | 1 (*) | 9 | 125 | 13.4 | 39.8 |
14_BG | 14 | 12 | 0 (*) | 0 | 68 | 5.7 | 29.3 |
22_01A1 | 21 | 15 | 0 (*) | 5 | 188 | 12.9 | 49.6 |
35_A1D | 22 | 22 | 0 (*) | 14 | 172 | 8.4 | 43.1 |
42_BF1 | 17 | 17 | 0 | 6 | 17 | 1.3 | 8.6 |
63_02A6 | 26 | 26 | 1 (*) | 7 | 187 | 7.5 | 47.1 |
71_BF1 | 14 | 14 | 0 | 0 | 163 | 11.6 | 44.8 |
85_BC | 11 | 11 | 1 (*) | 1 | 59 | 5.4 | 32.7 |
91_cpx | 10 | 10 | 0 | 0 | 34 | 3.4 | 21.5 |
103_01B | 10 | 10 | 0 (*) | 4 | 88 | 8.8 | 30.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedev, A.; Kim, K.; Ozhmegova, E.; Antonova, A.; Kazennova, E.; Tumanov, A.; Kuznetsova, A. Rev Protein Diversity in HIV-1 Group M Clades. Viruses 2024, 16, 759. https://doi.org/10.3390/v16050759
Lebedev A, Kim K, Ozhmegova E, Antonova A, Kazennova E, Tumanov A, Kuznetsova A. Rev Protein Diversity in HIV-1 Group M Clades. Viruses. 2024; 16(5):759. https://doi.org/10.3390/v16050759
Chicago/Turabian StyleLebedev, Aleksey, Kristina Kim, Ekaterina Ozhmegova, Anastasiia Antonova, Elena Kazennova, Aleksandr Tumanov, and Anna Kuznetsova. 2024. "Rev Protein Diversity in HIV-1 Group M Clades" Viruses 16, no. 5: 759. https://doi.org/10.3390/v16050759
APA StyleLebedev, A., Kim, K., Ozhmegova, E., Antonova, A., Kazennova, E., Tumanov, A., & Kuznetsova, A. (2024). Rev Protein Diversity in HIV-1 Group M Clades. Viruses, 16(5), 759. https://doi.org/10.3390/v16050759