Spleen Swabs for Sensitive and High-Throughput Detection of African Swine Fever Virus by Real-Time PCR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Origins
2.2. Preparation of Homogenates and Swabs from Spleen Tissue Samples
2.3. Real-Time PCR Detection of ASFV Genomic DNA, β-Actin and Armored Enterovirus RNA
2.4. Virus Isolation
2.5. Virus Titration
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penrith, M.L. Current status of African swine fever. CABI Agric. Biosci. 2020, 1, 11. [Google Scholar] [CrossRef]
- Ruiz-Saenz, J.; Diaz, A.; Bonilla-Aldana, D.K.; Rodríguez-Morales, A.J.; Martinez-Gutierrez, M.; Aguilar, P.V. African swine fever virus: A re-emerging threat to the swine industry and food security in the Americas. Front. Microbiol. 2022, 13, 1011891. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Madden, D.W.; Wilson, W.C.; Trujillo, J.D.; Richt, J.A. African Swine Fever Virus: An Emerging DNA Arbovirus. Front. Vet. Sci. 2020, 7, 215. [Google Scholar] [CrossRef] [PubMed]
- Adedeji, A.J.; Luka, P.D.; Atai, R.B.; Olubade, T.A.; Hambolu, D.A.; Ogunleye, M.A.; Muwanika, V.B.; Masembe, C. First-Time Presence of African Swine Fever Virus Genotype II in Nigeria. Microbiol. Resour. Announc. 2021, 10, e0035021. [Google Scholar] [CrossRef] [PubMed]
- Olševskis, E.; Guberti, V.; Serzants, M.; Westergaard, J.; Gallardo, C.; Rodze, I.; Depner, K. African swine fever virus introduction into the EU in 2014: Experience of Latvia. Res. Vet. Sci. 2016, 105, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Le, V.P.; Jeong, D.G.; Yoon, S.W.; Kwon, H.M.; Trinh, T.B.N.; Nguyen, T.L.; Bui, T.T.N.; Oh, J.; Kim, J.B.; Cheong, K.M.; et al. Outbreak of African Swine Fever, Vietnam. Emerg. Infect. Dis. 2019, 25, 1433–1435. [Google Scholar] [CrossRef] [PubMed]
- Sun, E.; Huang, L.; Zhang, X.; Zhang, J.; Shen, D.; Zhang, Z.; Wang, Z.; Huo, H.; Wang, W.; Huangfu, H.; et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg. Microbes Infect. 2021, 10, 2183–2193. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gonzales, W.; Moreno, C.; Duran, U.; Henao, N.; Bencosme, M.; Lora, P.; Reyes, R.; Núñez, R.; De Gracia, A.; Perez, A.M. African swine fever in the Dominican Republic. Transbound. Emerg. Dis. 2021, 68, 3018–3019. [Google Scholar] [CrossRef] [PubMed]
- African Swine Fever (ASF)—Situation Report 9. Available online: https://www.woah.org/app/uploads/2022/04/asf-report9.pdf (accessed on 15 August 2024).
- Gervasi, V.; Marcon, A.; Bellini, S.; Guberti, V. Evaluation of the Efficiency of Active and Passive Surveillance in the Detection of African Swine Fever in Wild Boar. Vet. Sci. 2019, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Cappai, S.; Rolesu, S.; Feliziani, F.; Desini, P.; Guberti, V.; Loi, F. Standardized Methodology for Target Surveillance against African Swine Fever. Vaccines 2020, 8, 723. [Google Scholar] [CrossRef]
- WOAH. Addressing African Swine Fever: Protocols and Guidelines for Laboratory Diagnosis; WOAH: Paris, France, 2024; 38p. [Google Scholar] [CrossRef]
- Greig, A. Pathogenesis of African swine fever in pigs naturally exposed to the disease. J. Comp. Pathol. 1972, 82, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Blome, S.; Gabriel, C.; Beer, M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013, 173, 122–130. [Google Scholar] [CrossRef]
- Wilkinson, P.J.; Lawman, M.J.P.; Johnston, R.S. African Swine Fever in Malta, 1978. Vet. Rec. 1980, 106, 94–97. [Google Scholar] [CrossRef]
- Nurmoja, I.; Schulz, K.; Staubach, C.; Sauter-Louis, C.; Depner, K.; Conraths, F.J.; Viltrop, A. Development of African swine fever epidemic among wild boar in Estonia—Two different areas in the epidemiological focus. Sci. Rep. 2017, 7, 12562. [Google Scholar] [CrossRef]
- Zani, L.; Forth, J.H.; Forth, L.; Nurmoja, I.; Leidenberger, S.; Henke, J.; Carlson, J.; Breidenstein, C.; Viltrop, A.; Hoper, D.; et al. Deletion at the 5′-end of Estonian ASFV strains associated with an attenuated phenotype. Sci. Rep. 2018, 8, 6510. [Google Scholar] [CrossRef]
