Applying Next-Generation Sequencing to Track HIV-1 Drug Resistance Mutations Circulating in Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Next-Generation Sequencing Approach
2.3. Read Mapping and Variant Calling Analysis
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics Related to Drug Resistance Mutations
3.2. Characteristics Related to Resistance Mutations
3.3. Determinants Related to PR, RT, and INT Drug Resistance Mutations
3.4. Country of Origin and DRM Distribution by Phylogenetic Tree
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Clinical Guidelines: Antiretroviral Therapy. In Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach; WHO: Geneva, Switzerland, 2016; p. 129. [Google Scholar]
- Johnson, V.A.; Calvez, V.; Günthard, H.F.; Paredes, R.; Pillay, D.; Shafer, R.; Wensing, A.M.; Richman, D.D. 2011 Update of the Drug Resistance Mutations in HIV-1. Top. Antivir. Med. 2011, 19, 156–164. [Google Scholar]
- Bennett, D.E.; Camacho, R.J.; Otelea, D.; Kuritzkes, D.R.; Fleury, H.; Kiuchi, M.; Heneine, W.; Kantor, R.; Jordan, M.R.; Schapiro, J.M.; et al. Drug Resistance Mutations for Surveillance of Transmitted HIV-1 Drug-Resistance: 2009 Update. PLoS ONE 2009, 4, e4724. [Google Scholar] [CrossRef] [PubMed]
- WHO. HIV Drug Resistance Report 2021; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Clutter, D.S.; Jordan, M.R.; Bertagnolio, S.; Shafer, R.W. HIV-1 Drug Resistance and Resistance Testing. Infect. Genet. Evol. 2016, 46, 292–307. [Google Scholar] [CrossRef]
- Rossetti, B.; Incardona, F.; Di Teodoro, G.; Mommo, C.; Saladini, F.; Kaiser, R.; Sönnerborg, A.; Lengauer, T.; Zazzi, M. Cohort Profile: A European Multidisciplinary Network for the Fight against HIV Drug Resistance (EuResist Network). Trop. Med. Infect. Dis. 2023, 8, 243. [Google Scholar] [CrossRef] [PubMed]
- Pingarilho, M.; Pimentel, V.; Miranda, M.N.S.; Silva, A.R.; Diniz, A.; Ascenção, B.B.; Piñeiro, C.; Koch, C.; Rodrigues, C.; Caldas, C.; et al. HIV-1-Transmitted Drug Resistance and Transmission Clusters in Newly Diagnosed Patients in Portugal between 2014 and 2019. Front. Microbiol. 2022, 13, 823208. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.N.S.; Pingarilho, M.; Pimentel, V.; Martins, M.d.R.O.; Kaiser, R.; Seguin-Devaux, C.; Paredes, R.; Zazzi, M.; Incardona, F.; Abecasis, A.B. Trends of Transmitted and Acquired Drug Resistance in Europe from 1981 to 2019: A Comparison Between the Populations of Late Presenters and Non-Late Presenters. Front. Microbiol. 2022, 13, 846943. [Google Scholar] [CrossRef]
- Frescura, L.; Godfrey-Faussett, P.; Feizzadeh, A.A.; El-Sadr, W.; Syarif, O.; Ghys, P.D. Achieving the 95 95 95 Targets for All: A Pathway to Ending AIDS. PLoS ONE 2022, 17, e0272405. [Google Scholar] [CrossRef]
