Anti-PD-L1 Immunotherapy of Chronic Virus Infection Improves Virus Control without Augmenting Tissue Damage by Fibrosis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Mice
4.2. Virus Infections
4.3. In Vivo Treatments with Anti-PD-L1
4.4. Flow Cytometry
4.5. Virus Load Quantification
4.6. Histological Staining
4.7. Quantification and Statistical Analysis
Funding
Authors Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhattacharya, M.; Ramachandran, P. Immunology of Human Fibrosis. Nat. Immunol. 2023, 24, 1423–1433. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A. Fibrotic Disease and the TH1/TH2 Paradigm. Nat. Rev. Immunol. 2004, 4, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Rouse, B.T.; Sehrawat, S. Immunity and Immunopathology to Viruses: What Decides the Outcome? Nat. Rev. Immunol. 2010, 10, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Duong-Quy, S.; Vo-Pham-Minh, T.; Tran-Xuan, Q.; Huynh-Anh, T.; Vo-Van, T.; Vu-Tran-Thien, Q.; Nguyen-Nhu, V. Post-COVID-19 Pulmonary Fibrosis: Facts—Challenges and Futures: A Narrative Review. Pulm. Ther. 2023, 9, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Samal, J.; Kelly, S.; Na-Shatal, A.; Elhakiem, A.; Das, A.; Ding, M.; Sanyal, A.; Gupta, P.; Melody, K.; Roland, B.; et al. Human Immunodeficiency Virus Infection Induces Lymphoid Fibrosis in the BM-Liver-Thymus-Spleen Humanized Mouse Model. JCI Insight 2018, 3, e120430. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.L.; Hunt, P.W.; Reilly, C.S.; Hatano, H.; Beilman, G.J.; Khoruts, A.; Jasurda, J.S.; Somsouk, M.; Thorkelson, A.; Russ, S.; et al. Lymphoid Fibrosis Occurs in Long-Term Nonprogressors and Persists with Antiretroviral Therapy but May Be Reversible with Curative Interventions. J. Infect. Dis. 2015, 211, 1068–1075. [Google Scholar] [CrossRef] [PubMed]
- Kityo, C.; Makamdop, K.N.; Rothenberger, M.; Chipman, J.G.; Hoskuldsson, T.; Beilman, G.J.; Grzywacz, B.; Mugyenyi, P.; Ssali, F.; Akondy, R.S.; et al. Lymphoid Tissue Fibrosis Is Associated with Impaired Vaccine Responses. J. Clin. Investig. 2018, 128, 2763–2773. [Google Scholar] [CrossRef] [PubMed]
- Makris, S.; de Winde, C.M.; Horsnell, H.L.; Cantoral-Rebordinos, J.A.; Finlay, R.E.; Acton, S.E. Immune Function and Dysfunction Are Determined by Lymphoid Tissue Efficacy. Dis. Model. Mech. 2022, 15, dmm049256. [Google Scholar] [CrossRef]
- Lv, H.; Jiang, Y.; Zhu, G.; Liu, S.; Wang, D.; Wang, J.; Zhao, K.; Liu, J. Liver Fibrosis Is Closely Related to Metabolic Factors in Metabolic Associated Fatty Liver Disease with Hepatitis B Virus Infection. Sci. Rep. 2023, 13, 1388. [Google Scholar] [CrossRef] [PubMed]
- Casella, V.; Domenjo-Vila, E.; Esteve-Codina, A.; Pedragosa, M.; Rica, P.C.; Vidal, E.; de la Rubia, I.; López-Rodríguez, C.; Bocharov, G.; Argilaguet, J.; et al. Differential Kinetics of Splenic CD169+ Macrophage Death Is One Underlying Cause of Virus Infection Fate Regulation. Cell Death Dis. 2023, 14, 838. [Google Scholar] [CrossRef] [PubMed]
- McLane, L.M.; Abdel-Hakeem, M.S.; Wherry, E.J. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu. Rev. Immunol. 2015, 37, 457–495. [Google Scholar] [CrossRef] [PubMed]
