Attempted Transmission of Marburg Virus by Bat-Associated Fleas Thaumapsylla breviceps breviceps (Ischnopsyllidae: Thaumapsyllinae) to the Egyptian Rousette Bat (Rousettus aegyptiacus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Bats and Fleas
2.2. Collection of Bat Fleas from Egyptian Rousette Bats
2.3. Infestation Rate of Egyptian Rousette Bats by Bat Fleas
2.4. Marburg Virus Infection Rate in Bat Fleas
2.5. Experimental Animals
2.6. Challenge Virus
2.7. Experimental Infections
2.8. Serology
2.9. Real-Time Quantitative Reverse-Transcription Polymerase Chain Reaction
3. Results
3.1. Identification and Morphometric Measurements of Bat Fleas
3.2. Estimation of Infestation Rate of Egyptian Rousette Bats by Bat Fleas
3.3. Field Infection Rate with Marburg Virus in Bat Fleas
3.4. Survival of All Fleas
3.5. Immune Responses and Viremia in MARV-Inoculated and Control Bats
3.6. Virological Findings in Fleas Fed on MARV-Viremic Bats
3.7. Virological Findings in Fleas Inoculated with MARV
(A) | ||
Days post-inoculation a | Number of bats tested/positive (% viremic bats) | Mean log10TCID50 b ± SD c/mL blood |
3 | 6/6 (100) | 3.25 ± 0.63 |
5 | 6/6 (100) | 4.06 ± 0.61 |
7 | 3/6 (50) | 2.05 ± 0.57 |
9 | 1/6 (16.7) | 1.76 |
12 | 1/12 (8.3) | 1.13 |
15–21 | 0/12 | |
(B) | ||
Days post-inoculation d | Number of fleas tested/positive (% positive) | Mean log10TCID50 ± SD/flea |
3 | 10/0 | |
5 | 14/4 (28.6) | 0.6 ± 0.37 |
7 | 18/6 (33.3) | 1.71 ± 0.87 |
11 | 20/1 (5) | 0.64 ± 0.37 |
14 | 20/0 | |
21 | 21/0 | |
25 | 17/0 | |
(C) | ||
Days post-inoculation e | Number of fleas tested/positive (% positive) | Mean log10TCID50 ± SD/flea |
0 | 15 f/15 (100) | 1.67 ± 0.42 |
7 | 24/2 (8.3) | 1.38 ± 0.85 |
10 | 31/3 (9.6) | 1.07 ± 0.66 |
14 | 30/1 (3.3) | 0.54 |
21 | 21/0 | |
24 | 10/0 |
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, D.H.; Johnson, B.K.; Isaacson, M.; Swanepoel, R.; Johnson, K.M.; Killy, M.; Bagshawe, A.; Siongok, T.; Keruga, W.K. Marburg-virus disease in Kenya. Lancet 1982, 1, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.D.; Johnson, B.K.; Silverstein, D.; Tukei, P.; Geisbert, T.W.; Sanchez, A.N.; Jahrling, P.B. Characterization of a new Marburg virus isolated from a 1987 fatal case in Kenya. Arch. Virol. 1996, 11, S101–S114. [Google Scholar]
- Bausch, D.G.; Nichol, S.T.; Muyembe-Tamfum, J.J.; Borchert, M.; Rollin, P.E.; Sleurs, H.; Campbell, P.; Tshioko, F.K.; Roth, C.; Colebunders, R.; et al. Marburg hemorrhagic fever associated with multiple genetic lineages of virus. N. Engl. J. Med. 2006, 355, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Swanepoel, R.; Smit, S.B.; Rollin, P.E.; Formenty, P.; Leman, P.A.; Kemp, A.; Burt, F.J.; Grobbelaar, A.A.; Croft, J.; Bausch, D.G.; et al. Studies of reservoir hosts for Marburg virus. Emerg. Infect. Dis. 2007, 13, 1847–1851. [Google Scholar] [CrossRef]
- Towner, J.S.; Amman, B.R.; Sealy, T.K.; Carroll, S.A.; Comer, J.A.; Kemp, A.; Swanepoel, R.; Paddock, C.D.; Balinandi, S.; Khristova, M.L. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009, 5, e1000536. [Google Scholar] [CrossRef]
- Timen, A.; Koopmans, M.P.G.; Vossen, A.C.T.M.; van Doornum, G.J.J.; Günther, S.; van den Berkmortel, F.; Verduin, K.M.; Dittrich, S.; Emmerich, P.; Albert, D.M.E.; et al. Response to imported case of Marburg hemorrhagic fever, The Netherlands. Emerg. Infect. Dis. 2009, 15, 1171–1175. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Imported case of Marburg hemorrhagic fever-Colorado, 2008. Morb. Mortal. Wkly. Rep. 2009, 58, 1377–1381. [Google Scholar]
- Adjemian, J.; Farnon, E.C.; Tschioko, F.; Wamala, J.F.; Byaruhanga, E.; Bwire, G.S.; Kansiimey, E.; Kagirita, A.; Ahimbisibwe, S.; Katunguka, F.; et al. Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda Districts, Uganda, 2007. J. Infect. Dis. 2011, 204, S796–S799. [Google Scholar] [CrossRef] [PubMed]
- Towner, J.S.; Khristova, M.L.; Sealy, T.K.; Vincent, M.J.; Erickson, B.R.; Bawiec, D.A.; Hartman, A.L.; Comer, J.A.; Zali, A.R.; Ströher, U. Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J. Virol. 2006, 80, 6497–6516. [Google Scholar] [CrossRef]
- Towner, J.S.; Pourrut, X.; Albariño, C.G.; Nkoque, C.N.; Bird, B.H.; Grard, G.; Ksiazek, T.G.; Gonzalez, J.P.; Nichol, S.T.; Leroy, E.M. Marburg virus infection detected in a common African bat. PLoS ONE 2007, 2, e764. [Google Scholar] [CrossRef]
- Amman, B.R.; Carroll, S.A.; Reed, Z.D.; Sealy, T.K.; Balinandi, S.; Swanepoel, R.; Kemp, A.; Erickson, B.R.; Comer, J.A.; Campbell, S.; et al. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 2012, 8, e1002877. [Google Scholar] [CrossRef] [PubMed]
- Amman, B.R.; Bird, B.H.; Bakar, I.A.; Bangura, J.; Schuh, A.J.; Johnny, J.; Sealy, T.K.; Conteh, I.; Koroma, A.H.; Foday, I.; et al. Isolation of Angola-like Marburg virus from Egyptian rousette bats from West Africa. Nat. Commun. 2017, 11, 510. [Google Scholar] [CrossRef] [PubMed]
- Changula, K.; Kajihara, M.; Mori-Kajihara, A.; Eto, Y.; Miyamoto, H.; Yoshida, R.; Shigeno, A.; Hang’ombe, B.; Qiu, Y.; Mwizabi, D.; et al. Seroprevalence of filovirus infection of Rousettus aegyptiacus bats in Zambia. J. Infect. Dis. 2018, 218, S312–S317. [Google Scholar] [CrossRef] [PubMed]