- Parkin, N.T.; Avila-Rios, S.; Bibby, D.F.; Brumme, C.J.; Eshleman, S.H.; Harrigan, P.R.; Howison, M.; Hunt, G.; Ji, H.; Kantor, R.; et al. Multi-Laboratory Comparison of next-Generation to Sanger-Based Sequencing for HIV-1 Drug Resistance Genotyping. Viruses 2020, 12, 694. [Google Scholar] [CrossRef]
- Metzner, K.J. Technologies for HIV-1 Drug Resistance Testing: Inventory and Needs. Curr. Opin. HIV AIDS 2022, 17, 222–228. [Google Scholar] [CrossRef]
- Ministério da Saúde. Infeção por VIH em Portugal–2023; Direção-Geral da Saúde/Instituto Nacional de Saúde Doutor Ricardo Jorge: Lisbon, Portugal, 2023; ISBN 9789898794970. [Google Scholar]
- Libin, P.J.K.; Deforche, K.; Abecasis, A.B.; Theys, K. VIRULIGN: Fast Codon-Correct Alignment and Annotation of Viral Genomes. Bioinformatics 2019, 35, 1763–1765. [Google Scholar] [CrossRef]
- Larsson, A. AliView: A Fast and Lightweight Alignment Viewer and Editor for Large Datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Peña, A.C.; Faria, N.R.; Imbrechts, S.; Libin, P.; Abecasis, A.B.; Deforche, K.; Gómez-López, A.; Camacho, R.J.; De Oliveira, T.; Vandamme, A.M. Automated Subtyping of HIV-1 Genetic Sequences for Clinical and Surveillance Purposes: Performance Evaluation of the New REGA Version 3 and Seven Other Tools. Infect. Genet. Evol. 2013, 19, 337–348. [Google Scholar] [CrossRef]
- Struck, D.; Lawyer, G.; Ternes, A.-M.; Schmit, J.-C.; Bercoff, D.P. COMET: Adaptive Context-Based Modeling for Ultrafast HIV-1 Subtype Identification. Nucleic Acids Res. 2014, 42, e144. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing Large Minimum Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Argimón, S.; Abudahab, K.; Goater, R.J.E.; Fedosejev, A.; Bhai, J.; Glasner, C.; Feil, E.J.; Holden, M.T.G.; Yeats, C.A.; Grundmann, H.; et al. Microreact: Visualizing and Sharing Data for Genomic Epidemiology and Phylogeography. Microb. Genom. 2016, 2, e000093. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (WHO). HIV Drug Resistance Report 2019; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Pingarilho, M.; Pimentel, V.; Diogo, I.; Fernandes, S.; Miranda, M.; Pineda-Pena, A.; Libin, P.; Theys, K.; Martins, M.; Vandamme, A.-M.; et al. Increasing Prevalence of HIV-1 Transmitted Drug Resistance in Portugal: Implications for First Line Treatment Recommendations. Viruses 2020, 12, 1238. [Google Scholar] [CrossRef] [PubMed]
- Pao, D.; Andrady, U.; Clarke, J.; Dean, G.; Drake, S.; Fisher, M.; Green, T.; Kumar, S.; Murphy, M.; Tang, A.; et al. Long-Term Persistence of Primary Genotypic Resistance after HIV-1 Seroconversion. JAIDS J. Acquir. Immune Defic. Syndr. 2004, 37, 1570–1573. [Google Scholar] [CrossRef] [PubMed]
- Viñuela, L.; de Salazar, A.; Fuentes, A.; Serrano-Conde, E.; Falces-Romero, I.; Pinto, A.; Portilla, I.; Masiá, M.; Peraire, J.; Gómez-Sirvent, J.L.; et al. Transmitted Drug Resistance to Antiretroviral Drugs in Spain during the Period 2019–2021. J. Med. Virol. 2023, 95, e29287. [Google Scholar] [CrossRef] [PubMed]
