The Structure of Spiroplasma Virus 4: Exploring the Capsid Diversity of the Microviridae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propagation and Purification of SpV4 and ChP2
2.2. Vitrification and Cryo-Electron Microscopy Data Collection
2.3. Data Processing and 3D Image Reconstruction
2.4. Localized Reconstruction
2.5. Model Building
2.6. Structural Comparison
3. Results and Discussion
3.1. Purified SpV4 Contains Two Particle Populations: Empty and Full Capsids
3.2. Packaged Genome Orders the N-Terminus of Full Capsids
3.3. The SpV4 Capsid Surface Is Dominated by Two Loops
3.4. The Dynamic Mushroom-like Protrusions
3.5. VP8 Is Observed on the Interior Surface of the SpV4 Capsid
3.6. Structural Comparison to Other Microviruses
3.7. Structural Repertoire of the Microviridae
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirchberger, P.C.; Ochman, H. Microviruses: A World Beyond phiX174. Annu. Rev. Virol. 2023, 10, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Ricard, B.; Garnier, M.; Bové, J.M. Characterization of SpV3 from spiroplasmas and discovery of a new spiroplasma virus (SpV4). Summary. In International Organization for Mycoplasmology Meeting; Gerdat, G.L.P., Inra, F.R.A., Eds.; Université de Bordeaux: Talence, France, 1980; Available online: https://agritrop.cirad.fr/402215/ (accessed on 9 September 1980).
- Cleary, D.; Szalanski, A.L. Molecular Diagnostic Survey of Honey Bee, Apis mellifera L., Pathogens and Parasites from Arkansas, USA. J. Apic. Sci. 2022, 66, 149–158. [Google Scholar] [CrossRef]
- Schwarz, R.S.; Teixeira, É.W.; Tauber, J.P.; Birke, J.M.; Martins, M.F.; Fonseca, I.; Evans, J.D. Honey bee colonies act as reservoirs for two Spiroplasma facultative symbionts and incur complex, multiyear infection dynamics. MicrobiologyOpen 2014, 3, 341–355. [Google Scholar] [PubMed]
- Renaudin, J.; Pascarel, M.C.; Bové, J.M. Spiroplasma virus 4: Nucleotide sequence of the viral DNA, regulatory signals, and proposed genome organization. J. Bacteriol. 1987, 169, 4950–4961. [Google Scholar] [CrossRef] [PubMed]
- Chipman, P.R.; Agbandje-McKenna, M.; Renaudin, J.; Baker, T.S.; McKenna, R. Structural analysis of the Spiroplasma virus, SpV4: Implications for evolutionary variation to obtain host diversity among the Microviridae. Structure 1998, 6, 135–145. [Google Scholar]
- McKenna, R.; Xia, D.; Willingmann, P.; Ilag, L.L.; Rossmann, M.G. Structure determination of the bacteriophage phiX174. Acta Crystallogr. Sect. B Struct. Sci. 1992, 48 Pt 4, 499–511. [Google Scholar]
- Lee, H.; Baxter, A.J.; Bator, C.M.; Fane, B.A.; Hafenstein, S.L. Cryo-EM Structure of Gokushovirus ΦEC6098 Reveals a Novel Capsid Architecture for a Single-Scaffolding Protein, Microvirus Assembly System. J. Virol. 2022, 96, e0099022. [Google Scholar] [CrossRef] [PubMed]
- Mietzsch, M.; Penzes, J.J.; Agbandje-McKenna, M. Twenty-Five Years of Structural Parvovirology. Viruses 2019, 11, 362. [Google Scholar] [CrossRef]
- Khayat, R.; Brunn, N.; Speir, J.A.; Hardham, J.M.; Ankenbauer, R.G.; Schneemann, A.; Johnson, J.E. The 2.3-angstrom structure of porcine circovirus 2. J. Virol. 2011, 85, 7856–7862. [Google Scholar] [CrossRef]
- Quaiser, A.; Dufresne, A.; Ballaud, F.; Roux, S.; Zivanovic, Y.; Colombet, J.; Sime-Ngando, T.; Francez, A.-J. Diversity and comparative genomics of Microviridae in Sphagnum- dominated peatlands. Front. Microbiol. 2015, 6, 375. [Google Scholar]
- Brentlinger, K.L.; Hafenstein, S.; Novak, C.R.; Fane, B.A.; Borgon, R.; McKenna, R.; Agbandje-McKenna, M. Microviridae, a family divided: Isolation, characterization, and genome sequence of phiMH2K, a bacteriophage of the obligate intracellular parasitic bacterium Bdellovibrio bacteriovorus. J. Bacteriol. 2002, 184, 1089–1094. [Google Scholar] [CrossRef]
- Liu, B.L.; Everson, J.S.; Fane, B.; Giannikopoulou, P.; Vretou, E.; Lambden, P.R.; Clarke, I.N. Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci. J. Virol. 2000, 74, 3464–3469. [Google Scholar] [CrossRef]
