Quantitative HBV Core Antibodies as a Prognostic Marker for HBeAg Seroclearance: A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Article Screening and Selection
2.4. Data Abstraction and Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Characteristics
Quality Assessment
3.2. Meta-Analysis Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Sounds Alarm on Viral Hepatitis Infections Claiming 3500 Lives Each Day. Available online: https://www.who.int/news/item/09-04-2024-who-sounds-alarm-on-viral-hepatitis-infections-claiming-3500-lives-each-day (accessed on 14 May 2024).
- Lampertico, P.; Agarwal, K.; Berg, T.; Buti, M.; Janssen, H.L.A.; Papatheodoridis, G.; Zoulim, F.; Tacke, F. EASL 2017 Clinical Practice Guidelines on the Management of Hepatitis B Virus Infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef] [PubMed]
- Papatheodoridi, M.; Papatheodoridis, G. Can We Stop Nucleoside Analogues before HBsAg Loss? J. Viral Hepat. 2019, 26, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Wong, G.; Gane, E.; Kao, J.-H.; Dusheiko, G. Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy. Clin. Microbiol. Rev. 2020, 33, e00046-19. [Google Scholar] [CrossRef] [PubMed]
- Mohareb, A.M.; Liu, A.F.; Kim, A.Y.; Coffie, P.A.; Kouame, M.G.; Freedberg, K.A.; Boyd, A.; Hyle, E.P. Clearance of Hepatitis B e Antigen in Untreated Chronic Hepatitis B Virus Infection: A Systematic Review and Meta-Analysis. J. Infect. Dis. 2022, 226, 1761–1770. [Google Scholar] [CrossRef]
- Coffin, C.S.; Zhou, K.; Terrault, N.A. New and Old Biomarkers for Diagnosis and Management of Chronic Hepatitis B Virus Infection. Gastroenterology 2019, 156, 355–368.e3. [Google Scholar] [CrossRef]
- Vachon, A.; Osiowy, C. Novel Biomarkers of Hepatitis b Virus and Their Use in Chronic Hepatitis b Patient Management. Viruses 2021, 13, 951. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Shi, B.S.; Lu, W.; Huang, D.; Wang, Y.B.; Feng, Y.L. Quantitative Serum HBV Markers in Predicting Phases of Natural History of Chronic HBV Infection. J. Virol. Methods 2021, 296, 114226. [Google Scholar] [CrossRef]
- Hu, H.H.; Liu, J.; Chang, C.L.; Jen, C.L.; Lee, M.H.; Lu, S.N.; Wang, L.Y.; Quan, Y.; Xia, N.S.; Chen, C.J.; et al. Level of Hepatitis B (HB) Core Antibody Associates with Seroclearance of HBV DNA and HB Surface Antigen in HB e Antigen-Seronegative Patients. Clin. Gastroenterol. Hepatol. 2019, 17, 172–181.e1. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Wang, J.; Wang, L.; Xia, J.; Yan, X.; Wu, W.; Liu, J.; Wang, L.; Yin, S.; Tong, X.; et al. Association of Anti-HBc and Liver Inflammation in HBeAg-Negative Chronic Hepatitis B Virus-Infected Patients with Normal ALT and Detectable HBV DNA. J. Med. Virol. 2022, 94, 659–666. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2014. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 2 May 2024).
- Jadad, A.R.; Andrew Moore, R.; Carroll, D.; Jenkinson, C.; John Reynolds, D.M.; Gavaghan, D.J.; McQuay DM, H.J. Assessing the Quality of Reports of Randomized Clinical Trials: Is Blinding Necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons.: Hoboken, NJ, USA, 2019; ISBN 9780470699515. [Google Scholar]
- RevMan|Cochrane Training. Available online: https://training.cochrane.org/online-learning/core-software/revman (accessed on 14 May 2024).