- de Salazar, A.; Viñuela, L.; Fuentes, A.; Teyssou, E.; Charpentier, C.; Lambert-Niclot, S.; Serrano-Conde, E.; Pingarilho, M.; Fabeni, L.; De Monte, A.; et al. Transmitted Drug Resistance to Integrase-Based First-Line Human Immunodeficiency Virus Antiretroviral Regimens in Mediterranean Europe. Clin. Infect. Dis. 2023, 76, 1628–1635. [Google Scholar] [CrossRef]
- Rossetti, B.; Fabbiani, M.; Di Carlo, D.; Incardona, F.; Abecasis, A.; Gomes, P.; Geretti, A.M.; Seguin-Devaux, C.; Garcia, F.; Kaiser, R.; et al. Effectiveness of Integrase Strand Transfer Inhibitors in HIV-infected Treatment-experienced Individuals across Europe. HIV Med. 2022, 23, 774–789. [Google Scholar] [CrossRef]
- Casadellà, M.; Santos, J.R.; Noguera-Julian, M.; Micán-Rivera, R.; Domingo, P.; Antela, A.; Portilla, J.; Sanz, J.; Montero-Alonso, M.; Navarro, J.; et al. Primary Resistance to Integrase Strand Transfer Inhibitors in Spain Using Ultrasensitive HIV-1 Genotyping. J. Antimicrob. Chemother. 2020, 75, 3517–3524. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, V.; Pingarilho, M.; Alves, D.; Diogo, I.; Fernandes, S.; Miranda, M.; Pineda-Peña, A.-C.; Libin, P.; Martins, M.R.O.; Vandamme, A.-M.; et al. Molecular Epidemiology of HIV-1 Infected Migrants Followed Up in Portugal: Trends between 2001–2017. Viruses 2020, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Rocha Pereira, N.; Duro, R.; Piñero, C.; Malheiro, L.; Soares, J.; Serrão, R.; Sarmento, A. Characterization of HIV-1 Subtypes in a Portuguese Cohort. J. Int. AIDS Soc. 2014, 17, 19683. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Costa, P.; Triunfante, V.; Branca, F.; Rodrigues, F.; Santos, C.L.; Correia-Neves, M.; Saraiva, M.; Lecour, H.; Castro, A.G.; et al. Analysis of a Local HIV-1 Epidemic in Portugal Highlights Established Transmission of Non-B and Non-G Subtypes. J. Clin. Microbiol. 2015, 53, 1506–1514. [Google Scholar] [CrossRef]
- Pimentel, V.F.; Pingarilho, M.; Sole, G.; Alves, D.; Miranda, M.; Diogo, I.; Fernandes, S.; Pineda-Pena, A.; Martins, M.R.O.; Camacho, R.; et al. Differential Patterns of Postmigration HIV-1 Infection Acquisition among Portuguese Immigrants of Different Geographical Origins. AIDS 2022, 36, 997–1005. [Google Scholar] [CrossRef]
Independent Variable | N (%) | Treatment Status | ||
---|---|---|---|---|
Experienced (%) | Naïve (%) | p-Value | ||
Overall (Missing = 173) | 1052 (100) | 258 (29.4) | 621 (70.6) | |
Demographic | ||||
Age–yr–Median (IQR) | 41 (32–50) | 44.0 (35.0–52.0) | 38.0 (30.5–48.0) | <0.001 * |
Age distribution (Missing = 28) | ||||
<30 yr | 200 (19.5) | 30 (11.8) | 138 (22.4) | <0.001 * |
30–40 yr | 312 (30.5) | 68 (26.7) | 203 (32.9) | |
41–49 yr | 244 (23.8) | 74 (29.0 | 133 (21.6) | |
≥50 yr | 268 (26.2) | 83 (32.5) | 143 (23.2) | |
Sex (Missing = 26) | ||||