- Paweska, J.T.; Jansen van Vuren, P.; Kamp, A.; Storm, N.; Grobbelaar, A.A.; Wiley, M.R.; Palacios, G.; Markotter, W. Marburg virus infection in Egyptian rousette bats, South Africa, 2013–2014. Emerg. Infect. Dis. 2018, 24, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Paweska, J.T.; Storm, N.; Markotter, W.; Di Paola, N.; Wiley, M.R.; Palacios, G.; Jansen van Vuren, P. Shedding of marburgvirus in naturally infected Egyptian rousette bats, South Africa, 2017. Emerg. Infect. Dis. 2020, 26, 3051–3055. [Google Scholar] [CrossRef] [PubMed]
- Kajihara, M.; Hang’ombe, B.M.; Changula, K.; Harima, H.; Isono, M.; Okuya, K.; Yoshida, R.; Mori-Kajihara, A.; Eto, Y.; Orba, Y. Marburgvirus in Egyptian Fruit Bats, Zambia. Emerg. Infect. Dis. 2019, 25, 1530–1577. [Google Scholar] [CrossRef] [PubMed]
- Paweska, J.T.; Jansen van Vuren, P.; Masumu, J.; Leman, P.A.; Grobbelaar, A.A.; Birkhead, M.; Clift, S.; Swanepoel, R.; Kemp, A. Virological and serological findings in Rousettus aegyptiacus experimentally inoculated with Vero cells-adapted Hogan strain of Marburg virus. PLoS ONE 2012, 7, e45479. [Google Scholar] [CrossRef]
- Amman, B.R.; Jones, M.E.B.; Sealy, T.K.; Uebelhoer, L.S.; Schuh, A.J.; Bird, B.H.; Clema-McCry, J.A.D.; Martin, B.E.; Nichol, S.T.; Towner, J.T. Oral shedding of Marburg virus in experimentally infected Egyptian fruit bats (Rousettus aegyptiacus). J. Wildl. Dis. 2015, 51, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Paweska, J.T.; Jansen van Vuren, P.; Fenton, K.A.; Graves, K.; Grobbelaar, A.A.; Moolla, N.; Leman, P.; Weyer, J.; Storm, N.; McCulloch, S.D.; et al. Lack of Marburg virus transmission from experimentally infected to susceptible in-contact Egyptian fruit bats. J. Infect. Dis. 2015, 212, S109–S118. [Google Scholar] [CrossRef]
- Schuh, A.J.; Amman, B.R.; Jones, M.E.B.; Sealy, T.K.; Uebelhoer, L.S.; Spengler, J.R.; Martin, B.E.; Coleman-McCray, J.A.D.; Nichol, S.T.; Towner, J.S. Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat. Commun. 2017, 8, 14446. [Google Scholar] [CrossRef]
- Storm, N.; Jansen van Vuren, P.; Markotter, W.; Paweska, J.T. Virological and serological responses to experimental infection with Marburg virus in Egyptian rousette bats with pre-existing natural humoral immunity. Viruses 2018, 10, 73. [Google Scholar] [CrossRef]
- Amman, B.R.; Schuh, A.J.; Albariño, C.G.; Towner, J.S. Marburg virus persistence on fruit as a plausible route of bat to primate filovirus transmission. Viruses 2021, 13, 2394. [Google Scholar] [CrossRef]
- Martini, G. Marburg virus disease. Clinical syndrome. In Marburg Virus Disease; Martini, G., Siegert, R., Eds.; Springer: New York, NY, USA, 1971; pp. 1–9. [Google Scholar]
- Edmond, R.T.D.; Evans, B.; Bowen, E.T.W.; Lloyd, G. A case of Ebola virus infection. Br. Med. J. 1977, 2, 541–544. [Google Scholar] [CrossRef]
- Rodriguez, L.L.; Roo, A.D.; Guimard, Y.; Trappier, S.G.; Sanchez, A.; Bressler, D.; Williams, A.J.; Rowe, A.K.; Bertolli, J.; Khan, A.S.; et al. Persistence and genetic stability of Ebola virus during the outbreak in Kikwit, Democratic Republic of the Congo, 1995. J. Infect. Dis. 1999, 179, S170–S176. [Google Scholar] [CrossRef]
- Christie, A.; Davies-Wayne, G.J.; Cordier-Lasalle, T.; Blackley, D.J.; Laney, A.S.; Williams, D.E.; Shinde, S.A.; Badio, M.; Lo, T.; Mate, S.E.; et al. Possible sexual transmission of Ebola virus-Liberia, 2015. MMWR 2015, 64, 479–481. [Google Scholar]
- Soka, M.J.; Choi, M.J.; Baller, A.; White, S.; Rogers, E.; Purpura, L.J.; Mahmoud, N.; Wasunna, C.; Massaquoi, M.; Abad, N.; et al. Prevention of sexual transmission of Ebola in Liberia through a national semen testing and counselling programme for survivors: An analysis of Ebola virus RNA results and behavioural data. Lancet Glob. Health 2016, 4, e736–e743. [Google Scholar] [CrossRef]
- Uyeki, T.M.; Erickson, B.R.; Brown, S.; McElroy, A.K.; Cannon, D.; Gibbons, A.; Sealy, T.; Kainulainen, M.H.; Schuh, A.J.; Kraft, C.S.; et al. Ebola virus persistence in semen of male survivors. Clin. Infect Dis. 2016, 62, 1552–1555. [Google Scholar] [CrossRef]
- Subtil, F.; Delaunay, C.; Keita, A.K.; Sow, M.S.; Toure, A.; Leroy, S.; Msellati, P.; Magassouba, N.; Baize, S.; Raoul, H.; et al. Dynamics of Ebola RNA persistence in semen: A report from the postebogui Cohort in Guinea. Clin. Infect Dis. 2017, 64, 1788–1790. [Google Scholar] [CrossRef]
- Sissoko, D.; Duraffour, S.; Kerber, R.; Kolie, J.S.; Beavogui, A.H.; Camara, A.-M.; Colin, G.; Rieger, T.; Oestereich, L.; Pályi, B.; et al. Persistence and clearance of Ebola virus RNA from seminal fluid of Ebola virus disease survivors: A longitudinal analysis and modelling study. Lancet Glob. Health 2017, 5, e80–e88. [Google Scholar] [CrossRef]
- Diallo, B.; Sissoko, D.; Loman, N.J.; Bah, H.A.; Bah, H.; Worrell, M.C.; Conde, I.S.; Sacko, R.; Mesfin, S.; Loua, A.; et al. Resurgence of Ebola virus disease in Guinea linked to a survivor with virus persistence in seminal fluid for more than 500 days. Clin. Infect. Dis. 2016, 63, 1353–1366. [Google Scholar] [CrossRef]
- Riesle-Sbarbaro, S.A.; Wibbelt, G.; Düx, A.; Kouakou, V.; Bokelmann, M.; Hansen-Kant, K.; Kirchoff, N.; Laue, M.; Kromarek, N.; Lander, A.; et al. Selective replication and vertical transmission of Ebola virus in experimentally infected Angolan free-tailed bats. Nat. Commun. 2024, 15, 925. [Google Scholar] [CrossRef]