- Cornberg, M.; Kenney, L.L.; Chen, A.T.; Waggoner, S.N.; Kim, S.-K.; Dienes, H.P.; Welsh, R.M.; Selin, L.K. Clonal Exhaustion as a Mechanism to Protect Against Severe Immunopathology and Death from an Overwhelming CD8 T Cell Response. Front. Immunol. 2013, 4, 475. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Han, M.; Guo, Q.; Yan, F.; Wang, M.; Ning, Q.; Xi, D. Strategies to Reinvigorate Exhausted CD8+ T Cells in Tumor Microenvironment. Front. Immunol. 2023, 14, 1204363. [Google Scholar] [CrossRef] [PubMed]
- Argilaguet, J.; Pedragosa, M.; Esteve-Codina, A.; Riera, G.; Vidal, E.; Peligero-Cruz, C.; Casella, V.; Andreu, D.; Kaisho, T.; Bocharov, G.; et al. Systems Analysis Reveals Complex Biological Processes during Virus Infection Fate Decisions. Genome Res. 2019, 29, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Domenjo-Vila, E.; Casella, V.; Iwabuchi, R.; Fossum, E.; Pedragosa, M.; Castellví, Q.; Rica, P.C.; Kaisho, T.; Terahara, K.; Bocharov, G.; et al. XCR1 + DCs Are Critical for T Cell-Mediated Immunotherapy of Chronic Viral Infections. Cell Rep. 2023, 42, 112123. [Google Scholar] [CrossRef] [PubMed]
- Beltra, J.-C.; Manne, S.; Abdel-Hakeem, M.S.; Kurachi, M.; Giles, J.R.; Chen, Z.; Casella, V.; Ngiow, S.F.; Khan, O.; Huang, Y.J.; et al. Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms. Immunity 2020, 52, 825–841.e8. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P. Men and Mice: Relating Their Ages. Life Sci. 2016, 152, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.N.; Matloubian, M.; Clemens, D.M.; Sharpe, A.H.; Freeman, G.J.; Gangappa, S.; Larsen, C.P.; Ahmed, R. Viral Targeting of Fibroblastic Reticular Cells Contributes to Immunosuppression and Persistence during Chronic Infection. Proc. Natl. Acad. Sci. USA 2007, 104, 15430–15435. [Google Scholar] [CrossRef] [PubMed]
- Deeks, S.G.; Tracy, R.; Douek, D.C. Systemic Effects of Inflammation on Health during Chronic HIV Infection. Immunity 2013, 39, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Staupe, R.P.; Vella, L.A.; Manne, S.; Giles, J.R.; Meng, W.; Herati, R.S.; Khan, O.; Wu, J.E.; Baxter, A.E.; Prak, E.T.L.; et al. Chronic Viral Infection Promotes Early Germinal Center Exit of B Cells and Impaired Antibody Development. bioRxiv 2019. [Google Scholar] [CrossRef]
- Henderson, N.C.; Rieder, F.; Wynn, T.A. Fibrosis: From Mechanisms to Medicines. Nature 2020, 587, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. Transforming Growth Factor–β in Tissue Fibrosis. J. Exp. Med. 2020, 217, e20190103. [Google Scholar] [CrossRef] [PubMed]
- Barber, D.L.; Wherry, E.J.; Masopust, D.; Zhu, B.; Allison, J.P.; Sharpe, A.H.; Freeman, G.J.; Ahmed, R. Restoring Function in Exhausted CD8 T Cells during Chronic Viral Infection. Nature 2006, 439, 682–687. [Google Scholar] [CrossRef]
- Velu, V.; Titanji, K.; Zhu, B.; Husain, S.; Pladevega, A.; Lai, L.; Vanderford, T.H.; Chennareddi, L.; Silvestri, G.; Freeman, G.J.; et al. Enhancing SIV-Specific Immunity In Vivo by PD-1 Blockade. Nature 2009, 458, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Zheltkova, V.; Argilaguet, J.; Peligero, C.; Bocharov, G.; Meyerhans, A. Prediction of PD-L1 Inhibition Effects for HIV-Infected Individuals. PLoS Comput. Biol. 2019, 15, e1007401. [Google Scholar] [CrossRef]
