The Spleen Virome of Australia’s Endemic Platypus Is Dominated by Highly Diverse Papillomaviruses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Ethical Consideration
2.2. Virus Enrichment and Virus Nucleic Acid Extraction
2.3. Next-Generation Sequencing
2.4. Bioinformatic Analyses
2.5. Functional Annotations
2.6. Comparative Genomics and Phylogenetic Analyses
3. Results
3.1. Evidence of Highly Divergent Papillomaviruses
3.2. Novel Parvoviruses in Platypus
3.3. Detected Circular DNA Virus
3.4. Unclassified Tombusviridae
3.5. Unclassified Nodamuvirales
3.6. Genomoviridae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warren, W.; Hillier, L.; Marshall Graves, J.; Birney, E.; Ponting, C.; Grützner, F.; Belov, K.; Miller, W.; Clarke, L.; Chinwalla, A.; et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature 2008, 453, 175–183. [Google Scholar] [CrossRef]
- Bino, G.; Kingsford, R.T.; Archer, M.; Connolly, J.H.; Day, J.; Dias, K.; Goldney, D.; Gongora, J.; Grant, T.; Griffiths, J.; et al. The platypus: Evolutionary history, biology, and an uncertain future. J. Mammal. 2019, 100, 308–327. [Google Scholar] [CrossRef]
- Zhou, Y.; Shearwin-Whyatt, L.; Li, J.; Song, Z.; Hayakawa, T.; Stevens, D.; Fenelon, J.C.; Peel, E.; Cheng, Y.; Pajpach, F.; et al. Platypus and echidna genomes reveal mammalian biology and evolution. Nature 2021, 592, 756–762. [Google Scholar] [CrossRef]
- Wille, M.; Shi, M.; Klaassen, M.; Hurt, A.C.; Holmes, E.C. Virome heterogeneity and connectivity in waterfowl and shorebird communities. ISME J. 2019, 13, 2603–2616. [Google Scholar] [CrossRef]
- Sutherland, M.; Sarker, S.; Vaz, P.K.; Legione, A.R.; Devlin, J.M.; Macwhirter, P.L.; Whiteley, P.L.; Raidal, S.R. Disease surveillance in wild Victorian cacatuids reveals co-infection with multiple agents and detection of novel avian viruses. Vet. Microbiol. 2019, 235, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Wille, M.; Eden, J.S.; Shi, M.; Klaassen, M.; Hurt, A.C.; Holmes, E.C. Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds. Mol. Ecol. 2018, 27, 5263–5278. [Google Scholar] [CrossRef]
- Vibin, J.; Chamings, A.; Klaassen, M.; Bhatta, T.R.; Alexandersen, S. Metagenomic characterisation of avian parvoviruses and picornaviruses from Australian wild ducks. Sci. Rep. 2020, 10, 12800. [Google Scholar] [CrossRef]
- Vibin, J.; Chamings, A.; Collier, F.; Klaassen, M.; Nelson, T.M.; Alexandersen, S. Metagenomics detection and characterisation of viruses in faecal samples from Australian wild birds. Sci. Rep. 2018, 8, 8686. [Google Scholar] [CrossRef]
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; et al. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef]
- White, R.T.; Taylor, W.; Klukowski, N.; Vaughan-Higgins, R.; Williams, E.; Petrovski, S.; Rose, J.J.A.; Sarker, S. A discovery down under: Decoding the draft genome sequence of Pantoea stewartii from Australia’s critically endangered western ground parrot/kyloring (Pezoporus flaviventris). Microb. Genom. 2023, 9, 001101. [Google Scholar] [CrossRef] [PubMed]
- White, R.T.; Jelocnik, M.; Klukowski, N.; Haque, M.H.; Sarker, S. The first genomic insight into Chlamydia psittaci sequence type (ST)24 from a healthy captive psittacine host in Australia demonstrates evolutionary proximity with strains from psittacine, human, and equine hosts. Vet. Microbiol. 2023, 280, 109704. [Google Scholar] [CrossRef]
- Klukowski, N.; Eden, P.; Uddin Muhammad, J.; Sarker, S. Virome of Australia’s most endangered parrot in captivity evidenced of harboring hitherto unknown viruses. Microbiol. Spectr. 2023, 12, e03052-23. [Google Scholar] [CrossRef]
- Sarker, S.; Talukder, S.; Anwar, A.; Van, T.T.; Petrovski, S. Unravelling Bile Viromes of free-range laying chickens clinically diagnosed with spotty liver disease: Emergence of many novel chaphamaparvoviruses into multiple lineages. Viruses 2022, 14, 2543. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S. Molecular and phylogenetic characterisation of a highly divergent novel parvovirus (psittaciform chaphamaparvovirus 2) in australian neophema parrots. Pathogens 2021, 10, 1559. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S. Metagenomic detection and characterisation of multiple viruses in apparently healthy Australian Neophema birds. Sci. Rep. 2021, 11, 20915. [Google Scholar] [CrossRef]