- Swanepoel, R.; Patricia, A.; Leman, P.A.; Burt, F.J.; Zachariades, N.A.; Braack, L.E.O.; Ksiazek, T.G.; Rollin, P.E.; Zaki, S.R.; Peters, C.J. Experimental inoculation of plants and animals with Ebola. Emerg. Infect. Dis. 1996, 2, 321–325. [Google Scholar] [CrossRef]
- Saéz, A.M.; Weiss, S.; Nowak, K.; Lapeyre, V.; Zimmermann, F.; Düx, A.; Kühl, H.S.; Kaba, M.; Regnaut, S.; Kevin Merkel, K.; et al. Investigating the zoonotic origin of the West African Ebola epidemic. EMBO Mol. Med. 2015, 7, 17–23. [Google Scholar] [CrossRef]
- Kuno, G.; Chang, G.J.J. Biological transmission of arboviruses; re-examination of and new insights into components, mechanism and unique traits as well as their evolutionary trends. Clin. Microbiol. Rev. 2005, 18, 608–637. [Google Scholar] [CrossRef]
- Leitner, W.W.; Wali, T.; Kincaid, R.; Costero-Saint Denis, A. Arthropod vectors and disease transmission: Translational aspects. PLoS Negl. Trop. Dis. 2015, 9, e0004107. [Google Scholar] [CrossRef]
- Martina, B.E.; Barzon, L.; Pijlman, G.P.; Joséde la Fuente, I.; Rizzoli, A.; Wammes, L.J.; Takken, W.; van Rij, R.P.; Papa, A. Human to human transmission of arthropod-borne pathogens. Curr. Opin. Virolol. 2017, 22, 13–21. [Google Scholar] [CrossRef]
- Tortosa, P.; Dsouli, N.; Gomard, Y.; Ramasindrazana, B.; Dick, C.W.; Goodman, S.M. Evolutionary history of Indian Ocean Nycteribiid bat flies mirroring the ecology of their hosts. PLoS ONE 2013, 8, e75215. [Google Scholar] [CrossRef]
- Burazerovic, J.; Orlova, M.; Obradovic, M.; Cirovic, D.; Tomanovic, S. Patterns of abundance and host specificity of bat ectoparasites in the Central Balkans. J. Med. Entomol. 2018, 55, 20–28. [Google Scholar] [CrossRef]
- Loh, E.H.; Zambrana-Torrelio, C.; Olival, K.J.; Bogich, T.L.; Johnson, C.K.; Mazet, J.A.K.; Karesh, W.; Daszak, P. Targeting transmission pathways for emerging zoonotic disease surveillance and control. Vector Borne Zoonotic Dis. 2015, 15, 432–437. [Google Scholar] [CrossRef]
- Fagre, A.C.; Kading, R.C. Can bats serve as reservoirs for arboviruses? Viruses 2019, 11, 215. [Google Scholar] [CrossRef]
- Monath, T.P. Ecology of Marburg and Ebola: Speculation and directions for future research. J. Infect. Dis. 1999, 179, S127–S138. [Google Scholar] [CrossRef] [PubMed]
- Tendu, A.; Hughes, A.C.; Berthet, N.; Wong, G. Viral hyperparasitism in bat ectoparasites: Implications for pathogen maintenance and transmission. Microorganisms 2022, 10, 1230. [Google Scholar] [CrossRef]
- Brauburger, K.; Hume, A.J.; Mühlberger, E.; Judith Olejnik, J. Forty-five years of Marburg virus research. Viruses 2012, 4, 1878–1927. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.; Wang, L.F. Bats and their virome: An important source of emerging viruses capable of infecting humans. Curr. Opin. Virol. 2013, 3, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Olival, K.J.; Hayman, D.T. Filoviruses in bats: Current knowledge and future directions. Viruses 2014, 6, 1759–1788. [Google Scholar] [CrossRef] [PubMed]
- Amman, B.R.; Swanepoel, R.; Nichol, S.T.; Towner, J.S. Ecology of filoviruses. Curr. Top. Microbiol. Immunol. 2017, 411, 23–61. [Google Scholar]
- Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Host and viral traits predict zoonotic spillover from mammals. Nature 2017, 546, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Kunz, C.; Hofmann, H. Some characteristics of the Marburg virus. In Marburg Virus Disease; Martini, G.A., Siegert, R., Eds.; Springer: Berlin, Germany, 1971; pp. 109–111. [Google Scholar]
- Conrad, J.L.; Isaacsony, M.; Smith, E.B.; Wulff, H.; Crees, M.; Geldenhuys, P.; Johnston, J. Epidemiologic investigation of Marburg virus disease, Southern Africa, 1975. Am. J. Trop. Med. Hyg. 1978, 27, 1210–1215. [Google Scholar] [CrossRef]
- Reiter, P.; Turell, M.; Coleman, R.; Miller, B.; Maupin, G.; Liz, J.; Kuehne, A.; Barth, J.; Geisbert, J.; Dohm, D.; et al. Field investigations of an outbreak of Ebola hemorrhagic fever, Kikwit, Democratic Republic of the Congo, 1995: Arthropod studies. J. Infect. Dis. 1999, 179 (Suppl. S1), S148–S154. [Google Scholar] [CrossRef]
- Leirs, H.; Mills, J.N.; Krebs, J.W.; Childs, J.E.; Akaibe, D.; Woollen, N.; Ludwigg, G.; Peters, C.J.; Ksiazek, T.G. Search for the Ebola virus reservoir in the Democratic Republic of the Congo; reflections on vertebrate collection. J. Infect. Dis. 1999, 179 (Suppl. S1), S155–S163. [Google Scholar] [CrossRef]
- Breman, J.G.; Johnson, K.M.; van der Groen, G.; Robbins, C.B.; Szczeniowski, M.V.; Ruti, K.; Webb, P.A.; Meier, F.; Heymann, D.L.; Ebola virus study teams. A search for Ebola virus in animals in the Democratic Republic of the Congo and Cameroon: Ecologic, virologic, and serologic surveys, 1979–1980. J. Infect. Dis. 1999, 179 (Suppl. S1), S39–S147. [Google Scholar] [CrossRef] [PubMed]
- Schuh, A.J.; Amman, B.R.; Apanaskevich, D.A.; Sealy, T.K.; Nichol, S.T.; Towner, J.S. No evidence for the involvement of the argasid tick Ornithodoros faini in the enzootic maintenance of marburgvirus within Egyptian rousette bats Rousettus aegyptiacus. Parasit. Vectors 2016, 9, 28. [Google Scholar] [CrossRef]