Female | 369 (36.0) | 107 (41.8) | 201 (32.5) | 0.009 * |
Male | 657 (64.0) | 149 (58.2) | 417 (67.5) | |
Sampling origin (Missing = 445) | ||||
Portugal | 282 (46.5) | 85 (47.0) | 186 (46.0) | 0.548 |
Brazil | 135 (22.2) | 36 (19.9) | 96 (23.8) | |
PALOP | 190 (31.3) | 60 (33.1) | 122 (30.2) | |
Clinical | ||||
HIV-1 Subtype | ||||
B | 398 (37.8) | 99 (38.4) | 239 (38.5) | 0.223 |
G | 154 (14.6) | 47 (18.2) | 81 (13.0) | |
C | 129 (12.3) | 28 (10.9) | 78 (12.6) | |
Others | 371 (35.3) | 84 (32.6) | 223 (35.9) | |
Viral load (Missing = 53) | 4.81 (4.08–5.45) | 4.23 (3.17–5.10) | 4.96 (4.38–5.73) | <0.001 * |
<4.0 Log10 | 235 (23.5) | 113 (44.5) | 82 (13.9) | <0.001 * |
4.1 to 5.0 Log10 | 359 (35.9) | 76 (29.9) | 234 (39.7) | |
>5.0 Log10 | 405 (40.5) | 65 (25.6) | 274 (46.4) | |
CD4–mm3, Median (IQR) | 312 (148–534) | 273 (137–469) | 339 (156–550) | 0.133 |
≤200 mm3 | 136 (33.4) | 53 (34.9) | 83 (32.5) | 0.220 |
201–349 mm3 | 87 (21.4) | 38 (25.0) | 49 (19.2) | |
≥350 mm3 | 184 (45.2) | 61 (40.1) | 123 (48.2) |
Independent Variable | Any DRM (N = 1052) | OR (95% CI) | p-Value | TDR (Naive = 621) | OR (95% CI) | p-Value | ADR (Treated = 258) | OR (95% CI) | p-Value |
---|---|---|---|---|---|---|---|---|---|
Overall | 210 (20.0) | 78 (12.6) | 106 (41.1) | ||||||
Age distribution, n (%) | |||||||||
<30 yo | 30 (14.7) | 1.00 | 17 (21.8) | 1.00 | 8 (7.6) | 1.00 | |||
30–40 yo | 59 (28.9) | 1.32 (0.82–2.14) | 0.256 | 28 (35.9) | 1.14 (0.60–2.17) | 0.693 | 29 (27.6) | 2.05 (0.80–5.24) | 0.136 |
41–49 yo | 50 (24.5) | 1.46 (0.89–2.40) | 0.135 | 17 (21.8) | 1.04 (0.51–2.14) | 0.908 | 29 (27.6) | 1.77 (0.70–4.51) | 0.230 |
≥50 yo | 65 (31.9) | 1.81 (1.13–2.93) | 0.015 * | 16 (20.5) | 0.90 (0.43–1.86) | 0.769 | 39 (37.1) | 2.44 (0.97–6.10) | 0.057 |
Gender, n (%) | |||||||||
Female | 92 (44.9) | 1.00 | 34 (43.6) | 1.00 | 48 (45.3) | 1.00 | |||
Male | 113 (55.1) | 0.63 (0.46–0.85) | 0.003 * | 44 (56.4) | 0.58 (0.36–0.94) | 0.027 * | 58 (54.7) | 0.78 (0.47–1.30) | 0.342 |
Sampling origin, n (%) | |||||||||
Portugal | 54 (41.5) | 1.00 | 21 (42.9) | 1.00 | 31 (40.8) | 1.00 | |||
Brazil | 25 (19.2) | 0.96 (0.57–1.62) | 0.878 | 10 (20.4) | 0.91 (0.41–2.03) | 0.824 | 14 (18.4) | 1.11 (0.50–2.47) | 0.801 |
PALOP | 51 (39.2) | 1.55 (1.00–2.40) | 0.050 | 18 (36.7) | 1.36 (0.69–2.67) | 0.373 | 31 (40.8) | 1.86 (0.95–3.65) | 0.070 |
HIV-1 Subtype, n (%) | |||||||||
B | 69 (32.9) | 0.90 (0.63–1.30) | 0.581 | 26 (33.3) | 0.82 (0.47–1.43) | 0.481 | 36 (34.0) | 0.84 (0.46–1.53) | 0.569 |
G | 45 (21.4) | 1.78 (1.15–2.74) | 0.010 * | 16 (20.5) | 1.65 (0.84–3.22) | 0.146 | 21 (19.8) | 1.19 (0.58–2.44) | 0.640 |
C | 26 (12.4) | 1.09 (0.66–1.79) | 0.749 | 7 (9.0) | 0.66 (0.28–1.57) | 0.348 | 15 (14.2) | 1.70 (0.71–4.01) | 0.229 |
Others | 70 (33.3) | 1.00 | 29 (37.2) | 1.00 | 34 (32.1) | 1.00 | |||
Viral load, n (%) | |||||||||
≤4.0 | 67 (33.3) | 1.00 | 20 (27.0) | 1.00 | 41 (39.4) | 1.00 | |||
