Production and Immunogenicity of FeLV Gag-Based VLPs Exposing a Stabilized FeLV Envelope Glycoprotein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmids
2.2. Cell Line, Culture Conditions, and Transfection
2.3. Design, Production, and Purification of SOSIP-FeLV Soluble Protein
2.4. Size-Exclusion High-Performance Liquid Chromatography (SE-HPLC)
2.5. Analysis of VLP and Protein Production
2.5.1. Identification by Western Blot and Coomassie Blue
2.5.2. Flow Cytometry Analysis of Recombinant Protein Expression
2.5.3. Transmission (TEM) and Cryo-Transmission Electron Microscopy (Cryo-EM)
2.6. Mice Immunization and Immunogenicity Analyses
2.6.1. Evaluation of Humoral Response by ELISA
2.6.2. Design and Production of SU-huIgG
2.6.3. Statistical Analysis
3. Results
3.1. Generation of a Soluble Stable FeLV Env Trimer
3.2. Generation of SOSIP-FeLV Gag-Based VLPs
3.3. Immunogenicity of FeLV Gag-Based VLPs in C57BL/6 Mice
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sykes, J.E.; Hartmann, K. Feline Leukemia Virus Infection. In Canine and Feline Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2014; pp. 224–238. [Google Scholar]
- Hartmann, K.; Hofmann-Lehmann, R. What’s New in Feline Leukemia Virus Infection. Vet. Clin. N. Am. Small Anim. Pract. 2020, 50, 1013–1036. [Google Scholar] [CrossRef] [PubMed]
- Hofmann-Lehmann, R.; Tandon, R.; Boretti, F.; Meli, M.; Willi, B.; Cattori, V.; Gomeskeller, M.; Ossent, P.; Golder, M.; Flynn, J. Reassessment of Feline Leukaemia Virus (FeLV) Vaccines with Novel Sensitive Molecular Assays. Vaccine 2006, 24, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Hoover, E.A.; Mullins, J.I.; Chu, H.-J.; Wasmoen, T.L. Efficacy of an Inactivated Feline Leukemia Virus Vaccine. AIDS Res. Hum. Retroviruses 1996, 12, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Tartaglia, J.; Jarrett, O.; Neil, J.C.; Desmettre, P.; Paoletti, E. Protection of Cats against Feline Leukemia Virus by Vaccination with a Canarypox Virus Recombinant, ALVAC-FL. J. Virol. 1993, 67, 2370–2375. [Google Scholar] [CrossRef] [PubMed]
- Dunham, S.P.; Graham, E. Retroviral Infections of Small Animals. Vet. Clin. N. Am. Small Anim. Pract. 2008, 38, 879–901. [Google Scholar] [CrossRef] [PubMed]
- Stuke, K.; King, V.; Southwick, K.; Stoeva, M.I.; Thomas, A.; Winkler, M.T.C. Efficacy of an Inactivated FeLV Vaccine Compared to a Recombinant FeLV Vaccine in Minimum Age Cats Following Virulent FeLV Challenge. Vaccine 2014, 32, 2599–2603. [Google Scholar] [CrossRef] [PubMed]
- Saba, C. Vaccine-Associated Feline Sarcoma: Current Perspectives. Vet. Med. Res. Rep. 2017, 8, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Immunising with the Transmembrane Envelope Proteins of Different Retroviruses Including HIV-1. Hum. Vaccin. Immunother. 2013, 9, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.L.; Wensel, D.L.; Li, W.; Fass, D.; Cunningham, J.M. Structure and Mechanism of a Coreceptor for Infection by a Pathogenic Feline Retrovirus. J. Virol. 2003, 77, 2717–2729. [Google Scholar] [CrossRef] [PubMed]