- Pawęska, J.T.; Jansen van Vuren, P.; Storm, N.; Markotter, W.; Kemp, A. Vector competence of Eucampsipoda africana (Diptera: Nycteribiidae) for Marburg virus transmission in Rousettus aegyptiacus (Chiroptera: Pteropodidae). Viruses 2021, 13, 2226. [Google Scholar] [CrossRef] [PubMed]
- Jansen van Vuren, P.; Wiley, M.; Palacios, G.; Storm, N.; McCulloch, S.; Markotter, W.; Birkhead, M.; Kemp, A.; Paweska, J.T. Isolation of a novel fusogenic orthoreovirus from Eucampsipoda africana bat flies in South Africa. Viruses 2016, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Jansen van Vuren, P.; Wiley, M.R.; Palacios, G.; Storm, N.; Birkhead, M.; Kemp, A.; Paweska, J.T. Isolation of a novel orthobunyavirus from bat flies (Eucampsipoda africana). J. Gen. Virol. 2017, 98, 935–945. [Google Scholar] [CrossRef]
- Jansen van Vuren, P.; Allam, N.; Wiley, M.R.; Ismail, A.; Storm, N.; Birkhead, M.; Markotter, W.; Palacios, G.; Paweska, J.T. A novel adenovirus isolated from the Egyptian fruit bat in South Africa is closely related to recent isolates from China. Sci. Rep. 2018, 8, 9584. [Google Scholar] [CrossRef]
- Kemenesi, G.; Tóth, G.E.; Mayora-Neto, M.; Scott, S.; Temperton, N.; Wright, E.; Mühlberger, E.; Hume, A.J.; Suder, E.; Zana, B.; et al. Isolation of infectious Lloviu virus from Schreiber’s bats in Hungary. Nat. Commun. 2022, 13, 1706. [Google Scholar] [CrossRef]
- Marshall, A.G. Ecology of Insects Ectoparasitic on Bats. In Ecology of Bats; Kunz, T.H., Ed.; Springer: Boston, MA, USA, 1982. [Google Scholar]
- Eads, D.A.; Hoogland, J.L. Precipitation, climate change and parasitism of prairie dogs by fleas that transmit plague. J. Parasitol. 2017, 103, 309–319. [Google Scholar] [CrossRef]
- Autino, A.G.; Claps, G.L.; Sánchez, M.S.; Barquez, R.M. New records of bat ectoparasites (Diptera, Hemiptera and Siphonaptera) from Northern Argentina. Neotropical. Entomol. 2009, 38, 165–177. [Google Scholar] [CrossRef]
- Takahashi, M.; Misumi, H.; Kawai, K.; Sato, M. The first finding of a bat flea Myodopsylla trisellis (Siphonaptera: Ischnopsyllidae) on Myotis gracilis (Chiroptera: Vespertilionidae) in Japan. Med. Entomol. Zool. 2016, 67, 29–33. [Google Scholar] [CrossRef]
- Hastriter, M.W. Description of two new species of bat fleas of the genus Araeopsylla (Siphonaptera) from Kenya and Madagascar with notes on miscellaneous bat fleas. ZooKeys 2016, 572, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Bendjeddou, M.L.; Loumassine, H.A.; Scheffler, I.; Bouslama, Z.; Amr, Z. Bat ectoparasites (Nycteribiidae, Streblidae, Siphonaptera, Heteroptera, Mesostigmata, Argasidae, and Ixodidae) from Algeria. J. Vector Eco. 2016, 4, 13–23. [Google Scholar] [CrossRef]
- Reeves, W.K.; Beck, J.; Orlova, M.V.; Daly, J.L.; Pippin, K.; Revan, F.; Loftis, A.D. Ecology of bats, their ectoparasites, and associated pathogens on Saint Kitts Island. J. Med. Entomol. 2016, 53, 1218–1225. [Google Scholar] [CrossRef]
- Van der Mescht, L.; Matthee, S. Host range and distribution of small mammal fleas in South Africa, with a focus on species of medical and veterinary importance. Med. Vet. Entomol. 2017, 31, 402–413. [Google Scholar] [CrossRef]
- Holz, P.H.; Lumsden, L.F.; Hufschmid, J. Ectoparasites are unlikely to be a primary cause of population declines of bent-winged bats in southeastern Australia. Int. J. Parasitol. Parasites Wildl. 2018, 7, 423–428. [Google Scholar] [CrossRef]
- Fajri, S.R.; Armiani, S. A prevalence, intensity, and associated of ectoparasitic fauna among cave dwelling bats from Lombok Island West Nusa Tenggara. Prism. Sains J. Pengkaj. Ilmu Dan Pembelajaran Mat. Dan IPA IKIP Mataram 2021, 9, 141–151. [Google Scholar] [CrossRef]
- Lee, H.; Seo, M.-G.; Le, S.-H.; Oem, J.-K.; Kim, S.-H.; Jeong, H.; Kim, Y.; Jheong, W.-H.; Kwon, O.-D.; Kwak, D. Relationship among bats, parasitic bat fleas and associated pathogens in Korea. Parasit. Vectors 2021, 14, 503. [Google Scholar] [CrossRef]
- Nangoy, M.; Ransaleleh, T.; Lengkong, H.; Koneri, R.; Latinne, A.; Kyes, R.C. Diversity of fruit bats (Pteropodidae) and their ectoparasites in Batuputih Nature Tourism Park, Sulawesi, Indonesia. Biodiversitas 2021, 22, 3075–3082. [Google Scholar] [CrossRef]
- Fajri, S.R.; Armiani, S.; Sukri, A.; Maryanto, I. A report of ectoparasites on cave nectar bat (Eonycteris spelaea) among cave-dwelling in Lombok Island, West Nusa Tenggara, Indonesia. Ann. Parasitol. 2022, 68, 833–841. [Google Scholar]
- Vlaschenko, A.; Răileanu, C.; Tauchmann, O.; Muzyka, D.; Bohodist, V.; Filatov, S.; Rodenko, O.; Tovstukha, I.; Silaghi, C. First data on bacteria associated with bat ectoparasites collected in Kharkiv oblast, Northeastern Ukraine. Parasit. Vectors 2022, 15, 443. [Google Scholar] [CrossRef]
- Amarga, K.S.; Hastriter, M.W. Bat fleas of the Philippines, with new distribution records from Bohol and Balabac Islands (Siphonaptera: Ceratophylloidea: Ischnopsyllidae). Taiwan. J. Entomol. Studies. 2022, 7, 14–26. [Google Scholar]
- Orlova, M.V.; Larchanka, A.I.; Dolgova, I.G.; Dziamianchyk, V.V. Unusual findings of fleas (Siphonaptera: Ctenophthalmidae, Ceratophyllidae) on bats (Chiroptera: Vespertilionidae) in Belarus: Case report. Ecologica Montenegrina. 2022, 57, 37–43. [Google Scholar] [CrossRef]