- Fan, R.; Sun, J.; Yuan, Q.; Xie, Q.; Bai, X.; Ning, Q.; Cheng, J.; Yu, Y.; Niu, J.; Shi, G.; et al. Baseline Quantitative Hepatitis B Core Antibody Titre Alone Strongly Predicts HBeAg Seroconversion across Chronic Hepatitis B Patients Treated with Peginterferon or Nucleos(t)Ide Analogues. Gut 2016, 65, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.Q.; Song, L.W.; Yuan, Q.; Fang, L.L.; Ge, S.X.; Zhang, J.; Sheng, J.F.; Xie, D.Y.; Shang, J.; Wu, S.H.; et al. Quantitative Hepatitis B Core Antibody Level Is a New Predictor for Treatment Response in HBeAg-Positive Chronic Hepatitis B Patients Receiving Peginterferon. Theranostics 2015, 5, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.T.; Zhang, Y.F.; Sun, B.H.; Dai, Y.; Zhu, H.L.; Xu, Y.H.; Lu, M.J.; Yang, D.L.; Li, X.; Zhang, Z.H. Models for Predicting Hepatitis B e Antigen Seroconversion in Response to Interferon-α in Chronic Hepatitis B Patients. World J. Gastroenterol. 2015, 21, 5668–5676. [Google Scholar] [CrossRef]
- Gao, Y.H.; Meng, Q.H.; Zhang, Z.Q.; Zhao, P.; Shang, Q.H.; Yuan, Q.; Li, Y.; Deng, J.; Li, T.; Liu, X.E.; et al. On-Treatment Quantitative Hepatitis B e Antigen Predicted Response to Nucleos(t)Ide Analogues in Chronic Hepatitis B. World J. Hepatol. 2016, 8, 1511–1520. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, C.; Zhang, Y.; Wei, S.; Li, X.; Zhang, Z. Prediction Model for Sustained Hepatitis B e Antigen Seroconversion to Peginterferon Alfa-2a in Chronic Hepatitis B. J. Gastroenterol. Hepatol. 2016, 31, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.H.; Song, L.W.; Li, N.; Wang, S.; Zeng, Z.; Si, C.W.; Li, J.; Mao, Q.; Zhang, D.Z.; Tang, H.; et al. Baseline Hepatitis B Core Antibody Predicts Treatment Response in Chronic Hepatitis B Patients Receiving Long-Term Entecavir. J. Viral Hepat. 2017, 24, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Li, Z.; Yu, T.; Xia, M.; Peng, J. Serum Hepatitis B Core Antibody Levels Predict Hbeag Seroconversion in Chronic Hepatitis B Patients with High Viral Load Treated with Nucleos(T)Ide Analogs. Infect. Drug Resist. 2018, 11, 469–477. [Google Scholar] [CrossRef]
- Liao, H.; Liu, Y.; Li, X.; Wang, J.; Chen, X.; Zou, J.; Li, Q.; Liu, L.; Wang, J.; Huang, B.; et al. Monitoring of Serum HBV RNA, HBcrAg, HBsAg and Anti-HBc Levels in Patients during Long-Term Nucleoside/Nucleotide Analogue Therapy. Antivir. Ther. 2019, 24, 105–115. [Google Scholar] [CrossRef]
- Chen, H.-S.; Wu, J.-F.; Su, T.-H.; Chen, H.-L.; Hsu, H.-Y.; Xia, N.-S.; Chen, P.-J.; Chang, M.-H. Baseline Level of Hepatitis B Core Antibody Predicts Spontaneous Hepatitis B e Antigen (HBeAg) Seroconversion in HBeAg-Positive Children with a Normal Alanine Aminotransferase Level. Hepatology 2019, 70, 1903–1912. [Google Scholar] [CrossRef]
- Shen, S.; Wong, G.L.H.; Kuang, Z.; van Campenhout, M.J.H.; Fan, R.; Wong, V.W.S.; Yip, T.C.F.; Chi, H.; Liang, X.; Hu, X.; et al. Development and Validation of a Model for Hepatitis B e Antigen Seroconversion in Entecavir-Treated Patients with Chronic Hepatitis B. J. Med. Virol. 2020, 92, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Dezanet, L.N.C.; Maylin, S.; Gabassi, A.; Rougier, H.; Miailhes, P.; Lascoux-Combe, C.; Chas, J.; Girard, P.-M.; Delaugerre, C.; Lacombe, K.; et al. Kinetics of Hepatitis B Core-Related Antigen and Anti-Hepatitis B Core Antibody and Their Association with Serological Response in HIV-Hepatitis B Co-Infection. J. Infect. Dis. 2020, 221, 1826–1837. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Lou, H.; Chen, F.; Gao, X.; Lin, Z. Hepatitis B Core Antibody and Liver Stiffness Measurements Predict HBeAg Seroconversion in HBeAg-Positive Chronic Hepatitis B Patients with Minimally Elevated Alanine Aminotransferase (ALT) Levels. Clin. Exp. Med. 2020, 20, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Fu, Y.; Wu, W.; Chen, T.; Chen, N.; Xun, Z.; Liu, C.; Ou, Q.; Zeng, Y.; Huang, H. The Efficacy of Addition of Tenofovir Disoproxil Fumarate to Peg-IFNα-2b Is Superior to the Addition of Entecavir in HBeAg Positive CHB Patients with a Poor Response after 12 Weeks of Peg-IFNα-2b Treatment Alone. Int. J. Med. Sci. 2020, 17, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.Q.; Xu, X.Y.; Hou, F.Q.; Jia, W. A Baseline Model Including Quantitative Anti-HBc to Predict Response of Peginterferon in HBeAg-Positive Chronic Hepatitis B Patients. Antivir. Ther. 2021, 26, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, Z.; Wang, G.Q.; Zhao, H. Hepatitis B Core-Related Antigen Reflects Viral Replication and Protein Production in Chronic Hepatitis B Patients. Chin. Med. J. 2021, 134, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Hu, Y.; Guo, H.; Lai, R.; Fu, Y.; Xu, S.; Zeng, Y.; Xun, Z.; Liu, C.; Wu, W.; et al. Using Machine Learning Models to Predict HBeAg Seroconversion in CHB Patients Receiving Pegylated Interferon-α Monotherapy. J. Clin. Lab. Anal. 2022, 36, e24667. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; An, X.; Shi, L.; Yang, X.; Chen, Y.; Liu, X.; Li, J.; Ye, F.; Lin, S. Baseline Quantitative HBcAb Strongly Predicts Undetectable HBV DNA and RNA in Chronic Hepatitis B Patients Treated with Entecavir for 10 Years. Sci. Rep. 2021, 11, 13389. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.A.; Wang, J.; Liu, J.; Chen, G.; Yan, X.; Jia, B.; Yang, Y.; Liu, Y.; Gu, D.; Zhang, Z.; et al. Baseline Serum Hepatitis B Core Antibody Level Predicts HBeAg Seroconversion in Patients with HBeAg-Positive Chronic Hepatitis B after Antiviral Treatment. Antivir. Res. 2021, 193, 105146. [Google Scholar] [CrossRef]
- Brakenhoff, S.M.; de Knegt, R.J.; Oliveira, J.; van der Eijk, A.A.; van Vuuren, A.J.; Hansen, B.E.; Janssen, H.L.A.; de Man, R.A.; Boonstra, A.; Sonneveld, M.J. Levels of Antibodies to Hepatitis B Core Antigen Are Associated with Liver Inflammation and Response to Peginterferon in Patients with Chronic Hepatitis B. J. Infect. Dis. 2023, 227, 113–122. [Google Scholar] [CrossRef]
- Bonino, F.; Colombatto, P.; Brunetto, M.R. HBeAg-Negative/Anti-HBe-Positive Chronic Hepatitis B: A 40-Year-Old History. Viruses 2022, 14, 1691. [Google Scholar] [CrossRef]
- Xing, T.; Xu, H.; Cao, L.; Ye, M. HBeAg Seroconversion in HBeAg-Positive Chronic Hepatitis B Patients Receiving Long-Term Nucleos(t)Ide Analog Treatment: A Systematic Review and Network Meta-Analysis. PLoS ONE 2017, 12, e0169444. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, H.I.; Lee, M.H.; Batrla-Utermann, R.; Jen, C.L.; Lu, S.N.; Wang, L.Y.; You, S.L.; Hsiao, C.K.; Chen, C.J. Distinct Seromarkers Predict Different Milestones of Chronic Hepatitis B Progression. Hepatology 2014, 60, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Kramvis, A.; Chang, K.M.; Dandri, M.; Farci, P.; Glebe, D.; Hu, J.; Janssen, H.L.A.; Lau, D.T.Y.; Penicaud, C.; Pollicino, T.; et al. A Roadmap for Serum Biomarkers for Hepatitis B Virus: Current Status and Future Outlook. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 727–745. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, J.; Huang, J.; Quan, B.; Wu, X.; Deng, S.; Han, W. Early Serum Hbsag Drop Is a Strong Predictor of Hbeag Seroconversion and HBsAg Loss to Pegylated Interferon Alfa-2a in Chronic Hepatitis b Patients with Prior Nucleos(T)Ide Analogue Exposure. Med. Sci. Monit. 2019, 25, 4665–4674. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.C.; Chiu, Y.C.; Chiu, H.C.; Liu, W.C.; Cheng, P.N.; Chen, C.Y.; Chang, T.T.; Wu, I.C. Clinical Utility of Hepatitis B Surface Antigen Kinetics in Treatment-Naïve Chronic Hepatitis B Patients during Longterm Entecavir Therapy. World J. Gastroenterol. 2018, 24, 725–736. [Google Scholar] [CrossRef]
- Pfefferkorn, M.; Schott, T.; Böhm, S.; Deichsel, D.; Felkel, C.; Gerlich, W.H.; Glebe, D.; Wat, C.; Pavlovic, V.; Heyne, R.; et al. Composition of HBsAg Is Predictive of HBsAg Loss during Treatment in Patients with HBeAg-Positive Chronic Hepatitis B. J. Hepatol. 2021, 74, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Rehermann, B.; Nascimbeni, M. Immunology of Hepatitis B Virus and Hepatitis C Virus Infection. Nat. Rev. Immunol. 2005, 5, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, G.; Locarnini, S.; Pollicino, T.; Levrero, M.; Zoulim, F.; Lok, A.S. Update of the Statements on Biology and Clinical Impact of Occult Hepatitis B Virus Infection. J. Hepatol. 2019, 71, 397–408. [Google Scholar] [CrossRef]
- Lazarevic, I.; Banko, A.; Miljanovic, D.; Cupic, M. Clinical Utility of Quantitative HBV Core Antibodies for Solving Diagnostic Dilemmas. Viruses 2023, 15, 373. [Google Scholar] [CrossRef]
- Boeijen, L.L.; Hoogeveen, R.C.; Boonstra, A.; Lauer, G.M. Hepatitis B Virus Infection and the Immune Response: The Big Questions. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Q.; Shi, B.-S.; Lu, W.; Liu, D.-P.; Huang, D.; Feng, Y.-L. Quantitative Anti-HBc in Liver Pathological States in Patients with Chronic Hepatitis B Virus Infection. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 6545642. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, Y.; Li, J.; Liu, H.; Shao, C.; Liu, D.; Yu, M.; Xi, H.; Zhao, H.; Wang, G. Dose–Response Relationship between QAnti-HBc and Liver Inflammation in Chronic Hepatitis B with Normal or Mildly Elevated Alanine Transaminase Based on Liver Biopsy. J. Med. Virol. 2022, 94, 3911–3923. [Google Scholar] [CrossRef] [PubMed]
- Caviglia, G.P.; Abate, M.L.; Tandoi, F.; Ciancio, A.; Amoroso, A.; Salizzoni, M.; Saracco, G.M.; Rizzetto, M.; Romagnoli, R.; Smedile, A. Quantitation of HBV CccDNA in Anti-HBc-Positive Liver Donors by Droplet Digital PCR: A New Tool to Detect Occult Infection. J. Hepatol. 2018, 69, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Gaeta, G.B.; Nardiello, S.; Pizzella, T.; Russo, G.; Maisto, A.; Sardaro, C.; Galanti, B.; Giusti, G. Semiquantitative Anti-HBc IgM Detection in Children with Chronic Hepatitis B: A Long-Term Follow-Up Study. J. Med. Virol. 1995, 46, 173–177. [Google Scholar] [CrossRef]
- Li, A.; Yuan, Q.; Huang, Z.; Fan, J.; Guo, R.; Lou, B.; Zheng, Q.; Ge, S.; Chen, Y.; Su, Z.; et al. Novel Double-Antigen Sandwich Immunoassay for Human Hepatitis B Core Antibody. Clin. Vaccine Immunol. 2010, 17, 464–469. [Google Scholar] [CrossRef]