- Clarke, I.N.; Cutcliffe, L.T.; Everson, J.S.; Garner, S.A.; Lambden, P.R.; Pead, P.J.; Pickett, M.A.; Brentlinger, K.L.; Fane, B.A. Chlamydiaphage Chp2, a skeleton in the phiX174 closet: Scaffolding protein and procapsid identification. J. Bacteriol. 2004, 186, 7571–7574. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Young, L.N.; Zhang, X.; Boudko, S.P.; Fokine, A.; Zbornik, E.; Roznowski, A.P.; Molineux, I.J.; Rossmann, M.G.; Fane, B.A. Icosahedral bacteriophage ΦX174 forms a tail for DNA transport during infection. Nature 2014, 505, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Everson, J.S.; Garner, S.A.; Fane, B.; Liu, B.L.; Lambden, P.R.; Clarke, I.N. Biological properties and cell tropism of Chp2, a bacteriophage of the obligate intracellular bacterium Chlamydophila abortus. J. Bacteriol. 2002, 184, 2748–2754. [Google Scholar] [CrossRef]
- Aoyama, A.; Hayashi, M. Synthesis of bacteriophage phi X174 in vitro: Mechanism of switch from DNA replication to DNA packaging. Cell 1986, 47, 99–106. [Google Scholar] [CrossRef]
- Hamatake, R.K.; Aoyama, A.; Hayashi, M. The J gene of bacteriophage phi X174: In vitro analysis of J protein function. J. Virol. 1985, 54, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Bernal, R.A.; Hafenstein, S.; Olson, N.H.; Bowman, V.D.; Chipman, P.R.; Baker, T.S.; Fane, B.A.; Rossmann, M.G. Structural studies of bacteriophage alpha3 assembly. J. Mol. Biol. 2003, 325, 11–24. [Google Scholar] [CrossRef]
- McKenna, R.; Bowman, B.R.; Ilag, L.L.; Rossmann, M.G.; Fane, B.A. Atomic structure of the degraded procapsid particle of the bacteriophage G4: Induced structural changes in the presence of calcium ions and functional implications. J. Mol. Biol. 1996, 256, 736–750. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Palovcak, E.; Armache, J.P.; Verba, K.A.; Cheng, Y.; Agard, D.A. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 2017, 14, 331–332. [Google Scholar] [CrossRef]
- Mietzsch, M.; Hull, J.A.; Makal, V.E.; Jimenez Ybargollin, A.; Yu, J.C.; McKissock, K.; Bennett, A.; Penzes, J.; Lins-Austin, B.; Yu, Q.; et al. Characterization of the Serpentine Adeno-Associated Virus (SAAV) Capsid Structure: Receptor Interactions and Antigenicity. J. Virol. 2022, 96, e0033522. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Kucukelbir, A.; Sigworth, F.J.; Tagare, H.D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 2014, 11, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Moreno, A.; Del Caño, L.; Martínez, M.; Ramírez-Aportela, E.; Cuervo, A.; Melero, R.; Sánchez-García, R.; Strelak, D.; Fernández-Giménez, E.; de Isidro-Gómez, F.P.; et al. Cryo-EM and Single-Particle Analysis with Scipion. J. Vis. Exp. 2021, 171, e62261. [Google Scholar]
- Abrishami, V.; Ilca, S.L.; Gomez-Blanco, J.; Rissanen, I.; de la Rosa-Trevín, J.M.; Reddy, V.S.; Carazo, J.M.; Huiskonen, J.T. Localized reconstruction in Scipion expedites the analysis of symmetry mismatches in cryo-EM data. Prog. Biophys. Mol. Biol. 2021, 160, 43–52. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Ho, P.T.; Montiel-Garcia, D.J.; Wong, J.J.; Carrillo-Tripp, M.; Brooks, C.L., 3rd; Johnson, J.E.; Reddy, V.S. VIPERdb: A Tool for Virus Research. Annu. Rev. Virol. 2018, 5, 477–488. [Google Scholar] [CrossRef]
- Kleywegt, G.J.; Jones, T.A. xdlMAPMAN and xdlDATAMAN—Programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr. D Biol. Crystallogr. 1996, 52 Pt 4, 826–828. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60 Pt 12, 2126–2132. [Google Scholar] [CrossRef]
- Adams, P.D.; Afonine, P.V.; Bunkoczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 Pt 2, 213–221. [Google Scholar] [CrossRef]