- Rowlands, R.J.; Michaud, V.; Heath, L.; Hutchings, G.; Oura, C.; Vosloo, W.; Dwarka, R.; Onashvili, T.; Albina, E.; Dixon, L.K. African swine fever virus isolate, Georgia, 2007. Emerg. Infect. Dis. 2008, 14, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Tignon, M.; Gallardo, C.; Iscaro, C.; Hutet, E.; Van der Stede, Y.; Kolbasov, D.; De Mia, G.M.; Le Potier, M.F.; Bishop, R.P.; Arias, M.; et al. Development and inter-laboratory validation study of an improved new real-time PCR assay with internal control for detection and laboratory diagnosis of African swine fever virus. J. Virol. Methods 2011, 178, 161–170. [Google Scholar] [CrossRef]
- Zsak, L.; Borca, M.V.; Risatti, G.R.; Zsak, A.; French, R.A.; Lu, Z.; Kutish, G.F.; Neilan, J.G.; Callahan, J.D.; Nelson, W.M.; et al. Preclinical diagnosis of African swine fever in contact-exposed swine by a real-time PCR assay. J. Clin. Microbiol. 2005, 43, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Moniwa, M.; Clavijo, A.; Li, M.; Collignon, B.; Kitching, P.R. Performance of a foot-and-mouth disease virus reverse transcription polymerase chain reaction with amplification controls between three real-time instruments. J. Vet. Diagn. Investig. 2007, 19, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Oleksiewicz, M.B.; Donaldson, A.I.; Alexandersen, S. Development of a novel real-time RT-PCR assay for quantitation of foot-and-mouth disease virus in diverse porcine tissues. J. Virol. Methods 2001, 92, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Goonewardene, K.B.; Chung, C.J.; Goolia, M.; Blakemore, L.; Fabian, A.; Mohamed, F.; Nfon, C.; Clavijo, A.; Dodd, K.A.; Ambagala, A. Evaluation of oral fluid as an aggregate sample for early detection of African swine fever virus using four independent pen-based experimental studies. Transbound. Emerg. Dis. 2021, 68, 2867–2877. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, A.L.; Bustos, M.J.; de Leon, P. Methods for growing and titrating African swine fever virus: Field and laboratory samples. Curr. Protoc. Cell Biol. 2011, 53, 26.14.1–26.14.25. [Google Scholar] [CrossRef] [PubMed]
- Sidstedt, M.; Rådström, P.; Hedman, J. PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal. Bioanal. Chem. 2020, 412, 2009–2023. [Google Scholar] [CrossRef]
- Hedman, J.; Knutsson, R.; Ansell, R.; Rådström, P.; Rasmusson, B. Pre-PCR processing in bioterrorism preparedness: Improved diagnostic capabilities for laboratory response networks. Biosecur. Bioterrorism 2013, 11 (Suppl. 1), S87–S101. [Google Scholar] [CrossRef] [PubMed]
- Errington, J.; Jones, R.M.; Sawyer, J. Use of tissue swabbing as an alternative to tissue dissection and lysis prior to nucleic acid extraction and real-time polymerase chain reaction detection of Bovine viral diarrhea virus and Porcine reproductive and respiratory syndrome virus. J. Vet. Diagn. Investig. 2014, 26, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, P.D.; Davis, R.J.; Gu, X.; Frost, M. Application of high-throughput systems for the rapid detection of DNA and RNA viruses during the Australian equine influenza outbreak. Aust. Vet. J. 2011, 89 (Suppl. 1), 38–39. [Google Scholar] [CrossRef] [PubMed]
- Okwasiimire, R.; Nassali, A.; Ndoboli, D.; Ekakoro, J.E.; Faburay, B.; Wampande, E.; Havas, K.A. Comparison of diaphragm meat juice and muscle swab samples to spleen and spleen swab samples for the detection of African swine fever viral nucleic acid. J. Vet. Diagn. Investig. 2023, 35, 145–152. [Google Scholar] [CrossRef] [PubMed]
- National Veterinary Services Laboratories. NAHLN Sample Chart for Regulatory Submitters; Document NVSL-WI-0729.09; USDA: Washington, DC, USA, 2024. Available online: https://www.aphis.usda.gov/sites/default/files/nahln-sample-chart-regulatory-submitters.pdf (accessed on 15 August 2024).