4.1 to 5.0 | 65 (32.3) | 0.55 (0.38–0.82) | 0.003 * | 22 (29.7) | 0.32 (0.17–0.63) | <0.001 * | 38 (36.5) | 1.76 (0.97–3.17) | 0.062 |
>5.0 | 69 (34.3) | 0.52 (0.35–0.76) | <0.001 * | 32 (43.2) | 0.41 (0.22–0.77) | 0.005 * | 25 (24.0) | 1.10 (0.59–2.06) | 0.772 |
CD4, n (%) | |||||||||
≤200 mm3 | 41 (40.6) | 1.70 (1.02–2.83) | 0.043 * | 12 (37.5) | 1.05 (0.48–2.34) | 0.897 | 29 (42.0) | 2.48 (1.16–5.30) | 0.019 * |
201–349 mm3 | 23 (22.8) | 1.44 (0.79–2.60) | 0.236 | 3 (9.4) | 0.41 (0.11–1.46) | 0.167 | 20 (29.0) | 2.28 (0.99–5.23) | 0.052 |
≥350 mm3 | 37 (36.6) | 1.00 | 17 (53.1) | 1.00 | 20 (29.0) | 1.00 |
Independent Variable | N (%) | NRTI | NNRTI | PI | INSTI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N (%) | OR (95% CI) | p-Value | N (%) | OR (95% CI) | p-Value | N (%) | OR (95%CI) | p-Value | N (%) | OR (95% CI) | p-Value | ||
Overall | 1052 (100) | 100 (9.5) | 119 (11.3) | 34 (3.2) | 24 (2.3) | ||||||||
Age distribution | |||||||||||||
<30 yr | 200 (19.5) | 8 (8.2) | 1.00 | 1.00 | 7 (20.6) | 1.00 | 0 (0.0) | 0.0 (0.0–0.0) | 0.995 | ||||
30–40 yr | 312 (30.5) | 28 (28.9) | 2.37 (1.06–5.30) | 0.036 * | 19 (16.1) | 1.13 (0.62–2.04) | 0.694 | 8 (23.5) | 0.73 (0.26–2.03) | 0.542 | 5 (25.0) | 0.86 (0.25–2.99) | 0.808 |
41–49 yr | 244 (23.8) | 25 (25.8) | 2.74 (1.21–6.22) | 0.016 * | 33 (28.0) | 1.44 (0.78–2.62) | 0.236 | 5 (14.7) | 0.58 (0.18–1.85) | 0.354 | 10 (50.0) | 2.25 (0.76–6.67) | 0.144 |
≥50 yr | 268 (26.2) | 36 (37.1) | 3.72 (1.69–8.20) | 0.001 * | 32 (27.1) | 1.38 (0.76–2.51) | 0.283 | 14 (41.2) | 1.52 (0.6–3.84) | 0.376 | 5 (25.0) | 1.00 | |
Sex | |||||||||||||
Female | 369 (36.0) | 46 (46.9) | 1.00 | 51 (42.9) | 1.00 | 16 (47.1) | 1.00 | 8 (40.0) | 1.00 | ||||
Male | 657 (64.0) | 52 (53.1) | 0.60 (0.40–0.92) | 0.018 * | 68 (57.1) | 0.72 (0.49–1.06) | 0.097 | 18 (52.9) | 0.62 (0.31–1.23) | 0.174 | 12 (60.0) | 0.84 (0.34–2.07) | 0.704 |
Sampling origin | |||||||||||||
Portugal | 282 (46.5) | 29 (42.6) | 1.00 | 30 (38.0) | 1.00 | 7 (36.8) | 1.00 | 5 (41.7) | 1.00 | ||||
Brazil | 135 (22.2) | 15 (22.1) | 1.09 (0.56–2.11) | 0.797 | 12 (15.2) | 0.82 (0.41–1.66) | 0.579 | 6 (31.6) | 1.83 (0.60–5.55) | 0.287 | 2 (16.7) | 0.83 (0.16–4.35) | 0.829 |
PALOP | 190 (31.3) | 24 (35.3) | 1.26 (0.71–2.24) | 0.429 | 37 (46.8) | 2.03 (1.21–3.42) | 0.008 * | 6 (31.6) | 1.28 (0.42–3.87) | 0.661 | 5 (41.7) | 1.50 (0.43–5.24) | 0.528 |
HIV-1 Subtype | |||||||||||||
B | 398 (37.8) | 39 (39.0) | 1.37 (0.77–2.44) | 0.278 | 32 (26.9) | 0.58 (0.36–0.92) | 0.021 * | 16 (47.1) | 2.55 (0.99–6.58) | 0.053 | 8 (33.3) | 0.83 (0.32–2.16) | 0.696 |
G | 154 (14.6) | 20 (20.0) | 1.03 (0.53–2.0) | 0.927 | 21 (17.6) | 1.04 (0.6–1.80) | 0.895 | 11 (32.4) | 4.68 (1.70–12.9) | 0.003 * | 2 (8.3) | 0.53 (0.11–2.48) | 0.419 |
C | 129 (12.3) | 13 (13.0) | 0.75 (0.45–1.25) | 0.270 | 17 (14.3) | 1.0 (0.55–1.8) | 0.993 | 1 (2.9) | 0.48 (0.57–3.99) | 0.493 | 5 (20.8) | 1.62 (0.53–4.93) | 0.394) |