- Burgess, A.B. Studies on the proteins of phi X174. II. The protein composition of the phi X coat. Proc. Natl. Acad. Sci. USA 1969, 64, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Hsi, J.; Mietzsch, M.; Chipman, P.; Afione, S.; Zeher, A.; Huang, R.; Chiorini, J.; McKenna, R. Structural and antigenic characterization of the avian adeno-associated virus capsid. J. Virol. 2023, 97, e0078023. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, R.; Mietzsch, M.; Jimenez Ybargollin, A.; Chipman, P.; Fu, X.; Qiu, J.; Söderlund-Venermo, M.; McKenna, R. Capsid Structure of Aleutian Mink Disease Virus and Human Parvovirus 4: New Faces in the Parvovirus Family Portrait. Viruses 2022, 14, 2219. [Google Scholar] [CrossRef]
- Jose, A.; Mietzsch, M.; Smith, J.K.; Kurian, J.; Chipman, P.; McKenna, R.; Chiorini, J.; Agbandje-McKenna, M. High-Resolution Structural Characterization of a New Adeno-associated Virus Serotype 5 Antibody Epitope toward Engineering Antibody-Resistant Recombinant Gene Delivery Vectors. J. Virol. 2019, 93, e01394-18. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Gligorijević, V.; Renfrew, P.D.; Kosciolek, T.; Leman, J.K.; Berenberg, D.; Vatanen, T.; Chandler, C.; Taylor, B.C.; Fisk, I.M.; Vlamakis, H.; et al. Structure-based protein function prediction using graph convolutional networks. Nat. Commun. 2021, 12, 3168. [Google Scholar] [CrossRef] [PubMed]
- Doore, S.M.; Fane, B.A. The microviridae: Diversity, assembly, and experimental evolution. Virology 2016, 491, 45–55. [Google Scholar] [CrossRef]
- Kawaura, T.; Inagaki, M.; Karita, S.; Kato, M.; Nishikawa, S.; Kashimura, N. Recognition of receptor lipopolysaccharides by spike G protein of bacteriophage phiX174. Biosci. Biotechnol. Biochem. 2000, 64, 1993–1997. [Google Scholar] [CrossRef] [PubMed]
- Ilag, L.L.; McKenna, R.; Yadav, M.P.; BeMiller, J.N.; Incardona, N.L.; Rossmann, M.G. Calcium ion-induced structural changes in bacteriophage phi X174. J. Mol. Biol. 1994, 244, 291–300. [Google Scholar] [CrossRef]
- Harne, S.; Gayathri, P.; Béven, L. Exploring Spiroplasma Biology: Opportunities and Challenges. Front. Microbiol. 2020, 11, 589279. [Google Scholar] [CrossRef]
- Everson, J.S.; Garner, S.A.; Lambden, P.R.; Fane, B.A.; Clarke, I.N. Host range of chlamydiaphages phiCPAR39 and Chp3. J. Bacteriol. 2003, 185, 6490–6492. [Google Scholar] [CrossRef] [PubMed]
SpV4 Full | SpV4 Empty | |
---|---|---|
Micrographs | 884 | |
Defocus range (µm) | 0.5–3.0 | |
Electron dose (e−/Å2) | 34 | |
Frames per micrograph | 30 | |
Pixel size (Å/pixel) | 1.06 | |
Particles used for final map | 77,204 | 772 |
Resolution (Å) | 2.52 | 3.02 |
Model refinement statistics | ||
Map CC | 0.846 | 0.863 |
Residue range VP1 | 10–229, 292–553 | 20–229, 292–553 |
Residue range VP8 | 9–38 | 14–38 |
MolProbity Score | 1.36 | 1.26 |
EMRinger Score | 5.64 | 4.33 |
RMSD bond (Å) | 0.01 | 0.01 |
RMSD angle (°) | 0.91 | 1.18 |
All-atom clash score | 5.15 | 4.67 |
Ramachandran (%) | ||
Favored | 97.6 | 97.9 |
Allowed | 2.4 | 2.1 |
Unfavored | 0 | 0 |
Rotamer outliers (%) | 0.4 | 0.4 |
C-β deviation (%) | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mietzsch, M.; Kailasan, S.; Bennett, A.; Chipman, P.; Fane, B.; Huiskonen, J.T.; Clarke, I.N.; McKenna, R. The Structure of Spiroplasma Virus 4: Exploring the Capsid Diversity of the Microviridae. Viruses 2024, 16, 1103. https://doi.org/10.3390/v16071103
Mietzsch M, Kailasan S, Bennett A, Chipman P, Fane B, Huiskonen JT, Clarke IN, McKenna R. The Structure of Spiroplasma Virus 4: Exploring the Capsid Diversity of the Microviridae. Viruses. 2024; 16(7):1103. https://doi.org/10.3390/v16071103
Chicago/Turabian StyleMietzsch, Mario, Shweta Kailasan, Antonette Bennett, Paul Chipman, Bentley Fane, Juha T. Huiskonen, Ian N. Clarke, and Robert McKenna. 2024. "The Structure of Spiroplasma Virus 4: Exploring the Capsid Diversity of the Microviridae" Viruses 16, no. 7: 1103. https://doi.org/10.3390/v16071103
APA StyleMietzsch, M., Kailasan, S., Bennett, A., Chipman, P., Fane, B., Huiskonen, J. T., Clarke, I. N., & McKenna, R. (2024). The Structure of Spiroplasma Virus 4: Exploring the Capsid Diversity of the Microviridae. Viruses, 16(7), 1103. https://doi.org/10.3390/v16071103