- Gardiner, D.; Lalezari, J.; Lawitz, E.; DiMicco, M.; Ghalib, R.; Reddy, K.R.; Chang, K.-M.; Sulkowski, M.; Marro, S.O.; Anderson, J.; et al. A Randomized, Double-Blind, Placebo-Controlled Assessment of BMS-936558, a Fully Human Monoclonal Antibody to Programmed Death-1 (PD-1), in Patients with Chronic Hepatitis C Virus Infection. PLoS ONE 2013, 8, e63818. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Cao, M.; Morán, T.; Dalmau, J.; Garcia-Corbacho, J.; Bracht, J.W.P.; Bernabe, R.; Juan, O.; de Castro, J.; Blanco, R.; Drozdowskyj, A.; et al. Assessment of the Feasibility and Safety of Durvalumab for Treatment of Solid Tumors in Patients With HIV-1 Infection. JAMA Oncol. 2020, 6, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Reuther, J.; Scheel, C.H.; Becker, J.C. On the Use of Immune Checkpoint Inhibitors in Patients with Viral Infections Including COVID-19. J. Immunother. Cancer 2020, 8, e001145. [Google Scholar] [CrossRef] [PubMed]
- Celada, L.J.; Kropski, J.A.; Herazo-Maya, J.D.; Luo, W.; Creecy, A.; Abad, A.T.; Chioma, O.S.; Lee, G.; Hassell, N.E.; Shaginurova, G.I.; et al. PD-1 up-Regulation on CD4+ T Cells Promotes Pulmonary Fibrosis through STAT3-Mediated IL-17A and TGF-Β1 Production. Sci. Transl. Med. 2018, 10, eaar8356. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Sunil, C.; Adeyanju, O.; Parker, A.; Huang, S.; Ikebe, M.; Tucker, T.A.; Idell, S.; Qian, G. PD-L1 Mediates Lung Fibroblast to Myofibroblast Transition through Smad3 and β-Catenin Signaling Pathways. Sci. Rep. 2022, 12, 3053. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Shimizu, J.; Hasegawa, T.; Horio, Y.; Inaba, Y.; Yatabe, Y.; Hida, T. Pre-Existing Pulmonary Fibrosis Is a Risk Factor for Anti-PD-1-Related Pneumonitis in Patients with Non-Small Cell Lung Cancer: A Retrospective Analysis. Lung Cancer 2018, 125, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Kimizuka, Y.; Ogawa, T.; Tsuchiya, M.; Kato, Y.; Matsukida, A.; Igarashi, S.; Ito, K.; Serizawa, Y.; Tanigaki, T.; et al. IgG4-related Retroperitoneal Fibrosis Induced by Nivolumab and Ipilimumab in a Patient with Non-small Cell Lung Cancer: A Case Report. Thorac. Cancer 2024, 15, 104–107. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casella, V.; Cebollada Rica, P.; Argilaguet, J.; Vidal, E.; González-Cao, M.; Güerri-Fernandez, R.; Bocharov, G.; Meyerhans, A. Anti-PD-L1 Immunotherapy of Chronic Virus Infection Improves Virus Control without Augmenting Tissue Damage by Fibrosis. Viruses 2024, 16, 799. https://doi.org/10.3390/v16050799
Casella V, Cebollada Rica P, Argilaguet J, Vidal E, González-Cao M, Güerri-Fernandez R, Bocharov G, Meyerhans A. Anti-PD-L1 Immunotherapy of Chronic Virus Infection Improves Virus Control without Augmenting Tissue Damage by Fibrosis. Viruses. 2024; 16(5):799. https://doi.org/10.3390/v16050799
Chicago/Turabian StyleCasella, Valentina, Paula Cebollada Rica, Jordi Argilaguet, Enric Vidal, María González-Cao, Roberto Güerri-Fernandez, Gennady Bocharov, and Andreas Meyerhans. 2024. "Anti-PD-L1 Immunotherapy of Chronic Virus Infection Improves Virus Control without Augmenting Tissue Damage by Fibrosis" Viruses 16, no. 5: 799. https://doi.org/10.3390/v16050799
APA StyleCasella, V., Cebollada Rica, P., Argilaguet, J., Vidal, E., González-Cao, M., Güerri-Fernandez, R., Bocharov, G., & Meyerhans, A. (2024). Anti-PD-L1 Immunotherapy of Chronic Virus Infection Improves Virus Control without Augmenting Tissue Damage by Fibrosis. Viruses, 16(5), 799. https://doi.org/10.3390/v16050799