Outbreaks of H5N1 High Pathogenicity Avian Influenza in South Africa in 2023 Were Caused by Two Distinct Sub-Genotypes of Clade 2.3.4.4b Viruses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Testing of Wild Duck Fecal Samples
2.2. Poultry Samples
2.3. Coastal Seabird Samples
2.4. Genome Sequencing and Bioinformatic Analysis
3. Results
3.1. Molecular Epidemiology of H5N1 HPAIVs in South Africa in 2023 in Poultry and Wild Birds
3.1.1. Sub-Genotype SA13
3.1.2. Sub-Genotype SA15
3.2. Environmental Wild Bird Surveillance
3.3. Identification of AIVs in Ostriches
3.4. Molecular Markers of Host Tropism, Increased Virulence and Resistance to Antivirals
3.5. Unique Markers or Unknown Phenotype That Emerged in the Coastal Seabird Lineage SA13
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, D.H.; Bertran, K.; Kwon, J.H.; Swayne, D.E. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J. Vet Sci. 2017, 18, 269–280. [Google Scholar] [CrossRef]
- FAO 2023. Situation Update. Available online: https://www.fao.org/animal-health/situation-updates/global-aiv-with-zoonotic-potential/en (accessed on 25 March 2024).
- Seekings, A.H.; Warren, C.J.; Thomas, S.S.; Lean, F.Z.X.; Selden, D.; Mollett, B.C.; van Diemen, P.M.; Banyard, A.C.; Slomka, M.J. Different Outcomes of Chicken Infection with UK-Origin H5N1-2020 and H5N8-2020 High-Pathogenicity Avian Influenza Viruses (Clade 2.3.4.4b). Viruses 2023, 15, 1909. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control); EURL (European Union Reference Laboratory for Avian Influenza); Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Mirinavičiūtė, G.; Niqueux, É.; Ståhl, K.; et al. Scientific report: Avian influenza overview September–December 2023. EFSA J. 2023, 21, 8539. [Google Scholar] [CrossRef]
- Beerens, N.; Germeraad, E.A.; Venema, S.; Verheij, E.; Pritz-Verschuren, S.B.E.; Gonzales, J.L. Comparative pathogenicity and environmental transmission of recent highly pathogenic avian influenza H5 viruses. Emerg. Microbes Infect. 2021, 10, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Abolnik, C.; Pieterse, R.; Peyrot, B.M.; Choma, P.; Phiri, T.P.; Ebersohn, K.; Heerden, C.J.V.; Vorster, A.A.; van der Zel, G.V.; Geertsma, P.J.; et al. The Incursion and Spread of Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4 Within South Africa. Avian Dis. 2019, 63, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Abolnik, C.; Phiri, T.; Peyrot, B.; de Beer, R.; Snyman, A.; Roberts, D.; Ludynia, K.; Jordaan, F.; Maartens, M.; Ismail, Z.; et al. The Molecular Epidemiology of Clade 2.3.4.4B H5N1 High Pathogenicity Avian Influenza in Southern Africa, 2021–2022. Viruses 2023, 15, 1383. [Google Scholar] [CrossRef] [PubMed]
- Stokstad, E. In Antarctica, scientists track a dangerous bird flu. Science 2024, 383, 1281. [Google Scholar] [CrossRef] [PubMed]
- Sims, L.; Harder, T.C.; Brown, I.H.; Gaidet, N.; Belot, G.; Von Dobschuetz, S.; Kamata, A.; Kivaria, F.M.; Palamara, E.; Bruni, M.; et al. Highly pathogenic H5 avian influenza in 2016 and early 2017—Observations and future perspectives. FAO Empress Focus On 2017, 11, 16. Available online: https://agritrop.cirad.fr/585953/ (accessed on 3 April 2024).
