Increase of Synergistic Secondary Antiviral Mutations in the Evolution of A(H1N1)pdm09 Influenza Virus Neuraminidases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Specimens and Influenza Virus Typing and Subtyping
2.2. Viral Propagation
2.3. Neuraminidase Inhibition Test
2.4. Enzyme Kinetic
2.5. Genome Sequencing and Resistance Analysis
2.6. Phylogenetic Analysis
3. Results
3.1. Secondary Substitutions of (H1N1)pdm09virus Neuraminidase NA-V241I and NA-N369K
3.2. Secondary Substitutions of (H1N1)pdm09virus Neuraminidase NA-I223V, NA-S247N
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Javanian, M.; Barary, M.; Ghebrehewet, S.; Koppolu, V.; Vasigala, V.R.; Ebrahimpour, S. A brief review of influenza virus infection. J. Med. Virol. 2021, 93, 4638–4646. [Google Scholar] [CrossRef]
- Buchholz, U.; Lehfeld, A.-S.; Tolksdorf, K.; Cai, W.; Reiche, J.; Biere, B.; Dürrwald, R.; Buda, S. Respiratory infections in children and adolescents in Germany during the COVID-19 pandemic. J. Health Monit. 2023, 8, 20–38. [Google Scholar]
- Sanz-Muñoz, I.; Tamames-Gómez, S.; Castrodeza-Sanz, J.; Eiros-Bouza, J.M.; de Lejarazu-Leonardo, R.O. Social Distancing, Lockdown and the Wide Use of Mask; A Magic Solution or a Double-Edged Sword for Respiratory Viruses Epidemiology? Vaccines 2021, 9, 595. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Buda, S.; Biere, B.; Reiche, J.; Schlosser, F.; Duwe, S.; Wedde, M.; von Kleist, M.; Mielke, M.; Wolff, T.; et al. Trends in respiratory virus circulation following COVID-19-targeted nonpharmaceutical interventions in Germany, January–September 2020: Analysis of national surveillance data. Lancet Reg. Health Eur. 2021, 6, 100112. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Milde, J.; Ham, Y.; Calderón, J.P.R.; Wedde, M.; Dürrwald, R.; Duwe, S.C. Preparing for the Next Influenza Season: Monitoring the Emergence and Spread of Antiviral Resistance. Infect. Drug Resist. 2023, 16, 949–959. [Google Scholar] [CrossRef]
- Hayden, F.G. Pandemic influenza: Is an antiviral response realistic? Pediatr. Infect. Dis. J. 2004, 23 (Suppl. S11), S262–S269. [Google Scholar] [CrossRef]
- Duwe, S.C.; Schmidt, B.; Gärtner, B.C.; Timm, J.; Adams, O.; Fickenscher, H.; Schmidtke, M. Prophylaxis and treatment of influenza: Options, antiviral susceptibility, and existing recommendations. GMS Infect. Dis. 2021, 9, Doc02. [Google Scholar]
- Hurt, A.C. Antiviral Therapy for the Next Influenza Pandemic. Trop. Med. Infect. Dis. 2019, 4, 67. [Google Scholar] [CrossRef]
- Holmes, E.C. Virology. Helping the resistance. Science 2010, 328, 1243–1244. [Google Scholar] [CrossRef]
- Ujike, M.; Shimabukuro, K.; Mochizuki, K.; Obuchi, M.; Kageyama, T.; Shirakura, M.; Kishida, N.; Yamashita, K.; Horikawa, H.; Kato, Y.; et al. Oseltamivir-resistant influenza viruses A (H1N1) during 2007-2009 influenza seasons, Japan. Emerg. Infect. Dis. 2010, 16, 926–935. [Google Scholar] [CrossRef]
- Duan, S.; Govorkova, E.A.; Bahl, J.; Zaraket, H.; Baranovich, T.; Seiler, P.; Prevost, K.; Webster, R.G.; Webby, R.J. Epistatic interactions between neuraminidase mutations facilitated the emergence of the oseltamivir-resistant H1N1 influenza viruses. Nat. Commun. 2014, 5, 5029. [Google Scholar] [CrossRef]
- Bloom, J.D.; Gong, L.I.; Baltimore, D. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 2010, 328, 1272–1275. [Google Scholar] [CrossRef]