- McCune, J.M.; Rabin, L.B.; Feinberg, M.B.; Lieberman, M.; Kosek, J.C.; Reyes, G.R.; Weissman, I.L. Endoproteolytic Cleavage of Gp160 Is Required for the Activation of Human Immunodeficiency Virus. Cell 1988, 53, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, R.; Sodroski, J. The HIV-1 Envelope Glycoproteins: Fusogens, Antigens, and Immunogens. Science (1979) 1998, 280, 1884–1888. [Google Scholar] [CrossRef]
- Lasky, L.A.; Groopman, J.E.; Fennie, C.W.; Benz, P.M.; Capon, D.J.; Dowbenko, D.J.; Nakamura, G.R.; Nunes, W.M.; Renz, M.E.; Berman, P.W. Neutralization of the AIDS Retrovirus by Antibodies to a Recombinant Envelope Glycoprotein. Science 1986, 233, 209–212. [Google Scholar] [CrossRef]
- Wei, X.; Decker, J.M.; Wang, S.; Hui, H.; Kappes, J.C.; Wu, X.; Salazar-Gonzalez, J.F.; Salazar, M.G.; Kilby, J.M.; Saag, M.S.; et al. Antibody Neutralization and Escape by HIV-1. Nature 2003, 422, 307–312. [Google Scholar] [CrossRef]
- Sanders, R.W.; Vesanen, M.; Schuelke, N.; Master, A.; Schiffner, L.; Kalyanaraman, R.; Paluch, M.; Berkhout, B.; Maddon, P.J.; Olson, W.C.; et al. Stabilization of the Soluble, Cleaved, Trimeric Form of the Envelope Glycoprotein Complex of Human Immunodeficiency Virus Type 1. J. Virol. 2002, 76, 8875–8889. [Google Scholar] [CrossRef]
- Derking, R.; Sanders, R.W. Structure-guided Envelope Trimer Design in HIV-1 Vaccine Development: A Narrative Review. J. Int. AIDS Soc. 2021, 24, e25797. [Google Scholar] [CrossRef]
- Sanders, R.W.; van Gils, M.J.; Derking, R.; Sok, D.; Ketas, T.J.; Burger, J.A.; Ozorowski, G.; Cupo, A.; Simonich, C.; Goo, L.; et al. HIV-1 Neutralizing Antibodies Induced by Native-like Envelope Trimers. Science 2015, 349, aac4223. [Google Scholar] [CrossRef]
- Binley, J.M.; Sanders, R.W.; Clas, B.; Schuelke, N.; Master, A.; Guo, Y.; Kajumo, F.; Anselma, D.J.; Maddon, P.J.; Olson, W.C.; et al. A Recombinant Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Complex Stabilized by an Intermolecular Disulfide Bond between the Gp120 and Gp41 Subunits Is an Antigenic Mimic of the Trimeric Virion-Associated Structure. J. Virol. 2000, 74, 627–643. [Google Scholar] [CrossRef]
- Sliepen, K.; Sanders, R.W. HIV-1 Envelope Glycoprotein Immunogens to Induce Broadly Neutralizing Antibodies. Expert. Rev. Vaccines 2016, 15, 349–365. [Google Scholar] [CrossRef]
- Kwong, P.D.; Mascola, J.R.; Nabel, G.J. Broadly Neutralizing Antibodies and the Search for an HIV-1 Vaccine: The End of the Beginning. Nat. Rev. Immunol. 2013, 13, 693–701. [Google Scholar] [CrossRef]
- Ringel, O.; Vieillard, V.; Debré, P.; Eichler, J.; Büning, H.; Dietrich, U. The Hard Way towards an Antibody-Based HIV-1 Env Vaccine: Lessons from Other Viruses. Viruses 2018, 10, 197. [Google Scholar] [CrossRef]