Study Characteristics | HBV Patients | qAnti-HBc | HBeAg Seroclearance | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author, Year, Country Study Design | n | Age * (Years) | Gender M/F | Origin | HIV Coinfection HDV Coinfection Cirrhosis/HCC | HBV Genotype | Class Unit of qAnti-HBc | qAnti-HBc Method (Manufacturer) | Cut-Off Value of qAnti-HBc for HBeAg Seroclearance | n with HBeAg Seroclearance Value of qAnti-HBc ** | n without HBeAg Seroclearance Value of qAnti-HBc ** | Type of HBeAg Seroclearance | Therapy Duration | Duration of Follow-Up |
Fan, 2015 [16], China Retrospective cohort | 231 PEG IFN cohort 560 NUC cohort | PEG IFN cohort 29.1 ± 6.8 NUC cohort 30.1 ± 8.9 | PEG IFN cohort 184/47 NUC cohort 455/105 | Asia (China) | NR NR NR | PEG IFN cohort: 81 B, 148 C, 2 others NUC cohort: 217 B, 340 C, 3 others | total anti-HBc log IU/mL | double-sandwich immunoassay (Wantai, Beijing, China) | >4.4 log IU/mL baseline qAnti-HBc for prediction of HBeAg seroclearance for both cohorts, together with baseline HBV DNA < 9 log copies/mL | 99 (PEG IFN cohort), 137 (NUC cohort) higher levels in HBeAg seroclearance cohort than in cohort without HBeAg seroclearance | 132 (PEG IFN cohort), 423 (NUC cohort) higher levels in HBeAg seroclearance cohort than in cohort without HBeAg seroclearance | therapy-induced | PEG IFN, NUC 24 weeks (PEG IFN cohort), 104 weeks (NUC cohort) | 24 weeks (PEG IFN cohort), 104 weeks (NUC cohort) |
Hou, 2015 [17], China Multicenter, randomized, double-blind, controlled phase II clinical trial | 140 | overall 26.75 ± 6.99 seroclearance 25.32 ± 6.72 without seroclearance 27.32 ± 7.04 | overall 103/37 seroclearance 27/13 without seroclearance 76/24 | Asia (China) | No No NR | overall 51B, 89C seroclearance 16B, 24C without seroclearance 35B, 65C | total anti-HBc log IU/mL | double-sandwich immunoassay (Wantai, Beijing, China) | >4.47 log IU/mL (30,000 IU/mL)–higher % of HBeAg seroclearance | 40 4.52 ± 0.36 | 100 4.19 ± 0.58 | therapy-induced | PEG IFN 48 weeks | 72 weeks |
Wang, 2015 [18], China Prospective cohort | 147 | overall 25.02 ± 0.56 seroclearance 26.40 ± 1.19 without seroclearance 24.37 ± 0.59 | overall 106/41 seroclearance 33/14 without seroclearance 73/27 | Asia (China) | No No NR | overall 85B, 55C, 7 other seroclearance 26B, 21C without seroclearance 59B, 34C, 7 other | total anti-HBc, S/Co | commercially available kit (Abbott, Chicago, IL, USA) | >11.4 S/Co | 47 11.54 ± 0.27 | 100 10.94 ± 0.17 | therapy-induced | IFN alfa 1b 52 weeks | 52 weeks |
Gao, 2016 [19], China Retrospective cohort | 76 | overall 32.63 ± 9.69 seroclearance 31.87 ± 11.6 without seroclearance 32.82 ± 9.26 | overall 56/20 seroclearance 10/5 without seroclearance 46/15 | Asia (China) | NR NR NR | overall 53C, 23 other seroclearance 10C, 5 other without seroclearance 43C, 18 other | total anti-HBc, log IU/mL | double-sandwich immunoassay (Wantai, Beijing, China) | NR | 15 4.85 ± 0.44 | 61 4.75 ± 0.47 | therapy-induced | LAM + ADF >96 weeks | 96 weeks |