- Goonewardene, K.B.; Onyilagha, C.; Goolia, M.; Le, V.P.; Blome, S.; Ambagala, A. Superficial Inguinal Lymph Nodes for Screening Dead Pigs for African Swine Fever. Viruses 2022, 14, 83. [Google Scholar] [CrossRef]
Strain | Sample | dpi | Tignon-ASFV | Zsak-ASFV | Moniwa-B-Actin | |||
---|---|---|---|---|---|---|---|---|
Homogenate | Swab | Homogenate | Swab | Homogenate | Swab | |||
ASFV Malta’78 | 1 | 3 | 23.15 | 23.47 | 20.78 | 21.13 | 21.08 | 18.32 |
2 | 4 | 19.53 | 18.21 | 17.26 | 17.08 | 21.66 | 20.64 | |
3 | 5 | 18.35 | 17.80 | 16.60 | 15.98 | 22.24 | 20.86 | |
4 | 3 | 28.28 | 27.74 | 25.74 | 25.43 | 21.40 | 20.44 | |
5 | 5 | 17.55 | 16.68 | 15.76 | 15.17 | 22.72 | 21.62 | |
6 | 2 | ND | 37.21 | 37.19 | 35.08 | 22.23 | 19.18 | |
7 | 4 | 20.05 | 19.39 | 18.25 | 17.42 | 22.13 | 21.47 | |
8 | 1 | ND | ND | ND | ND | 22.09 | 19.30 | |
9 | 4 | 18.83 | 18.36 | 16.39 | 16.29 | 22.10 | 20.72 | |
10 | 1 | ND | 39.88 | ND | 39.28 | 21.66 | 20.00 | |
11 | 3 | 27.92 | 26.40 | 25.52 | 24.32 | 21.11 | 20.04 | |
12 | 2 | ND | ND | ND | ND | 22.04 | 19.79 | |
13 | 1 | ND | ND | ND | ND | 21.07 | 20.25 | |
14 | 4 | 20.16 | 19.24 | 18.17 | 17.25 | 22.34 | 21.53 | |
15 | 3 | 27.43 | 27.50 | 25.04 | 24.88 | 22.97 | 19.95 | |
ASFV Georgia 2007/1 | 16 | 18 | 36.46 | 32.95 | 35.36 | 31.24 | 19.70 | 17.57 |
17 | 18 | 22.97 | 22.57 | 21.53 | 21.00 | 20.28 | 17.33 | |
18 | 17 | 16.66 | 16.58 | 15.85 | 16.01 | 22.05 | 21.67 | |
19 | 16 | 18.33 | 17.73 | 17.12 | 17.16 | 22.71 | 21.17 | |
20 | 6 | 17.64 | 20.48 | 17.06 | 19.20 | 23.19 | 22.85 | |
21 | 11 | 18.76 | 20.92 | 17.90 | 19.32 | 23.16 | 22.79 | |
22 | 18 | 19.32 | 20.36 | 18.33 | 19.08 | 23.32 | 22.53 | |
23 | 10 | 19.07 | 20.01 | 17.88 | 18.69 | 24.06 | 23.28 | |
24 | 18 | 17.83 | 18.89 | 16.76 | 17.45 | 23.26 | 21.69 | |
25 | 18 | 25.09 | 24.96 | 24.46 | 24.85 | 22.26 | 19.20 | |
26 | 22 | 17.37 | 19.14 | 16.63 | 17.73 | 23.87 | 23.34 | |
27 | 25 | ND | 35.21 | ND | 34.76 | 22.35 | 21.29 | |
28 | 25 | ND | 35.64 | ND | 33.74 | 21.68 | 21.12 | |
29 | 22 | 17.81 | 18.87 | 17.30 | 18.05 | 25.13 | 24.77 | |
30 | 25 | ND | 37.13 | ND | 36.25 | 21.22 | 20.53 | |
31 | 25 | ND | 37.54 | ND | 36.38 | 22.01 | 20.15 | |
32 | 25 | 18.44 | 19.81 | 17.27 | 18.66 | 25.57 | 22.72 | |
ASFVE stonia/2014 | 33 | 5 | ND | ND | ND | 38.13 | 22.62 | 19.01 |
34 | 11 | ND | ND | ND | ND | 22.55 | 20.00 | |
35 | 22 | ND | ND | 39.47 | ND | 22.06 | 20.93 | |
36 | 37 | ND | ND | ND | ND | 22.18 | 21.48 | |
37 | 6 | 34.18 | 34.13 | 32.05 | 31.71 | 22.17 | 20.16 | |
38 | 20 | 31.89 | 30.40 | 29.99 | 27.76 | 22.23 | 19.94 | |
39 | 26 | 37.80 | 36.66 | 35.39 | 33.22 | 22.42 | 20.40 | |
40 | 33 | 32.96 | 33.08 | 30.66 | 30.47 | 21.82 | 19.69 | |
41 | 1 | 19.27 | 20.48 | 17.25 | 17.63 | 21.79 | 20.25 | |