- Thalhauser, S.; Peterhoff, D.; Wagner, R.; Breunig, M. Critical Design Criteria for Engineering a Nanoparticulate HIV-1 Vaccine. J. Control. Release 2020, 317, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Sliepen, K.; Ozorowski, G.; Burger, J.A.; van Montfort, T.; Stunnenberg, M.; LaBranche, C.; Montefiori, D.C.; Moore, J.P.; Ward, A.B.; Sanders, R.W. Presenting Native-like HIV-1 Envelope Trimers on Ferritin Nanoparticles Improves Their Immunogenicity. Retrovirology 2015, 12, 82. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Chen, J.-Y.; Chen, H.-W.; Hu, C.-M.J. Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation. Nanotheranostics 2017, 1, 244–260. [Google Scholar] [CrossRef]
- Irvine, D.J.; Hanson, M.C.; Rakhra, K.; Tokatlian, T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem. Rev. 2015, 115, 11109–11146. [Google Scholar] [CrossRef]
- Deml, L.; Schirmbeck, R.; Reimann, J.; Wolf, H.; Wagner, R. Recombinant Human Immunodeficiency Pr55gagVirus-like Particles Presenting Chimeric Envelope Glycoproteins Induce Cytotoxic T-Cells and Neutralizing Antibodies. Virology 1997, 235, 26–39. [Google Scholar] [CrossRef]
- Wagner, R.; Teeuwsen, V.J.P.; Deml, L.; Notka, F.; Haaksma, A.G.M.; Jhagjhoorsingh, S.S.; Niphuis, H.; Wolf, H.; Heeney, J.L. Cytotoxic T Cells and Neutralizing Antibodies Induced in Rhesus Monkeys by Virus-like Particle HIV Vaccines in the Absence of Protection from SHIV Infection. Virology 1998, 245, 65–74. [Google Scholar] [CrossRef]
- Molinos-Albert, L.M.; Bilbao, E.; Agulló, L.; Marfil, S.; García, E.; La Concepción, M.L.R.D.; Izquierdo-Useros, N.; Vilaplana, C.; Nieto-Garai, J.A.; Contreras, F.X.; et al. Proteoliposomal Formulations of an HIV-1 Gp41-Based Miniprotein Elicit a Lipid-Dependent Immunodominant Response Overlapping the 2F5 Binding Motif. Sci. Rep. 2017, 7, 40800. [Google Scholar] [CrossRef]
- Tarrés-Freixas, F.; Aguilar-Gurrieri, C.; Rodríguez de la Concepción, M.L.; Urrea, V.; Trinité, B.; Ortiz, R.; Pradenas, E.; Blanco, P.; Marfil, S.; Molinos-Albert, L.M.; et al. An Engineered HIV-1 Gag-Based VLP Displaying High Antigen Density Induces Strong Antibody-Dependent Functional Immune Responses. NPJ Vaccines 2023, 8, 51. [Google Scholar] [CrossRef]
- Ortiz, R.; Barajas, A.; Pons-Grífols, A.; Trinité, B.; Tarrés-Freixas, F.; Rovirosa, C.; Urrea, V.; Barreiro, A.; Gonzalez-Tendero, A.; Cardona, M.; et al. Exploring FeLV-Gag-Based VLPs as a New Vaccine Platform-Analysis of Production and Immunogenicity. Int. J. Mol. Sci. 2023, 24, 9025. [Google Scholar] [CrossRef]
- Houser, K.V.; Gaudinski, M.R.; Happe, M.; Narpala, S.; Verardi, R.; Sarfo, E.K.; Corrigan, A.R.; Wu, R.; Shauna Rothwell, R.; Novik, L.; et al. Safety and Immunogenicity of an HIV-1 Prefusion-Stabilized Envelope Trimer (Trimer 4571) Vaccine in Healthy Adults: A First-in-Human Open-Label, Randomized, Dose-Escalation, Phase 1 Clinical Trial Articles. EClinicalMedicine 2022, 48, 101477. [Google Scholar] [CrossRef]
- Graham, E.M.; Jarrett, O.; Flynn, J.N. Development of Antibodies to Feline IFN-γ as Tools to Elucidate the Cellular Immune Responses to FeLV. J. Immunol. Methods 2003, 279, 69–78. [Google Scholar] [CrossRef]