- Plaza, P.I.; Gamarra-Toledo, V.; Euguí, J.R.; Lambertucci, S.A. Recent Changes in Patterns of Mammal Infection with Highly Pathogenic Avian Influenza A(H5N1) Virus Worldwide. Emerg. Infect. Dis. 2024, 30, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Rijks, J.M.; Leopold, M.F.; Kühn, S.; In ’t Veld, R.; Schenk, F.; Brenninkmeijer, A.; Lilipaly, S.J.; Ballmann, M.Z.; Kelder, L.; de Jong, J.W.; et al. Mass Mortality Caused by Highly Pathogenic Influenza A(H5N1) Virus in Sandwich Terns, the Netherlands, 2022. Emerg. Infect. Dis. 2022, 28, 2538–2542. [Google Scholar] [CrossRef] [PubMed]
- Jeglinski, J.W.E.; Lane, J.V.; Votier, S.C.; Furness, R.W.; Hamer, K.C.; McCafferty, D.J.; Nager, R.G.; Sheddan, M.; Wanless, S.; Matthiopoulos, J. HPAIV outbreak triggers short-term colony connectivity in a seabird metapopulation. Sci. Rep. 2024, 14, 3126. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Stará, M.; Černíková, L.; Kličková, E.; Horák, O.; Hofmannová, L.; Sedlák, K. Enzootic Circulation, Massive Gull Mortality and Poultry Outbreaks during the 2022/2023 High-Pathogenicity Avian Influenza H5N1 Season in the Czech Republic. Viruses 2024, 16, 221. [Google Scholar] [CrossRef] [PubMed]
- Letsholo, S.L.; James, J.; Meyer, S.M.; Byrne, A.M.P.; Reid, S.M.; Settypalli, T.B.K.; Datta, S.; Oarabile, L.; Kemolatlhe, O.; Pebe, K.T.; et al. Emergence of High Pathogenicity Avian Influenza Virus H5N1 Clade 2.3.4.4b in Wild Birds and Poultry in Botswana. Viruses 2022, 14, 2601. [Google Scholar] [CrossRef] [PubMed]
- Molini, U.; Yabe, J.; Meki, I.K.; Ouled Ahmed Ben Ali, H.; Settypalli, T.B.K.; Datta, S.; Coetzee, L.M.; Hamunyela, E.; Khaiseb, S.; Cattoli, G.; et al. Highly pathogenic avian influenza H5N1 virus outbreak among Cape cormorants (Phalacrocorax capensis) in Namibia, 2022. Emerg. Microbes Infect. 2023, 12, 2167610. [Google Scholar] [CrossRef] [PubMed]
- Makalo, M.R.J.; Dundon, W.G.; Settypalli, T.B.K.; Datta, S.; Lamien, C.E.; Cattoli, G.; Phalatsi, M.S.; Lepheana, R.J.; Matlali, M.; Mahloane, R.G.; et al. Highly pathogenic avian influenza (A/H5N1) virus outbreaks in Lesotho, May 2021. Emerg. Microbes Infect. 2022, 11, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Abolnik, C.; Phiri, T.P.; van der Zel, G.; Anthony, J.; Daniell, N.; de Boni, L. Wild Bird Surveillance in the Gauteng Province of South Africa during the High-Risk Period for Highly Pathogenic Avian Influenza Virus Introduction. Viruses 2022, 14, 2027. [Google Scholar] [CrossRef] [PubMed]
- Slomka, M.J.; Pavlidis, T.; Coward, V.J.; Voermans, J.; Koch, G.; Hanna, A.; Banks, J.; Brown, I.H. Validated RealTime reverse transcriptase PCR methods for the diagnosis and pathotyping of Eurasian H7 avian influenza viruses. Influenza Other Respir. Viruses 2009, 3, 151–164. [Google Scholar] [CrossRef]
- Hoffmann, B.; Hoffmann, D.; Henritzi, D.; Beer, M.; Harder, T.C. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses. Sci. Rep. 2016, 6, 27211. [Google Scholar] [CrossRef] [PubMed]
- Abolnik, C. Spillover of an endemic avian Influenza H6N2 chicken lineage to ostriches and reassortment with clade 2.3.4.4b H5N1 high pathogenicity viruses in chickens. Vet. Res. Commun. 2024, 48, 1233–1237. [Google Scholar] [CrossRef] [PubMed]
- Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe). Diagnostic Protocols for Avian Influenza. Available online: https://www.izsvenezie.com/reference-laboratories/avian-influenza-newcastle-disease/diagnostic-protocols/ (accessed on 28 February 2024).
- Spackman, E.; Senne, D.A.; Myers, T.J.; Bulaga, L.L.; Garber, L.P.; Perdue, M.L.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 2002, 40, 3256–3260. [Google Scholar] [CrossRef]
- Zhou, B.; Donnelly, M.E.; Scholes, D.T.; George, K.S.; Hatta, M.; Kawaoka, Y.; Wentworth, D. Single-Reaction Genome Amplification Accelerates Sequencing and Vaccine Production for Classical and Swine Origin Human Influenza A Viruses. J. Virol. 2009, 83, 10309–10313. [Google Scholar] [CrossRef]
- Suttie, A.; Deng, Y.M.; Greenhill, A.R.; Dussart, P.; Horwood, P.F.; Karlsson, E.A. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019, 55, 739–768. [Google Scholar] [CrossRef]