Others | 371 (35.3) | 28 (28.0) | 1.00 | 49 (41.2) | 1.00 | 6 (17.6) | 1.00 | 9 (37.5) | 1.00 | ||||
Viral load | |||||||||||||
<4.0 | 235 (23.5) | 30 (30.9) | 1.00 | 39 (34.2) | 1.00 | 11 (33.3) | 1.00 | 14 (63.6) | 1.00 | ||||
4.1 to 5.0 | 359 (35.9) | 37 (38.1) | 0.79 (0.47–1.31) | 0.355 | 37 (32.5) | 0.58 (0.36–0.94) | 0.026 * | 11 (33.3) | 0.64 (0.27–1.51) | 0.311 | 6 (27.3) | 0.27 (0.10–0.71) | 0.008 * |
>5.0 | 405 (40.5) | 30 (30.9) | 0.55 (0.32–0.93) | 0.027 * | 38 (33.3) | 0.52 (0.32–0.84) | 0.008 * | 11 (33.3) | 0.57 (0.24–1.33) | 0.194 | 2 (9.1) | 0.08 (0.02–0.35) | <0.001 * |
CD4 cell count | |||||||||||||
≤200 mm3 | 136 (33.4) | 27 (48.2) | 2.76 (1.41–5.43) | 0.003 * | 23 (39.7) | 1.57 (0.83–2.97) | 0.167 | 4 (26.7) | 0.76 (0.22–2.66) | 0.669 | 5 (41.7) | 1.36 (0.39–4.79) | 0.634 |
201–349 mm3 | 87 (21.4) | 14 (25.0) | 2.17 (0.99–4.72) | 0.051 | 14 (24.1) | 1.5 (0.72–3.10) | 0.280 | 4 (26.7) | 1.22 (0.35–4.30) | 0.752 | 2 (16.7) | 0.85 (0.16–4.45) | 0.844 |
≥350 mm3 | 184 (45.2) | 15 (26.8) | 1.00 | 21 (36.2) | 1.00 | 7 (46.7) | 1.00 | 5 (41.7) | 1.00 | ||||
Treatment status | |||||||||||||
Experienced | 258 (29.4) | 70 (77.8) | 11.2 (6.63–18.9) | <0.001 * | 62 (56.2) | 3.78 (2.51–5.69) | <0.001 * | 12 (42.9) | 1.85 (0.86–3.96) | 0.116 | 18 (90.0) | 23.2 (5.35–101) | <0.001 * |
Naïve | 621 (70.6) | 20 (22.2) | 1.00 | 48 (43.6) | 1.00 | 16 (57.1) | 1.00 | 2 (10.0) | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimentel, V.; Pingarilho, M.; Sebastião, C.S.; Miranda, M.; Gonçalves, F.; Cabanas, J.; Costa, I.; Diogo, I.; Fernandes, S.; Costa, O.; et al. Applying Next-Generation Sequencing to Track HIV-1 Drug Resistance Mutations Circulating in Portugal. Viruses 2024, 16, 622. https://doi.org/10.3390/v16040622
Pimentel V, Pingarilho M, Sebastião CS, Miranda M, Gonçalves F, Cabanas J, Costa I, Diogo I, Fernandes S, Costa O, et al. Applying Next-Generation Sequencing to Track HIV-1 Drug Resistance Mutations Circulating in Portugal. Viruses. 2024; 16(4):622. https://doi.org/10.3390/v16040622
Chicago/Turabian StylePimentel, Victor, Marta Pingarilho, Cruz S. Sebastião, Mafalda Miranda, Fátima Gonçalves, Joaquim Cabanas, Inês Costa, Isabel Diogo, Sandra Fernandes, Olga Costa, and et al. 2024. "Applying Next-Generation Sequencing to Track HIV-1 Drug Resistance Mutations Circulating in Portugal" Viruses 16, no. 4: 622. https://doi.org/10.3390/v16040622
APA StylePimentel, V., Pingarilho, M., Sebastião, C. S., Miranda, M., Gonçalves, F., Cabanas, J., Costa, I., Diogo, I., Fernandes, S., Costa, O., Corte-Real, R., Martins, M. R. O., Seabra, S. G., Abecasis, A. B., & Gomes, P. (2024). Applying Next-Generation Sequencing to Track HIV-1 Drug Resistance Mutations Circulating in Portugal. Viruses, 16(4), 622. https://doi.org/10.3390/v16040622