- Flynn, J.N.; Dunham, S.P.; Watson, V.; Jarrett, O. Longitudinal Analysis of Feline Leukemia Virus-Specific Cytotoxic T Lymphocytes: Correlation with Recovery from Infection. J. Virol. 2002, 76, 2306–2315. [Google Scholar] [CrossRef]
- Flynn, J.N.; Hanlon, L.; Jarrett, O. Feline Leukaemia Virus: Protective Immunity Is Mediated by Virus-specific Cytotoxic T Lymphocytes. Immunology 2000, 101, 120–125. [Google Scholar] [CrossRef]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and Sequence Analysis Tools Services from EMBL-EBI in 2022. Nucleic Acids Res 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Carrillo, J.; Molinos-Albert, L.M.; de la Concepción, M.L.R.; Marfil, S.; García, E.; Derking, R.; Sanders, R.W.; Clotet, B.; Blanco, J. Gp120/CD4 Blocking Antibodies Are Frequently Elicited in ART-Naïve Chronically HIV-1 Infected Individuals. PLoS ONE 2015, 10, e0120648. [Google Scholar] [CrossRef]
- Pauthner, M.G.; Nkolola, J.P.; Havenar-Daughton, C.; Murrell, B.; Reiss, S.M.; Bastidas, R.; Prévost, J.; Nedellec, R.; von Bredow, B.; Abbink, P.; et al. Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers. Immunity 2019, 50, 241–252.e6. [Google Scholar] [CrossRef]
- Gilbert, J.H.; Pedersen, N.C.; Nunberg, J.H. Feline Leukemia Virus Envelope Protein Expression Encoded by a Recombinant Vaccinia Virus: Apparent Lack of Immunogenicity in Vaccinated Animals. Virus Res. 1987, 7, 49–67. [Google Scholar] [CrossRef]
- Sebring, R.W.; Chu, H.J.; Chavez, L.G.; Sandblom, D.S.; Hustead, D.R.; Dale, B.; Wolf, D.; Acree, W.M. Feline Leukemia Virus Vaccine Development. J. Am. Vet. Med. Assoc. 1991, 199, 1413–1419. [Google Scholar] [CrossRef]
- York, S.M.; York, C.J. Development of a Whole Killed Feline Leukemia Virus Vaccine. J. Am. Vet. Med. Assoc. 1991, 199, 1419–1422. [Google Scholar] [CrossRef]
- Kensil, C.R.; Barrett, C.; Kushner, N.; Beltz, G.; Storey, J.; Patel, U.; Recchia, J.; Aubert, A.; Marciani, D. Development of a Genetically Engineered Vaccine against Feline Leukemia Virus Infection. J. Am. Vet. Med. Assoc. 1991, 199, 1423–1427. [Google Scholar] [CrossRef]
- Poulet, H.; Brunet, S.; Boularand, C.; Guiot, A.L.; Leroy, V.; Tartaglia, J.; Minke, J.; Audonnet, J.C.; Desmettre, P. Efficacy of a Canarypox Virus-vectored Vaccine against Feline Leukaemia. Vet. Rec. 2003, 153, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Hofmann-Lehmann, R.; Cattori, V.; Tandon, R.; Boretti, F.S.; Meli, M.L.; Riond, B.; Pepin, A.C.; Willi, B.; Ossent, P.; Lutz, H. Vaccination against the Feline Leukaemia Virus: Outcome and Response Categories and Long-Term Follow-Up. Vaccine 2007, 25, 5531–5539. [Google Scholar] [CrossRef] [PubMed]
- Sparkes, A.H. Feline Leukaemia Virus: A Review of Immunity and Vaccination. J. Small Anim. Pract. 1997, 38, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Westman, M.; Norris, J.; Malik, R.; Hofmann-Lehmann, R.; Parr, Y.A.; Armstrong, E.; McDonald, M.; Hall, E.; Sheehy, P.; Hosie, M.J. Anti-SU Antibody Responses in Client-Owned Cats Following Vaccination against Feline Leukaemia Virus with Two Inactivated Whole-Virus Vaccines (Fel-O-Vax® Lv-K and Fel-O-Vax® 5). Viruses 2021, 13, 240. [Google Scholar] [CrossRef]