Zhu, 2016 [20], China Prospective cohort | 85 | overall 23.85 ± 1.15 seroclearance 23.50 ± 1.92 without seroclearance 24.10 ± 1.46 | overall 66/19 seroclearance 27/9 without seroclearance 39/10 | Asia (China) | No No NR | overall 50B, 31C, 4 other seroclearance 21B, 13C, 2 other without seroclearance 29B, 18C, 2 other | total anti-HBc S/Co | commercially available enzyme immunoassay (Abbott, Chicago, IL, USA) | baseline > 10.7 S/Co together with HBeAg ≤ 500 S/Co and ALT > 5 × ULN | 36 11.80 ± 0.67 | 49 10.53 ± 0.55 | therapy-induced | PEG IFN alfa 2a 52 weeks | 76 weeks |
Xu, 2017 [21], China Retrospective cohort | 139 | overall 30.91 ± 8.92 seroclearance 30.23 ± 9.66 without seroclearance 31.44 ± 8.80 | overall 110/29 seroclearance 19/16 without seroclearance 91/13 | Asia (China) | NR NR NR | overall 81B, 58C seroclearance 16B, 19C without seroclearance 39B, 65C | total anti-HBc, log IU/mL | double-sandwich immunoassay (Wantai, Beijing, China) | 4.65 log IU/mL | 35 5.22 ± 0.46 | 104 4.63 ± 0.79 | therapy-induced | ETV 240 weeks | 240 weeks |
Cai, 2018 [22], China Multicenter, randomized, controlled clinical trial | 74 Total 32 LAM + ADF group 42 ETV group | LAM + ADF group 32.9 ± 10.6 ETV group 30.1 ± 8.4 | LAM + ADF group 25/7 ETV group 31/11 | Asia (China) | No No No | NR | total anti-HBc log IU/mL | double-sandwich immunoassay (Wantai, Beijing, China) | >4.375 log IU/mL, for HBeAg seroclearance at week 96 (40% of those with >4.375 log IU/mL had seroclearance, 12.2% with lower level had seroclearance) | 16 baseline, 4.38 ± 0.54 | 58 4.02 ± 0.58 | therapy-induced | LAM + ADF (32), ETV (42) 96 weeks | 96 weeks |
Liao, 2018 [23], China NR | 16 | seroclearance 49 (38–55) without seroclearance 42 (31–43) | seroclearance 9/0 without seroclearance 7/0 | Asia (China) | No No NR | NR | total anti-HBc log IU/mL | double-sandwich immunoassay (Wantai, Beijing, China) | NR | 9 baseline, 2.71 (2.00, 3.63) | 7 2.00 (2.00, 2.00) | therapy-induced | NA (LAM/ADF/ETV) Long term | NR |
Chen, 2019 [24], Taiwan NR | 182 | overall 10.6 (11.9–21.9) seroclearance 10.62 (10.35–15.39) without seroclearance 10.52 (8.98–15.26) | overall 106/76 seroclearance 46/39 without seroclearance 60/37 | Asia (Taiwan) | NR NR No | overall 128B, 42C, 12 mixed B + C seroclearance 6B, 12C, 11 mixed B + C without seroclearance 66B, 30C, 11 mixed B + C | total anti-HBc log IU/mL | double-sandwich immunoassay (Wantai, Beijing, China) | >2.7 log IU/mL (500 IU/mL) | 85 baseline 2.76 (2.23–2.97) | 97 2.20 (1.39–2.71) | spontaneous | No / | 9–24 years |
Shen, 2019 [25], China Retrospective cohort | 526 Total 258 training cohort 268 validation cohort | overall training cohort 40.3 ± 11.2 seroclearance training cohort 39.2 ± 11.5 without seroclearance training cohort 40.9 ± 11.0 overall validation cohort 38.5 ± 10.9 seroclearance validation cohort 36.1 ± 8.8 without seroclearance validation cohort 39.6 ± 11.7 | overall training cohort 192/66 seroclearance training cohort 68/25 without seroclearance training cohort 124/41 overall validation cohort 216/52 seroclearance validation cohort 73/14 without seroclearance validation cohort 143/38 | not clear training cohort: Asia (China) n = 252 validation cohort: Asia (China) n = 253 | NR NR cirrhosis training cohort: n = 53 overall n = 22 seroclearance n = 31 without seroclearance validation cohort: n = 49 overall n = 14 seroclearance n = 35 without seroclearance | Training cohort: 2A, 111B, 141C, 2D, 1E, 1G Validation cohort: 5A, 116B, 137C, 7D, 2E, 1G | total anti-HBc log IU/mL | double-sandwich immunoassay (Wantai, Beijing, China) | Cut-off only in predictive model including age, anti-HBc and HBsAg | 93 (training cohort) 87(validation cohort) 4.5 ± 0.7 (training cohort) 4.7 ± 0.6 (validation cohort) | 165 (training cohort) 181 (validation cohort) 4.3 ± 0.6 (training cohort) 4.3 ± 0.7 (validation cohort) | therapy-induced | ETV 4.47 (1–10.58) (training cohort) 4.30 (1–9.76) (validation cohort) | 2.75 (0.05–5.00) (training cohort) 2.56 (0.02–5.00) (validation cohort) |