- Byrne, A.M.P.; James, J.; Mollett, B.C.; Meyer, S.M.; Lewis, T.; Czepiel, M.; Seekings, A.H.; Mahmood, S.; Thomas, S.S.; Ross, C.S.; et al. Investigating the Genetic Diversity of H5 Avian Influenza Viruses in the United Kingdom from 2020–2022. Microbiol. Spectr. 2023, 11, e0477622. [Google Scholar] [CrossRef]
- Nguyen, N.M.; Sung, H.W.; Yun, K.-J.; Park, H.; Yeo, S.-J. Genetic Characterization of a Novel North American-Origin Avian Influenza A (H6N5) Virus Isolated from Bean Goose of South Korea in 2018. Viruses 2020, 12, 774. [Google Scholar] [CrossRef]
- Ryan, P. Guide to Seabirds of Southern Africa, 1st ed.; Struik Nature: Los Angeles, CA, USA, 2017. [Google Scholar]
- Crawford, R.J.M.; Hockey, P.A.R.; Tree, A.J. Greater Crested Tern. In Roberts Birds of Southern Africa, 7th ed.; Hockey, P.A.R., Dean, W.R.J., Ryan, P.G., Eds.; Trustees of the John Voelcker Bird Book Fund: Cape Town, South Africa, 2005. [Google Scholar]
- Kalonda, A.; Saasa, N.; Kajihara, M.; Nao, N.; Moonga, L.; Ndebe, J.; Mori-Kajihara, A.; Mukubesa, A.N.; Samutela, M.; Munjita, S.; et al. Surveillance and Phylogenetic Characterisation of Avian Influenza Viruses Isolated from Wild Waterfowl in Zambia in 2015, 2020, and 2021. Transbound. Emerg. Dis. 2023, 2023, 4606850. [Google Scholar] [CrossRef]
- Roberts, L.C.; Abolnik, C.; Waller, L.J.; Shaw, K.; Ludynia, K.; Roberts, D.G.; Kock, A.; Makhado, A.B.; Snyman, A.; Abernethy, D. Descriptive Epidemiology of and Response to the High Pathogenicity Avian Influenza (H5N8) Epidemic in South African Coastal Seabirds, 2018. Transbound. Emerg. Dis. 2023, 2023, 2708458. [Google Scholar] [CrossRef]
- Gao, H.; Sun, H.; Hu, J.; Qi, L.; Wang, J.; Xiong, X.; Wang, Y.; He, Q.; Lin, Y.; Kong, W.; et al. Twenty amino acids at the C-terminus of PA-X are associated with increased influenza A virus replication and pathogenicity. J. Gen. Virol. 2015, 96, 2036–2049. [Google Scholar] [CrossRef]
- Hu, J.; Ma, C.; Liu, X. PA-X: A key regulator of influenza A virus pathogenicity and host immune responses. Med. Microbiol. Immunol. 2018, 207, 255–269. [Google Scholar] [CrossRef]
- Burnham, A.J.; Miller, J.R.; Singh, I.; Billings, E.A.; Rush, M.A.; Air, G.M.; Bour, S. Novel isoforms of influenza virus PA-X and PB1-F2 indicated by automatic annotation. Virus Res. 2021, 304, 198545. [Google Scholar] [CrossRef]
- Kamal, R.P.; Alymova, I.V.; York, I.A. Evolution and Virulence of Influenza A Virus Protein PB1-F2. Int. J. Mol. Sci. 2017, 19, 96. [Google Scholar] [CrossRef]
Province | Number of Pools Tested | AIV Positive 1 | H5 Subtype Positive 2 | H7 Subtype Positive 2 | Other/Unidentified Subtypes 2 |
---|---|---|---|---|---|
Eastern Cape | 3 | 2 (66.7%) | 0 | 0 | 2 (100%) |
Free State | 0 | 0 | 0 | 0 | 0 |
Gauteng | 173 | 140 (80.9%) | 80 (57.1%) | 0 | 60 (42.9%) 3 |
KwaZulu-Natal | 70 | 39 (55.7%) | 8 (20.5%) | 1 (2.6%) | 30 (76.9%) |
Limpopo | 0 | 0 | 0 | 0 | 0 |
Mpumalanga | 10 | 7 (70%) | 5 (71.4%) | 0 | 2 (28.6%) |
Northern Cape | 0 | 0 | 0 | 0 | 0 |
North West | 38 | 17 (44.7%) | 1 (5.9%) | 0 | 16 (94.1%) |
Western Cape | 183 | 82 (44.8%) | 27 (32.9%) | 1 (1.2%) | 54 (65.9%) 4 |
Total | 477 | 287 (60.1%) | 121 (42.2%) | 2 (0.7%) | 164 (57.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abolnik, C.; Roberts, L.C.; Strydom, C.; Snyman, A.; Roberts, D.G. Outbreaks of H5N1 High Pathogenicity Avian Influenza in South Africa in 2023 Were Caused by Two Distinct Sub-Genotypes of Clade 2.3.4.4b Viruses. Viruses 2024, 16, 896. https://doi.org/10.3390/v16060896
Abolnik C, Roberts LC, Strydom C, Snyman A, Roberts DG. Outbreaks of H5N1 High Pathogenicity Avian Influenza in South Africa in 2023 Were Caused by Two Distinct Sub-Genotypes of Clade 2.3.4.4b Viruses. Viruses. 2024; 16(6):896. https://doi.org/10.3390/v16060896
Chicago/Turabian StyleAbolnik, Celia, Laura Christl Roberts, Christine Strydom, Albert Snyman, and David Gordon Roberts. 2024. "Outbreaks of H5N1 High Pathogenicity Avian Influenza in South Africa in 2023 Were Caused by Two Distinct Sub-Genotypes of Clade 2.3.4.4b Viruses" Viruses 16, no. 6: 896. https://doi.org/10.3390/v16060896
APA StyleAbolnik, C., Roberts, L. C., Strydom, C., Snyman, A., & Roberts, D. G. (2024). Outbreaks of H5N1 High Pathogenicity Avian Influenza in South Africa in 2023 Were Caused by Two Distinct Sub-Genotypes of Clade 2.3.4.4b Viruses. Viruses, 16(6), 896. https://doi.org/10.3390/v16060896