- Orlova, M.V.; Thong, V.D.; Smirnov, D.G.; Zabashta, A.V.; Orlov, O.L. New geographical and host records of bat fleas (Siphonaptera: Ischnopsyllidae) in Russia. Ann. Parasitol. 2022, 68, 121–128. [Google Scholar] [PubMed]
- Bejec, G.A.; Bucol, L.A.; Ancog, A.B.; Pagente, A.C.; Panerio, J.J.M.; Bejec, A.L.N.; Belanizo, J.D.; Tuastomban, D.J.S.; Jose, R.P. Diversity of bat ectoparasites from the caves of selected key biodiversity areas in central Visayas, Philippines. Biodiversita 2023, 24, 1693–1703. [Google Scholar] [CrossRef]
- Amarga, K.S.; Hastriter, M.W. First record of bat flea Thaumapsylla breviceps Rothschild, 1907 (Siphonaptera: Ischnopsyllidae) on Bicol Region, Luzon Island, Philippines Ace. Hist. Nat. Bulg. 2023, 45, 103–106. [Google Scholar] [CrossRef]
- Laudisoit, A.; Leirs, H.; Makundi, R.H.; Van Dongen, S.; Davis, S.; Neerinckx, S.; Deckers, J.; Libois, R. Plague and the human flea, Tanzania. Emerg. Infect. Dis. 2007, 13, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Eisen, R.J.; Borchert, J.N.; Holmes, J.L.; Amatre, G.; Van Wyk, K.; Enscore, R.E.; Babi, N.; Atiku, L.A.; Wilder, A.P.; Venter, S.M.; et al. Early phase transmission of Yersinia pestis by cat fleas (Ctenocephalides felis) and their potential role as vectors in a plague-endemic region of Uganda. Am. J. Trop. Med. Hyg. 2008, 78, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Stenseth, N.C.; Atshabar, B.B.; Begon, M.; Belmain, S.R.; Bertherat, E.; Carniel, E.; Gage, K.L.; Leirs, H.; Rahalison, L. Plague: Past, present, and future. PLoS Med. 2008, 5, e3. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Osorio, C.E.; Zavala-Velázquez, J.E.; León, J.J.A.; Zavala-Castro, J.E. Rickettsia felis as emergent global threat for humans. Emerg. Infect. Dis. 2008, 14, 1019–1023. [Google Scholar] [CrossRef]
- Chomel, B.B.; Boulouis, H.J.; Maruyama, S.; Breitschwerdt, E.B. Bartonella spp. in pets and effect on human health. Emerg. Infect. Dis. 2006, 12, 389–394. [Google Scholar] [CrossRef]
- Billeter, S.A.; Levy, M.G.; Chomel, B.B.; Breitschwerdt, E.B. Vector transmission of Bartonella species with emphasis on the potential for tick transmission. Med. Vet. Entomol. 2008, 22, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rehacek, J. Transmission of tick-borne encephalitis virus by fleas. J. Hyg. Epidemiol. Immunol. 1961, 5, 282–285. [Google Scholar]
- Vobis, M.; Haese, J.D.; Mehlhorn, H.; Mencke, N. The feline leukemia virus (FeLV) and the cat flea (Ctenocephalides felis). Parasitol. Res. 2003, 90 (Suppl. S3), S132–S134. [Google Scholar] [CrossRef] [PubMed]
- Mencke, N.; Vobis, M.; Mehlhorn, H.; Haese, J.D.; Rehagen, M.; Mongold-Gehring, S.; Truyen, U. Transmission of feline calicivirus via the cat flea (Ctenocephalides felis). Parasitol. Res. 2009, 105, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Trebbien, R.; Chriel, M.; Struve, T.; Hjulsager, C.K.; Larsen, G.; Larsen, L.E. Wildlife reservoirs of canine distemper virus resulted in a major outbreak in Danish farmed mink (Neovison vison). PLoS ONE 2014, 9, e85598. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.C.; Edmonds, J.W. Myxomatosis: The transmission of a highly virulent strain of myxoma virus by the European rabbit flea Sphilopsyllus cuniculi (Dale) in the Mallee region of Victoria. J. Hyg. 1977, 79, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Harveya, E.; Roseb, K.; Edena, J.-S.; Lawrenced, A.; Doggettg, S.L.; Edward, C.; Holmesa, C. Identification of diverse arthropod associated viruses in native Australian fleas. Virology 2019, 535, 189–199. [Google Scholar] [CrossRef]
- Villar, M.; Fernández de Mera, I.G.; Artigas-Jerónimo, S.; Contreras, M.; Gortázar, C.; de la Fuente, J. Coronavirus in cat flea: Findings and questions regarding COVID-19. Parasit. Vectors 2020, 13, 409. [Google Scholar] [CrossRef] [PubMed]
- Bitam, I.; Dittmar, K.; Parola, P.; Whiting, M.F.; Raoul, D. Fleas and flea-borne diseases. Int. J. Infect. Dis. 2010, 14, e667–e676. [Google Scholar] [CrossRef]
- Lewis, R.E. Résumé of the Siphonaptera (Insecta) of the world. J. Med. Entomol. 1998, 35, 377–389. [Google Scholar] [CrossRef]
- Rothschild, N.C. Some new Siphonaptera. Novitates Zoologicae. 1907, 14, 329–333. [Google Scholar] [CrossRef]
- Beaucournu, J.-C.; Kock, D. Notes sur les Ischnopsyllidae de la Région Oriental, II. Stations inédites et description d’une espèce nouvelle du genre Lagaropsylla Jordan & Rothschild 1921 (Insecta:Siphonaptera). Senckenberg. Biol. 1994, 73, 65–75. [Google Scholar]
- Hastriter, M.W.; Bush, S.E. Description of Lentistivalius philippinensis, a new species of flea (Siphonaptera, Pygiosyllomorpha, Stivaliidae), and new records of Ascodipterinae (Streblidae) on bats and other small mammals from Luzon, The Philippines. Zookeys 2013, 260, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Segerman, J. Siphonaptera of Southern Africa. In Handbook for the Identification of Fleas; Publications of the South African Institute for Medical Research; South African Institute for Medical Research: Johannesburg, South African, 1995; Volume 57, Available online: https://www.ru.ac.za/media/rhodesuniversity/resources/martin/ischnopsyllidae.html (accessed on 26 June 2024).