- Garten, R.J.; Davis, C.T.; Russell, C.A.; Shu, B.; Lindstrom, S.; Balish, A.; Sessions, W.M.; Xu, X.; Skepner, E.; Deyde, V.; et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009, 325, 197–201. [Google Scholar] [CrossRef]
- Duwe, S.C.; Wedde, M.; Birkner, P.; Schweiger, B. Genotypic and phenotypic resistance of pandemic A/H1N1 influenza viruses circulating in Germany. Antivir. Res. 2011, 89, 115–118. [Google Scholar] [CrossRef]
- Bauer, K.; Dürrwald, R.; Schlegel, M.; Pfarr, K.; Topf, D.; Wiesener, N.; Dahse, H.-M.; Wutzler, P.; Schmidtke, M. Neuraminidase inhibitor susceptibility of swine influenza A viruses isolated in Germany between 1981 and 2008. Med. Microbiol. Immunol. 2012, 201, 61–72. [Google Scholar] [CrossRef]
- Bauer, K.; Richter, M.; Wutzler, P.; Schmidtke, M. Different neuraminidase inhibitor susceptibilities of human H1N1, H1N2, and H3N2 influenza A viruses isolated in Germany from 2001 to 2005/2006. Antivir. Res. 2009, 82, 34–41. [Google Scholar] [CrossRef]
- Govorkova, E.A.; Takashita, E.; Daniels, R.S.; Fujisaki, S.; Presser, L.D.; Patel, M.C.; Huang, W.; Lackenby, A.; Nguyen, H.T.; Pereyaslov, D.; et al. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018–2020. Antivir. Res. 2022, 200, 105281. [Google Scholar] [CrossRef]
- Abed, Y.; Pizzorno, A.; Bouhy, X.; Rhéaume, C.; Boivin, G. Impact of potential permissive neuraminidase mutations on viral fitness of the H275Y oseltamivir-resistant influenza A(H1N1)pdm09 virus in vitro, in mice and in ferrets. J. Virol. 2014, 88, 1652–1658. [Google Scholar] [CrossRef]
- Butler, J.; Hooper, K.A.; Petrie, S.; Lee, R.; Maurer-Stroh, S.; Reh, L.; Guarnaccia, T.; Baas, C.; Xue, L. Estimating the fitness advantage conferred by permissive neuraminidase mutations in recent oseltamivir-resistant A(H1N1)pdm09 influenza viruses. PLoS Pathog. 2014, 10, e1004065. [Google Scholar] [CrossRef]
- Farrukee, R.; Gunalan, V.; Maurer-Stroh, S.; Reading, P.C.; Hurt, A.C. Predicting Permissive Mutations That Improve the Fitness of A(H1N1)pdm09 Viruses Bearing the H275Y Neuraminidase Substitution. J. Virol. 2022, 96, e0091822. [Google Scholar] [CrossRef]
- Pokorná, J.; Pachl, P.; Karlukova, E.; Hejdánek, J.; Řezáčová, P.; Machara, A.; Hudlický, J.; Konvalinka, J.; Kožíšek, M. Kinetic, Thermodynamic, and Structural Analysis of Drug Resistance Mutations in Neuraminidase from the 2009 Pandemic Influenza Virus. Viruses 2018, 10, 339. [Google Scholar] [CrossRef]
- Schulze, M.; Nitsche, A.; Schweiger, B.; Biere, B. Diagnostic approach for the differentiation of the pandemic influenza A(H1N1)v virus from recent human influenza viruses by real-time PCR. PLoS ONE 2010, 5, e9966. [Google Scholar] [CrossRef]
- Matrosovich, M.; Matrosovich, T.; Carr, J.; Roberts, N.A.; Klenk, H.-D. Overexpression of the α-2,6-Sialyltransferase in MDCK Cells Increases Influenza Virus Sensitivity to Neuraminidase Inhibitors. J. Virol. 2003, 77, 8418–8425. [Google Scholar] [CrossRef]
- Duwe, S.; Schweiger, B. A new and rapid genotypic assay for the detection of neuraminidase inhibitor resistant influenza A viruses of subtype H1N1, H3N2, and H5N1. J. Virol. Methods 2008, 153, 134–141. [Google Scholar] [CrossRef]
- WHO. Meetings of the WHO Working Group on Surveillance of Influenza Antiviral Susceptibility-Geneva, November 2011 and June 2012. Wkly. Epidem. Record 2012. Available online: https://iris.who.int/handle/10665/241968 (accessed on 25 November 2015).