Dezanet, 2020 [26], France Prospective cohort | 95 | 40.3 (35.0–46.7) | 89/6 | not clear (mostly Europe—France) | Yes No NR | 55A, 7D, 4E, 12G | total anti-HBc log PEIU/mL | CMIA (Abbott, Chicago, IL, US) | >4.1 log PEIU/mL and HBcrAg < 7.5 U/mL | 26 NR | 69 NR | therapy-induced | 28 TNF, 67 LAM + TNF >6 months | 8 years |
Fu, 2020 [27], China Prospectve cohort | 106 | overall 34.4 ± 10.7 years seroclearance 40.7 ± 10.5 without seroclearance 31.8 ± 9.6 | seroclearance 24/7 without seroclearance 65/10 | Asia (China) | NR No No | NR | total anti-HBc log IU/mL | double-sandwich immunoassay (Wantai, Beijing, China) | >4.15 log IU/mL and LSM ≥ 9.85 kPa | 31 4.38 ± 0.56 | 75 4.03 ± 0.56 | therapy-induced | 31 ETV, 25LdT, 50 TNF 96 weeks | 96 weeks |
Lin, 2020 [28], China NR | 40 | PEG-IFNα-2b + ETV group 28.75 ± 4.83 PEG-IFNα-2b + TNF group 29.94 ± 5.16 | PEG-IFNα-2b + ETV group 15/5 PEG-IFNα-2b + TNF group 17/3 | Asia (China) | No No No | NR | total anti-HBc NR | CMIA (Abbott, Chicago, IL, USA) | NR | 2 (PEG-IFNα-2b + ETV group) 8 (PEG-IFNα-2b + TNF group) NR | 30 NR | therapy-induced | PEG IFN alfa 2b for 12 weeks, followed by 48 weeks of PEG IFN alfa 2b + ETV or PEG IFN alfa 2b + TNF 12 weeks | 48 weeks |
Fang, 2021 [29], China NR | 140 | overall 26.75 ± 6.99 seroclearance 25.33 ± 6.72 without seroclearance 27.32 ± 7.04 | overall 103/37 seroclearance 27/13 without seroclearance 76/24 | Asia (China) | No No NR | overall 51B, 89C seroclearance 16B, 24C without seroclearance 35B, 65C | total anti-HBc log IU/mL | double-sandwich immunoassay (Wantai, Beijing, China) | ≥4.47 log IU/mL (30,000 IU/mL) and HBeAg level < 800 S/Co and ALT ratio × ULN ≥ 4—higher % of HBeAg seroclearance | 40 4.58 ± 0.50 | 100 4.13 ± 0.69 | therapy-induced | PEG IFN 48 weeks | 72 weeks |
Li, 2021 [30], China NR | 93 | overall 36.2 ± 9.2 seroclearance 36.0 ± 8.3 without seroclearance 36.2 ± 9.6 | overall 74/19 | Asia (China) | NR No No | NR | total anti-HBc log IU/mL | double-sandwich immunoassay (Wantai, Beijing, China) | NR | 29 3.7 (3.2, 3.9) | 64 3.4 (3.1, 3.8) | therapy-induced | ETV 78 weeks | 78 weeks |
Shang, 2021 [31], China Retrospective cohort | 260 | overall 27.88 ± 5.93 seroclearance 25.89 ± 5.43 without seroclearance 28.29 ± 5.96 | overall 177/83 seroclearance 27/17 without seroclearance 150/66 | Asia (China) | No No No | NR | total anti-HBc S/Co | CMIA | NR | 44 11.97 (8.54–13.29) | 216 11.77 (10.20–13.37) | therapy-induced | PEG IFN >4 weeks | until EOT |
Zhang, 2021 [32], China NR | 21 | 32.41 ± 9.46 | 19/8 | Asia (China) | No No No | 10B, 17C | total anti-HBc log IU/mL | double-sandwich immunoassay (Wantai, Beijing, China) | baseline ≥ 3.1 log IU/mL for HBeAg seroclearance after 10 years | 19 3.17 ± 0.56 | 8 2.24 ± 0.86 | therapy-induced | ETV 10 years | 10 years |