- Hinkle, N.C.; Koehler, P.G.; Kern, W.H.; Patterson, R.S. Hematophagous strategies of the cat flea (Siphonaptera: Pulicidae). Fla. Entomol. 1991, 74, 377–385. [Google Scholar] [CrossRef]
- García-Sánchez, A.M.; Zurita, A.; Cutillas, C. Morphometrics as a complementary tool in the differentiation of two cosmopolitan flea species: Ctenocephalides felis and Ctenocephalides canis. Insects 2022, 13, 707. [Google Scholar] [CrossRef] [PubMed]
- Negredo, A.; Palacios, G.; Vázquez-Morón, S.; González, F.; Dopazo, H.; Molero, F.; Juste, J.; Quetglas, J.; Savji, N.; de la Cruz Martínez, M.; et al. Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog. 2011, 7, e1002304. [Google Scholar] [CrossRef]
- Kemenesi, G.; Kurucz, K.; Dallos, B.; Zana, B.; Földes, F.; Boldogh, S.; Görföl, T.; Carroll, M.W.; Jakab, F. Re-emergence of Lloviu virus in Miniopterus schreibersii bats, Hungary, 2016. Emerg. Microbes Infect. 2018, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, T.; Anthony, S.J.; Gbakima, A.; Bird, B.H.; Bangura, J.; Tremeau-Bravard, A.; Belaganahalli, M.N.; Wells, H.; Dhanota, J.K.; Eliza Liang, E.; et al. Discovery of a new ebolavirus (Bombali virus) in molossid bats in Sierra Leone. Nat. Microbiol. 2018, 3, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Karan, L.S.; Makenov, M.T.; Korneev, M.; Sacko, N.; Boumbaly, S.; Yakovlev, S.A.; Kourouma, K.; Bayandin, R.B.; Gladysheva, A.V.; Shipovalov, A.V. Bombali virus in Mops condylurus bats, Guinea. Emerg. Infect. Dis. 2019, 25, 1774–1775. [Google Scholar] [CrossRef]
- Forbes, K.M.; Webala, P.W.; Jääskeläinen, A.J.; Abdurahman, S.; Ogola, J.; Masika, M.M.; Kivistö, I.; Alburkat, H.; Plyusnin, I.; Levanov, L. Bombali virus in Mops condylurus Bat, Kenya. Emerg. Infect. Dis. 2019, 25, 955–957. [Google Scholar] [CrossRef]
- Yang, X.-L.; Tan, C.W.; Anderson, D.E.; Jiang, R.-D.; Li, B.; Zhang, W.; Zhu, Y.; Lim, X.F.; Zhou, P.; Liu, X.-L.; et al. Characterization of a filovirus (Měnglà virus) from Rousettus bats in 355 China. Nat. Microbiol. 2019, 4, 390–395. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Feng, Y.; Zhang, H.; Xu, L.; Yang, W.; Zhang, Y.; Li, X.; Tu, C. Filovirus RNA in fruit bats, China. Emerg. Infect. Dis. 2015, 21, 1675–1677. [Google Scholar] [CrossRef]
- Yang, X.-L.; Zhang, Y.-Z.; Jiang, R.-D.; Guo, H.; Zhang, W.; Li, B.; Wang, N.; Wang, L.; Waruhiu, C.; Zhou, J.-H. Genetically diverse filoviruses in Rousettus and Eonycteris spp. bats, China, 2009 and 2015. Emerg. Infect. Dis. 2017, 23, 482–486. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Hu, T.; Yan, X.; Zhang, F.; Tu, C. Detection and characterization of a novel bat filovirus (Dehong virus, DEHV) in fruit bats. bioRxiv 2023. [Google Scholar] [CrossRef]
- Shi, M.; Xian-Dan, L.; Xiao, C.; Jun-Hua, T.; Liang-Jun, C.; Kun, L.; Wen, W.; John-Sebastian, E.; Jin-Jin, S.; Li, L.; et al. The evolutionary history of vertebrate RNA viruses. Nature 2018, 556, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Hierweger, M.H.; Koch, M.C.; Rupp, M.; Maes, P.; Di Paola, N.; Bruggmann, R.; Kuhn, J.H.; Schmidt-Posthaus, H.; Seuberlich, T. Novel filoviruses, hantavirus, and rhabdovirus in freshwater fish, Switzerland, 2017. Emerg. Infect. Dis. 2021, 27, 3082–3091. [Google Scholar] [CrossRef] [PubMed]
- Seuberlich, T.; Kuhn, J.H.; Schmidt-Posthaus, H. Near-complete genome sequence of Lötschberg virus (Mononegavirales: Filoviridae) identified in European perch (Perca fluviatilis Linnaeus, 1758). Microbiol. Res. Announ. 2023, 12, e00028-23. [Google Scholar] [CrossRef]
- Geoghegan, J.L.; Di Giallonardo, F.; Wille, M.; Ortiz-Baez, A.S.; Costa, V.A.; Ghaly, T.; Mifsud, J.C.O.; Turnbull, O.M.H.; Bellwood, D.R.; Williamson, J.E.; et al. Virome composition in marine fish revealed by metatranscriptomics. Virus Evol. 2021, 7, veab005. [Google Scholar] [CrossRef]
- Horie, M. Identification of a novel filovirus in a common lancehead (Bothrops atrox Linnaeus, 1758). J. Vet. Med. Sci. 2021, 83, 1485–1488. [Google Scholar] [CrossRef]
- Leendertz, S.A.J.; Gogarten, F.F.; Düx, A.; Sebastien, C.-S.; Leendertz, F.H. Assessing the evidence supporting fruit bats as the primary reservoirs for Ebola viruses. EcoHealth 2016, 13, 18–25. [Google Scholar] [CrossRef]
- Leendertz, S.A.J. Testing new hypotheses regarding ebolavirus reservoirs. Viruses 2016, 8, 30. [Google Scholar] [CrossRef]
- Caron, A.; Bourgarel, M.; Cappelle, J.; Liégeois, F.; De Nys, H.M.; Roger, F. Ebola virus maintenance: If not (only) bats, what else? Viruses 2018, 10, 549. [Google Scholar] [CrossRef] [PubMed]
- Di Paola, N.; Sanchez-Lockhart, M.; Zeng, X.; Kuhn, J.H.; Palacios, G. Viral genomics in Ebola virus research. Nat. Rev. 2020, 18, 365–378. [Google Scholar] [CrossRef]
- Jones, M.E.; Schuh, A.J.; Amman, B.R.; Sealy, T.K.; Zaki, S.R.; Nichol, S.T.; Towner, J.S. Experimental inoculation of Egyptian Rousette bats (Rousettus aegyptiacus) with viruses of the ebolavirus and marburgvirus genera. Viruses 2015, 7, 3420–3442. [Google Scholar] [CrossRef] [PubMed]