- Heider, A.; Wedde, M.; Dürrwald, R.; Wolff, T.; Schweiger, B. Molecular characterization and evolution dynamics of influenza B viruses circulating in Germany from season 1996/1997 to 2019/2020. Virus Res. 2022, 322, 198926. [Google Scholar] [CrossRef]
- Fu, Y.; Wedde, M.; Smola, S.; Oh, D.-Y.; Pfuhl, T.; Rissland, J.; Zemlin, M.; Flockerzi, F.A.; Bohle, R.M.; Thürmer, A.; et al. Different populations of A(H1N1)pdm09 viruses in a patient with hemolytic-uremic syndrome. Int. J. Med. Microbiol. 2024, 314, 151598. [Google Scholar] [CrossRef]
- WHO. Summary of Neuraminidase (NA) Amino Acid Substitutions Assessed for Their Effects on Inhibition by Neuraminidase Inhibitors (NAIs). [Technical Document] 2023. Available online: https://www.who.int/publications/m/item/summary-of-neuraminidase-(na)-amino-acid-substitutions-associated-with-reduced-inhibition-by-neuraminidase-inhibitors-(nais) (accessed on 2 July 2024).
- Hurt, A.C. The epidemiology and spread of drug resistant human influenza viruses. Curr. Opin. Virol. 2014, 8c, 22–29. [Google Scholar] [CrossRef]
- Hurt, A.C.; Besselaar, T.G.; Daniels, R.S.; Ermetal, B.; Fry, A.; Gubareva, L.; Huang, W.; Lackenby, A.; Lee, R.T.; Lo, J.; et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2014–2015. Antivir. Res. 2016, 132, 178–185. [Google Scholar] [CrossRef]
- Lackenby, A.; Besselaar, T.G.; Daniels, R.S.; Fry, A.; Gregory, V.; Gubareva, L.V.; Huang, W.; Hurt, A.C.; Leang, S.-K.; Lee, R.T.; et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016–2017. Antivir. Res 2018, 157, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Franco-May, D.A.; Gómez-Carballo, J.; Barrera-Badillo, G.; Cruz-Ortíz, M.N.; Núñez-García, T.E.; Arellano-Suárez, D.S.; Wong-Arámbula, C.; López-Martínez, I.; Wong-Chew, R.M.; Ayora-Talavera, G. Low antiviral resistance in Influenza A and B viruses isolated in Mexico from 2010 to 2023. Antivir. Res. 2024, 227, 105918. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Qi, J.; Zhang, W.; Vavricka, C.J.; Shi, Y.; Wei, J.; Feng, E.; Shen, J.; Chen, J.; Liu, D.; et al. The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat. Struct. Mol. Biol. 2010, 17, 1266–1268. [Google Scholar] [CrossRef]
- Vavricka, C.J.; Li, Q.; Wu, Y.; Qi, J.; Wang, M.; Liu, Y.; Gao, F.; Liu, J.; Feng, E.; He, J.; et al. Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PLoS Pathog. 2011, 7, e1002249. [Google Scholar] [CrossRef]