42 | 14 | 19.69 | 19.04 | 17.30 | 16.95 | 22.59 | 21.69 | |
43 | 30 | 18.68 | 17.14 | 16.65 | 15.23 | 23.90 | 22.93 | |
44 | 39 | 18.99 | 19.25 | 16.91 | 16.86 | 23.18 | 21.47 | |
45 | 2 | 19.82 | 18.85 | 17.63 | 16.62 | 22.41 | 21.03 | |
46 | 15 | 19.73 | 18.55 | 17.69 | 16.25 | 23.10 | 21.46 | |
47 | 27 | 19.39 | 18.61 | 17.50 | 16.95 | 22.87 | 21.03 | |
48 | 34 | 19.28 | 18.42 | 17.73 | 16.95 | 24.22 | 23.38 | |
49 | 3 | 17.81 | 17.57 | 16.19 | 15.84 | 23.48 | 22.94 | |
50 | 13 | 18.96 | 18.02 | 17.13 | 16.31 | 23.52 | 23.23 | |
51 | 29 | 17.29 | 17.85 | 15.70 | 15.66 | 24.07 | 22.98 | |
52 | 36 | 17.31 | 17.26 | 15.44 | 15.34 | 24.22 | 23.56 | |
Percent (%) Detection | 75.0 | 86.5 | 76.9 | 88.5 | 100.0 | 100.0 |
Strain | Sample | Tignon-ASFV | Zsak-ASFV | Moniwa-B-Actin | |||
---|---|---|---|---|---|---|---|
Homogenate | Swab | Homogenate | Swab | Homogenate | Swab | ||
ASFV Georgia 2007/1 | 16 | 38.27 | 33.63 | 35.06 | 30.88 | 19.36 | 18.46 |
17 | 22.41 | 22.62 | 21.34 | 20.66 | 19.91 | 18.22 | |
18 | 16.38 | 16.55 | 16.03 | 15.84 | 21.36 | 21.44 | |
26 | 17.97 | 18.88 | 17.02 | 17.73 | 23.07 | 22.83 | |
27 | ND | 34.07 | ND | 34.04 | 21.13 | 21.96 | |
28 | ND | 36.51 | 38.39 | 32.77 | 20.45 | 20.46 | |
29 | 19.02 | 18.88 | 18.00 | 17.92 | 24.24 | 24.07 | |
30 | 39.59 | 38.03 | ND | 34.56 | 19.98 | 20.46 | |
31 | 39.53 | 36.42 | ND | 37.16 | 20.52 | 21.04 | |
32 | 16.02 | 20.26 | 15.635 | 19.04 | 24.75 | 23.22 | |
Percent (%) Detection | 80.0 | 100.0 | 70.0 | 100.0 | 100.0 | 100.0 |
Sample | Tignon-ASF | Titer-Log (TCID50/mL) | ||
---|---|---|---|---|
Homogenate | Swab | Homogenate | Swab | |
11 | 27.92 | 26.40 | 4.10 | 4.87 |
18 | 16.66 | 16.58 | 7.53 | 8.65 |
38 | 31.89 | 30.40 | 3.97 | 4.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cafariello, C.; Goonewardene, K.; Chung, C.J.; Ambagala, A. Spleen Swabs for Sensitive and High-Throughput Detection of African Swine Fever Virus by Real-Time PCR. Viruses 2024, 16, 1316. https://doi.org/10.3390/v16081316
Cafariello C, Goonewardene K, Chung CJ, Ambagala A. Spleen Swabs for Sensitive and High-Throughput Detection of African Swine Fever Virus by Real-Time PCR. Viruses. 2024; 16(8):1316. https://doi.org/10.3390/v16081316
Chicago/Turabian StyleCafariello, Christopher, Kalhari Goonewardene, Chungwon J. Chung, and Aruna Ambagala. 2024. "Spleen Swabs for Sensitive and High-Throughput Detection of African Swine Fever Virus by Real-Time PCR" Viruses 16, no. 8: 1316. https://doi.org/10.3390/v16081316
APA StyleCafariello, C., Goonewardene, K., Chung, C. J., & Ambagala, A. (2024). Spleen Swabs for Sensitive and High-Throughput Detection of African Swine Fever Virus by Real-Time PCR. Viruses, 16(8), 1316. https://doi.org/10.3390/v16081316