- Paweska, J.T.; Storm, N.; Grobbelaar, A.A.; Markotter, W.; Kemp, A.; Jansen van Vuren, P. Experimental inoculation of Egyptian fruit bats (Rousettus aegyptiacus) with Ebola virus. Viruses 2016, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Balasuriya, U.B.; Go, Y.Y.; MacLachlan, N.J. Equine arteritis virus. Vet. Microbiol. 2013, 167, 93–122. [Google Scholar] [CrossRef]
- Declan, B. What first case of sexually transmitted Ebola means for public health. Nature 2015, 10, 18584. [Google Scholar]
- Salam, A.P.; Horby, P.W. The breadth of viruses in human semen. Emerg. Infect. Dis. 2017, 23, 1922–1924. [Google Scholar] [CrossRef]
- Feldmann, H. Virus in semen and the risk of sexual transmission. N. Engl. J. Med. 2018, 378, 1440–1441. [Google Scholar] [CrossRef] [PubMed]
- Counotte, M.J.; Kim, C.R.; Wang, J.; Bernstein, K.; Deal, C.D.; Broutet, N.J.N.; Low, N. Sexual transmission of Zika virus and other flaviviruses: A living systematic review. PLoS Med. 2018, 15, e1002611. [Google Scholar] [CrossRef]
- He, W.; Liu, X.; Feng, L.; Xiong, S.; Li, Y.; Chen, L.; Li, Y.; Wang, G.; Li, D.; Fu, B. Impact of SARS-CoV-2 on male reproductive health: A review of the literature on male reproductive involvement in COVID-19. Front. Med. 2020, 7, 594364. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, leydig and sertoli cells. Cells 2020, 9, 920. [Google Scholar] [CrossRef] [PubMed]
- Blitvich, B.J.; Magalhaes, T.; Laredo-Tiscareño, S.V.; Foy, B.D. Sexual transmission of arboviruses: A systematic review. Viruses 2020, 12, 933. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.I.; Yu, J.; Li, H. Implications of RNA viruses in the male reproductive tract: An outlook on SARS-CoV-2. Front. Microbiol. 2021, 12, 783963. [Google Scholar] [CrossRef] [PubMed]
- Calvet, G.A.; Kara, E.; Gonsalves, L.; Seuc, A.H.; de Oliveira, R.; Thwin, S.; de León, R.G.P.; Gámez, M.C.; Peña, G.M.; Pendás, B.V.; et al. Viral shedding of SARS-CoV-2 in body fluids associated with sexual activity: A systematic review and meta-analysis. BMJ Open 2024, 14, e073084. [Google Scholar] [CrossRef] [PubMed]
- Schindell, B.G.; Webb, A.L.; Kindrachuk, J. Persistence and sexual transmission of filoviruses. Viruses 2018, 10, e683. [Google Scholar] [CrossRef]
- Hayman, D.T. Biannual birth pulses allow filoviruses to persist in bat populations. Proc. Biol. Sci. 2015, 282, 20142591. [Google Scholar] [CrossRef]
- Schuh, A.J.; Amman, B.R.; Sealy, T.K.; Spengler, J.R.; Nichol, S.T.; Towner, J.S. Egyptian rousette bats maintain long-term protective immunity against Marburg virus infection despite diminished antibody levels. Sci. Rep. 2017, 7, 8763. [Google Scholar] [CrossRef]
- Goldberg, T.L.; Bennett, A.J.; Kityo, R.; Kuhn, J.H.; Chapman, C.A. Kanyawara virus: A novel rhabdovirus infecting newly discovered nycteribiid bat flies infesting previously unknown pteropodid bats in Uganda. Sci. Rep. 2017, 7, 5287. [Google Scholar] [CrossRef]
- Szentiványi, T.; Christe, P.; Glaizot, O. Bat flies and their microparasites: Current knowledge and distribution. Front. Vet. Sci. 2019, 6, 115. [Google Scholar] [CrossRef]
- Bennett, A.J.; Paskey, A.C.; Kuhn, J.H.; Bishop-Lilly, K.A.; Goldberg, T.L. Diversity, transmission, and cophylogeny of ledanteviruses (Rhabdoviridae: Ledantevirus) and nycteribiid bat flies parasitizing Angolan soft-furred fruit bats in Bundibugyo District, Uganda. Microorganisms 2020, 8, 750. [Google Scholar] [CrossRef] [PubMed]
- Kamani, J.; Gonza’ lez-Miguel, J.; Msheliza, E.G.; Goldberg, T.J. Straw-colored fruit bats (Eidolon helvum) and their bat flies (Cyclopodia greefi) in Nigeria host viruses with multifarious modes of transmission. Vector-Borne Zoonotic Dis. 2022, 22, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Feng, Y.; Chen, X.; Shi, M.; Fu, S.; Yang, W.; Liu, W.J.; Gao, G.F.; Liang, G. Virome of Bat-Infesting Arthropods: Highly Divergent Viruses in Different Vectors. J. Virol. 2022, 96, e01464-21. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.L.; Houk, E.J.; Kramer, L.D.; Reeves, W.C. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu. Rev. Entomol. 1983, 28, 229–262. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-J.S.; Higgs, S.; Vanlandingham, D.L. Arbovirus-mosquito vector-host interactions and the impact on transmission and disease pathogenesis of arboviruses. Front. Microbiol. 2019, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Mullens, B.A.; Gerry, A.C.; Lysyk, T.J.; Schmidtmann, E.T. Environmental effects on vector competence and virogenesis of bluetongue virus in Culicoides: Interpreting laboratory data in a field context. Vet. Ital. 2004, 40, 160–166. [Google Scholar] [PubMed]
- Eisen, R.J.; Eisen, L.; Gage, K.L. Studies of vector competency and efficiency of North American fleas for Yersinia pestis: State of the field and future research needs. J. Med. Entomol. 2009, 46, 737–744. [Google Scholar] [CrossRef]