- Leung, R.C.-Y.; Ip, J.D.; Chen, L.-L.; Chan, W.-M.; To, K.K.-W. Global emergence of neuraminidase inhibitor-resistant influenza A(H1N1)pdm09 viruses with I223V and S247N mutations: Implications for antiviral resistance monitoring. Lancet Microbe 2024. [Google Scholar] [CrossRef]
- Pizzorno, A.; Abed, Y.; Bouhy, X.; Beaulieu, E.; Mallett, C.; Russell, R.; Boivin, G. Impact of mutations at residue I223 of the neuraminidase protein on the resistance profile, replication level, and virulence of the 2009 pandemic influenza virus. Antimicrob. Agents Chemother. 2012, 56, 1208–1214. [Google Scholar] [CrossRef]
- Hurt, A.C.; Lee, R.T.; Leang, S.K.; Cui, L.; Deng, Y.M.; Phuah, S.P.; Caldwell, N.; Freeman, K.; Komadina, N.; Smith, D.; et al. Increased detection in Australia and Singapore of a novel influenza A(H1N1)2009 variant with reduced oseltamivir and zanamivir sensitivity due to a S247N neuraminidase mutation. Eurosurveillance 2011, 16, 19884–19887. [Google Scholar] [CrossRef] [PubMed]
- Correia, V.; Santos, L.A.; Gíria, M.; Almeida-Santos, M.M.; Rebelo-De-Andrade, H. Influenza A(H1N1)pdm09 resistance and cross-decreased susceptibility to oseltamivir and zanamivir antiviral drugs. J. Med. Virol. 2015, 87, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Moeini, S.; Mohebbi, A.; Farahmand, B.; Mehrbod, P.; Fotouhi, F. Phylogenetic analysis and docking study of neuraminidase gene of influenza A/H1N1 viruses circulating in Iran from 2010 to 2019. Virus Res. 2023, 334, 199182. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Fry, A.M.; Loveless, P.A.; Klimov, A.I.; Gubareva, L.V. Recovery of a multidrug-resistant strain of pandemic influenza A 2009 (H1N1) virus carrying a dual H275Y/I223R mutation from a child after prolonged treatment with oseltamivir. Clin. Infect. Dis. 2010, 51, 983–984. [Google Scholar] [CrossRef]
Influenza Season | Prevalence of Substitutions % (Detected/Tested) | X IC50 ± SD (nM) | ||||||
---|---|---|---|---|---|---|---|---|
NA-241I | NA-369K | NA-223V | NA-247N | N1 | Oseltamivir | Zanamivir | N2 | |
2009 (April–September) | 0 | 0 | 0 | 0 | 64 | 1.66 ± 0.52 | 0.39 ± 0.20 | 65 |
2009–2010 | 0 | 0 | 0 | 0 | 94 | 1.41 ± 0.63 | 0.38 ± 0.17 | 142 |
2010–2011 | 66 (43/65) | 62 (40/65) | 0 | 1.5 (1/65) | 65 | 1.19 ± 0.61 | 0.52 ± 0.83 | 65 |
2011–2012 | 100 | 100 | 0 | 0 | 11 | 2.15 ± 0.49 | 0.45 ± 0.07 | 2 |
2012–2013 | 100 | 100 | 0 | 0 | 9 | 1.63 ± 0.46 | 0.25 ± 0.09 | 31 |
2013–2014 | 100 | 100 | 0 | 0 | 17 | 1.85 ± 0.41 | 0.51 ± 0.33 | 15 |
2014–2015 | 100 | 100 | 0 | 0 | 25 | 0.94 ± 0.37 | 0.50 ± 0.18 | 147 |