Zhao, 2021 [33], China Retrospective cohort | 217 | overall 35.5 (30.0–41.0) seroclearance 35.1 (30.5–38.5) without seroclearance 35.6 (39.0–42.0) | overall 160/57 seroclearance 14/8 without seroclearance 146/49 | Asia (China) | NR No No | NR | total anti-HBc S/Co | commercial kit (Abbott, Wiesbaden, Germany) | baseline qAnti-HBc > 11.1 S/Co, HBeAg ≤ 3.1 log S/Co, and ALT > 152.8 U/L had highest % of HBeAg seroclearance | 22 11.8 (10.8–12.5) | 195 9.6 (8.3–10.8) | therapy-induced | 164 ETV (HBeAg seroclearance/without HBeAg seroclearance 14/150), 53 TNF (HBeAg seroclearance/without HBeAg seroclearance 8/45) 48 weeks | 48 weeks |
Brakenhoff, 2022 [34], Netherlands Randomized controlled clinical trial | 286 total 91 add-on PEG-IFN group 195 de novo PEG-INF group | add-on PEG-IFN group 30 (24–38) de novo PEG-INF group 33 (25–44) | add-on PEG-IFN group 65/26 de novo PEG-INF group 153/42 | add-on PEG-IFN group: Caucasian (n = 33) Asian (n = 56) other (n = 2) de novo PEG-INF group: Caucasian (n = 149) Asian (n = 31) other (n = 15) | NR NR NR | add-on PEG-IFN group: 4A, 21B, 35C, 31D de novo PEG-INF group: 74A, 15B, 23C, 76D, 7 other | total anti-HBc log IU/mL | two-step sandwich CLEIA (Fujirebio, Tokyo, Japan) | baseline > 4.00 log IU/mL—higher probability of HBeAg seroclearance | 16 add-on PEG-IFN group; 78 de novo PEG-INF group both groups 3.92 ± 0.27 log IU/mL | 90 add-on PEG-IFN group; 117 de novo PEG-INF group both groups 3.72 ± 0.53 log IU/mL | therapy-induced | add-on PEG-IFN group: ETV 24 weeks than ETV + PEG IFN alfa 2a to 48 week; de novo PEG-INF group: PEG IFN + LAM 52 weeks | add-on PEG-IFN group: 48 weeks, de novo PEG-INF group: 76 weeks |
Study | Selection Domain | Comparability Domain | Outcome/Exposure Domain | Quality |
---|---|---|---|---|
Hou, 2015 [17] | ☆☆☆☆ | ☆ | ☆☆☆ | Good |
Wang, 2015 [18] | ☆☆☆ | ☆ | ☆☆☆ | Good |
Gao, 2016 [19] | ☆☆☆ | ☆ | ☆☆☆ | Good |
Zhu, 2016 [20] | ☆☆☆ | ☆ | ☆☆☆ | Good |
Xu, 2017 [21] | ☆☆☆☆ | ☆ | ☆☆☆ | Good |
Cai, 2018 [22] | ☆☆☆ | ☆ | ☆☆☆ | Good |
Liao, 2018 [23] | ☆☆☆ | ☆☆☆ | Fair | |
Chen, 2019 [24] | ☆☆☆☆ | ☆ | ☆☆☆ | Good |
Shen, 2019 [25] | ☆☆☆ | ☆ | ☆☆☆ | Good |
Dezanet, 2020 [26] | ☆☆☆ | ☆☆☆ | Fair | |
Fu, 2020 [27] | ☆☆☆ | ☆ | ☆☆☆ | Good |
Fang, 2021 [29] | ☆☆☆ | ☆ | ☆☆☆ | Good |
Li, 2021 [30] | ☆☆☆☆ | ☆ | ☆☆☆ | Good |
Shang, 2021 [31] | ☆☆☆ | ☆ | ☆☆☆ | Good |
Zhang, 2021 [32] | ☆☆☆ | ☆ | ☆☆☆ | Good |
Zhao, 2021 [33] | ☆☆☆ | ☆ | ☆☆☆ | Good |
Brakenhoff, 2022 [34] | ☆☆☆☆ | ☆ | ☆☆☆ | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarevic, I.; Miljanovic, D.; Banko, A.; Cupic, M.; Cirkovic, A. Quantitative HBV Core Antibodies as a Prognostic Marker for HBeAg Seroclearance: A Systematic Review with Meta-Analysis. Viruses 2024, 16, 1121. https://doi.org/10.3390/v16071121
Lazarevic I, Miljanovic D, Banko A, Cupic M, Cirkovic A. Quantitative HBV Core Antibodies as a Prognostic Marker for HBeAg Seroclearance: A Systematic Review with Meta-Analysis. Viruses. 2024; 16(7):1121. https://doi.org/10.3390/v16071121
Chicago/Turabian StyleLazarevic, Ivana, Danijela Miljanovic, Ana Banko, Maja Cupic, and Andja Cirkovic. 2024. "Quantitative HBV Core Antibodies as a Prognostic Marker for HBeAg Seroclearance: A Systematic Review with Meta-Analysis" Viruses 16, no. 7: 1121. https://doi.org/10.3390/v16071121
APA StyleLazarevic, I., Miljanovic, D., Banko, A., Cupic, M., & Cirkovic, A. (2024). Quantitative HBV Core Antibodies as a Prognostic Marker for HBeAg Seroclearance: A Systematic Review with Meta-Analysis. Viruses, 16(7), 1121. https://doi.org/10.3390/v16071121