- Paweska, J.T.; Venter, G.J.; Mellor, P. Vector competence of South African Culicoides species for bluetongue virus serotype 1(BTV-1) with special reference to the effect of temperature on the rate of virus replication in C. imicola and C. bolitinos. Med. Vet. Entomol. 2002, 16, 10–21. [Google Scholar] [CrossRef]
- Winokur, O.C.; Main, B.J.; Nicholson, J.; Barker, C.M. Impact of temperature on the extrinsic incubation period of Zika virus in Aedes aegypti. PLoS Negl. Trop. Dis. 2020, 14, e0008047. [Google Scholar] [CrossRef]
- Merwaiss, F.; Filomatori, C.V.; Susuki, Y.; Bardossy, E.S.; Alvarez, D.E.; Saleh, M.-C. Chikungunya virus replication rate determines the capacity of crossing tissue barriers in mosquitoes. J. Virol. 2019, 5, e01956-20. [Google Scholar] [CrossRef]
- Rodríguez, Z.; Moreira, E.C.; Linardi, P.M.; Santos, H.A. Notes on the bat flea Hormopsylla fosteri (Siphonaptera: Ischnopsyllidae) infesting Molossops abrasus (Chiroptera). Mem. Inst. Oswaldo Cruz Rio De Janeiro. 1999, 94, 727–728. [Google Scholar] [CrossRef] [PubMed]
- Cadiergues, M.-C.; Joubert, C.; Franc, M. A comparison of jump performances of the dog flea, Ctenocephalides canis (Curtis, 1826) and the cat flea, Ctenocephalides felis felis (Bouché, 1835). Vet. Parasitol. 2000, 92, 239–241. [Google Scholar] [CrossRef]
- Bossard, R.L. Speed and reynolds number of jumping cat fleas (Siphonaptera: Pulicidae). J. Kansas Entomol. Soc. 2002, 75, 52–54. [Google Scholar]
- Krasnov, B.R.; Shenbrot, G.I.; Khokhlova, I.S.; Poulin, R. Relationships between parasite abundance and the taxonomic distance among a parasite’s host species: An example with fleas parasitic on small mammals. Int. J. Parasitol. 2004, 34, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Khokhlova, I.S.; Fielden, L.J.; Degen, A.A.; Krasnov, B.R. Feeding performance of fleas on different host species: Is phylogenetic distance between hosts important? Parasitology 2012, 139, 60–68. [Google Scholar] [CrossRef]
- Ramanantsalama, R.V.; Andrianarimisa, A.; Raselimanana, A.P.; Goodman, S.M. Rates of hematophagous ectoparasites consumption during grooming by an endemic Madagascar fruit bat. Parasit. Vectors 2018, 11, 330. [Google Scholar] [CrossRef]
- Rust, M.K. The biology and ecology of cat fleas and advancements in their pest management: A review. Insects 2017, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Noli, C.; Foster, A.; Rosenkrantz, W. Flea Bite Allergy. In Veterinary Allergy; John Wiley & Sons, Ltd.: West Sussex, UK, 2014; p. 252. [Google Scholar]
- Weber, N.; Nagy, M.; Markotter, W.; Schaer, J.; Puechmaille, S.J.; Sutton, J.; Dávalos, L.M.; Dusabe, M.-C.; Ejotre, I.; Fenton, M.B.; et al. Robust evidence for bats as reservoir hosts is lacking in most African virus studies: A review and call to optimize sampling and conserve bats. Biol. Lett. 2023, 19, 20230358. [Google Scholar] [CrossRef]
Sex/No. Tested | Measurements (µm) | |||
---|---|---|---|---|
Total Length | Abdomen Length | Abdomen Width | ||
F/15 | Mean | 849.13 | 474.24 | 411.88 |
SD | 130.75 | 114.92 | 41.37 | |
SE | 33.76 | 29.67 | 10.68 | |
Range | 879.13–1162.28 | 349.59–755.62 | 361.33–477.72 | |
M/26 | Mean | 800.21 | 445.06 | 355.29 |
SD | 65.31 | 104.59 | 23.85 | |
SE | 12.81 | 20.51 | 4.68 | |
Range | 645.25–937.64 | 329.62–893.0 | 318.57–404.49 |
Bat/Flea Count | No. Bats Captured | No. Females | No. Males |
---|---|---|---|
Total no. bats captured | 109 | 85 | 24 |
Total no. fleas | 478 | 376 | 102 |
Infestation rate (%) | 97.2 | 97.6 | 95.8 |
Mean ± SD a (no. fleas/bat) | 4.46 ± 3.52 | 4.47 ± 3.63 | 4.43 ± 3.27 |
Range (no. fleas/bat) | 0–20 | 0–20 | 0–14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawęska, J.T.; Storm, N.; Jansen van Vuren, P.; Markotter, W.; Kemp, A. Attempted Transmission of Marburg Virus by Bat-Associated Fleas Thaumapsylla breviceps breviceps (Ischnopsyllidae: Thaumapsyllinae) to the Egyptian Rousette Bat (Rousettus aegyptiacus). Viruses 2024, 16, 1197. https://doi.org/10.3390/v16081197
Pawęska JT, Storm N, Jansen van Vuren P, Markotter W, Kemp A. Attempted Transmission of Marburg Virus by Bat-Associated Fleas Thaumapsylla breviceps breviceps (Ischnopsyllidae: Thaumapsyllinae) to the Egyptian Rousette Bat (Rousettus aegyptiacus). Viruses. 2024; 16(8):1197. https://doi.org/10.3390/v16081197
Chicago/Turabian StylePawęska, Janusz T., Nadia Storm, Petrus Jansen van Vuren, Wanda Markotter, and Alan Kemp. 2024. "Attempted Transmission of Marburg Virus by Bat-Associated Fleas Thaumapsylla breviceps breviceps (Ischnopsyllidae: Thaumapsyllinae) to the Egyptian Rousette Bat (Rousettus aegyptiacus)" Viruses 16, no. 8: 1197. https://doi.org/10.3390/v16081197
APA StylePawęska, J. T., Storm, N., Jansen van Vuren, P., Markotter, W., & Kemp, A. (2024). Attempted Transmission of Marburg Virus by Bat-Associated Fleas Thaumapsylla breviceps breviceps (Ischnopsyllidae: Thaumapsyllinae) to the Egyptian Rousette Bat (Rousettus aegyptiacus). Viruses, 16(8), 1197. https://doi.org/10.3390/v16081197