2015–2016 | 100 | 100 | 0.05 (1/212) 223R | 0 | 212 | 0.90 ± 0.36 | 0.43 ± 0.33 | 147 |
2016–2017 | 100 | 100 | 0 | 0 | 4 | 1.68 ± 0.35 | 0.77 ± 0.18 | 9 |
2017–2018 | 100 | 100 | 0 | 0 | 57 | 1.13 ± 0.40 | 0.62 ± 0.24 | 147 |
2018–2019 | 100 | 100 | 0 | 0 | 103 | 0.97 ± 0.36 | 0.48 ± 0.30 | 144 |
2019–2020 | 100 | 100 | 0 | 0 | 162 | 1.02 ± 0.42 | 0.34 ± 0.14 | 145 |
2020–2021 | no viruses detected | |||||||
2021–2022 | 100 | 100 | 0 | 0 | 17 | 0.96 ± 0.35 | 0.30 ± 0.06 | 7 |
2022–2023 | 100 | 100 | 0 | 1.0 (1/86) | 86 | 0.82 ± 0.33 | 0.26 ± 0.10 | 85 |
2023–2024 | 100 | 100 | 0.7 (4/552) | 1.1 (6/552) | 552 | 0.90 ± 0.26 | 0.24 ± 0.10 | 145 |
Isolate | Mutation Pattern | Km [µM] | IC50 [nM] Oseltamivir | IC50 [nM] Zanamivir |
---|---|---|---|---|
ID/Year | ||||
1254/2013 | 241I-275Y-369K | 45 | 1043 | 0.5 |
2341/2010 | V241-275Y-N369 | 40 | 500 | 1.80 |
0675/2011 | 241I-H275-369K | 60 | 1.19 | 0.52 |
4324/2010 | 241I-H275-N369 | 45 | 0.35 | 0.2 |
0078/2011 | V241-H275-N369 | 45 | 2.50 | 0.4 |
Substitution | Km [µM] | IC50 [nM] Oseltamivir | RF Oseltamivir | IC50 [nM] Zanamivir | RF Zanamivir |
---|---|---|---|---|---|
I223 | 78 | 0.9 (n = 145) | NA | 0.24 (n = 145) | NA |
223V | 100 | 4.3 (n = 2) | 4.8 | 0.6 (n = 2) | 2.1 |
S247 | 67 | 0.9 (n = 145) | NA | 0.24 (n = 145) | NA |
247N | 59 | 4.3 (n = 2) | 4.8 | 0.75 (n = 2) | 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duwe, S.C.; Milde, J.; Heider, A.; Wedde, M.; Schweiger, B.; Dürrwald, R. Increase of Synergistic Secondary Antiviral Mutations in the Evolution of A(H1N1)pdm09 Influenza Virus Neuraminidases. Viruses 2024, 16, 1109. https://doi.org/10.3390/v16071109
Duwe SC, Milde J, Heider A, Wedde M, Schweiger B, Dürrwald R. Increase of Synergistic Secondary Antiviral Mutations in the Evolution of A(H1N1)pdm09 Influenza Virus Neuraminidases. Viruses. 2024; 16(7):1109. https://doi.org/10.3390/v16071109
Chicago/Turabian StyleDuwe, Susanne C., Jeanette Milde, Alla Heider, Marianne Wedde, Brunhilde Schweiger, and Ralf Dürrwald. 2024. "Increase of Synergistic Secondary Antiviral Mutations in the Evolution of A(H1N1)pdm09 Influenza Virus Neuraminidases" Viruses 16, no. 7: 1109. https://doi.org/10.3390/v16071109
APA StyleDuwe, S. C., Milde, J., Heider, A., Wedde, M., Schweiger, B., & Dürrwald, R. (2024). Increase of Synergistic Secondary Antiviral Mutations in the Evolution of A(H1N1)pdm09 Influenza Virus Neuraminidases. Viruses, 16(7), 1109. https://doi.org/10.3390/v16071109