- Barajas, A.; Amengual-Rigo, P.; Pons-Grífols, A.; Ortiz, R.; Gracia Carmona, O.; Urrea, V.; de la Iglesia, N.; Blanco-Heredia, J.; Anjos-Souza, C.; Varela, I.; et al. Virus-like Particle-Mediated Delivery of Structure-Selected Neoantigens Demonstrates Immunogenicity and Antitumoral Activity in Mice. J. Transl. Med. 2024, 22, 14. [Google Scholar] [CrossRef] [PubMed]
- Trinité, B.; Durr, E.; Pons-Grífols, A.; O’Donnell, G.; Aguilar-Gurrieri, C.; Rodriguez, S.; Urrea, V.; Tarrés, F.; Mane, J.; Ortiz, R.; et al. VLPs Generated by the Fusion of RSV-F or HMPV-F Glycoprotein to HIV-Gag Show Improved Immunogenicity and Neutralizing Response in Mice. Vaccine 2024, 42, 3474–3485. [Google Scholar] [CrossRef] [PubMed]
- Asakura, Y.; Liu, L.-J.; Shono, N.; Hinkula, J.; Kjerrström, A.; Aoki, I.; Okuda, K.; Wahren, B.; Fukushima, J. Th1-Biased Immune Responses Induced by DNA-Based Immunizations Are Mediated via Action on Professional Antigen-Presenting Cells to up-Regulate IL-12 Production. Clin. Exp. Immunol. 2000, 119, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Schlecht-Louf, G.; Mangeney, M.; El-Garch, H.; Lacombe, V.; Poulet, H.; Heidmann, T. A Targeted Mutation within the Feline Leukemia Virus (FeLV) Envelope Protein Immunosuppressive Domain To Improve a Canarypox Virus-Vectored FeLV Vaccine. J. Virol. 2014, 88, 992–1001. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, R.; Barajas, A.; Pons-Grífols, A.; Trinité, B.; Tarrés-Freixas, F.; Rovirosa, C.; Urrea, V.; Barreiro, A.; Gonzalez-Tendero, A.; Rovira-Rigau, M.; et al. Production and Immunogenicity of FeLV Gag-Based VLPs Exposing a Stabilized FeLV Envelope Glycoprotein. Viruses 2024, 16, 987. https://doi.org/10.3390/v16060987
Ortiz R, Barajas A, Pons-Grífols A, Trinité B, Tarrés-Freixas F, Rovirosa C, Urrea V, Barreiro A, Gonzalez-Tendero A, Rovira-Rigau M, et al. Production and Immunogenicity of FeLV Gag-Based VLPs Exposing a Stabilized FeLV Envelope Glycoprotein. Viruses. 2024; 16(6):987. https://doi.org/10.3390/v16060987
Chicago/Turabian StyleOrtiz, Raquel, Ana Barajas, Anna Pons-Grífols, Benjamin Trinité, Ferran Tarrés-Freixas, Carla Rovirosa, Víctor Urrea, Antonio Barreiro, Anna Gonzalez-Tendero, Maria Rovira-Rigau, and et al. 2024. "Production and Immunogenicity of FeLV Gag-Based VLPs Exposing a Stabilized FeLV Envelope Glycoprotein" Viruses 16, no. 6: 987. https://doi.org/10.3390/v16060987
APA StyleOrtiz, R., Barajas, A., Pons-Grífols, A., Trinité, B., Tarrés-Freixas, F., Rovirosa, C., Urrea, V., Barreiro, A., Gonzalez-Tendero, A., Rovira-Rigau, M., Cardona, M., Ferrer, L., Clotet, B., Carrillo, J., Aguilar-Gurrieri, C., & Blanco, J. (2024). Production and Immunogenicity of FeLV Gag-Based VLPs Exposing a Stabilized FeLV Envelope Glycoprotein. Viruses, 16(6), 987. https://doi.org/10.3390/v16060987