- Geoghegan, J.L.; Duchêne, S.; Holmes, E.C. Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog. 2017, 13, e1006215. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.F.F.; Manire, C.; Borrowman, K.; Langer, T.; Ehrhart, L.; Breitbart, M. Discovery of a novel single-stranded DNA virus from a sea turtle fibropapilloma by using viral metagenomics. J. Virol. 2009, 83, 2500–2509. [Google Scholar] [CrossRef]
- Tisza, M.J.; Pastrana, D.V.; Welch, N.L.; Stewart, B.; Peretti, A.; Starrett, G.J.; Pang, Y.S.; Krishnamurthy, S.R.; Pesavento, P.A.; McDermott, D.H.; et al. Discovery of several thousand highly diverse circular DNA viruses. Elife 2020, 9, e51971. [Google Scholar] [CrossRef]
- Cui, X.; Fan, K.; Liang, X.; Gong, W.; Chen, W.; He, B.; Chen, X.; Wang, H.; Wang, X.; Zhang, P.; et al. Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals. Nat. Commun. 2023, 14, 2488. [Google Scholar] [CrossRef]
- Frias-De-Diego, A.; Jara, M.; Escobar, L.E. Papillomavirus in Wildlife. Front. Ecol. Evol. 2019, 7, 406. [Google Scholar] [CrossRef]
- Rector, A.; Van Ranst, M. Animal papillomaviruses. Virology 2013, 445, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Mifsud, J.C.O.; Hall, J.; Van Brussel, K.; Rose, K.; Parry, R.H.; Holmes, E.C.; Harvey, E. A novel papillomavirus in a New Zealand fur seal (Arctocephalus forsteri) with oral lesions. Npj Viruses 2024, 2, 10. [Google Scholar] [CrossRef]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 2001, 78, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Zhang, Y.Z.; Holmes, E.C. Meta-transcriptomics and the evolutionary biology of RNA viruses. Virus Res. 2018, 243, 83–90. [Google Scholar] [CrossRef]
- Athukorala, A.; Phalen, D.N.; Das, A.; Helbig, K.J.; Forwood, J.K.; Sarker, S. Genomic characterisation of a highly divergent siadenovirus (psittacine siadenovirus f) from the critically endangered orange-bellied parrot (Neophema chrysogaster). Viruses 2021, 13, 1714. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.; Das, S.; Lavers, J.L.; Hutton, I.; Helbig, K.; Imbery, J.; Upton, C.; Raidal, S.R. Genomic characterization of two novel pathogenic avipoxviruses isolated from pacific shearwaters (Ardenna spp.). BMC Genom. 2017, 18, 298. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.; Isberg, R.S.; Moran, L.J.; Araujo, D.R.; Elliott, N.; Melville, L.; Beddoe, T.; Helbig, J.K. Crocodilepox Virus evolutionary genomics supports observed poxvirus infection dynamics on saltwater crocodile (Crocodylus porosus). Viruses 2019, 11, 1116. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2013, 41, D36–D42. [Google Scholar] [CrossRef]
- Hillary, W.; Lin, S.-H.; Upton, C. Base-By-Base version 2: Single nucleotide-level analysis of whole viral genome alignments. Microb. Inform. Exp. 2011, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Van Doorslaer, K.; Chen, Z.; Bernard, H.U.; Chan, P.K.S.; DeSalle, R.; Dillner, J.; Forslund, O.; Haga, T.; McBride, A.A.; Villa, L.L.; et al. ICTV Virus Taxonomy Profile: Papillomaviridae. J. Gen. Virol. 2018, 99, 989–990. [Google Scholar] [CrossRef] [PubMed]
- Cotmore, S.F.; Agbandje-McKenna, M.; Canuti, M.; Chiorini, J.A.; Eis-Hubinger, A.-M.; Hughes, J.; Mietzsch, M.; Modha, S.; Ogliastro, M.; Pénzes, J.J.; et al. ICTV Virus Taxonomy Profile: Parvoviridae. J. Gen. Virol. 2019, 100, 367–368. [Google Scholar] [CrossRef]
- Dayaram, A.; Galatowitsch, M.L.; Argüello-Astorga, G.R.; van Bysterveldt, K.; Kraberger, S.; Stainton, D.; Harding, J.S.; Roumagnac, P.; Martin, D.P.; Lefeuvre, P.; et al. Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem. Infect. Genet. Evol. 2016, 39, 304–316. [Google Scholar] [CrossRef]
- Remnant, E.J.; Baty, J.W.; Bulgarella, M.; Dobelmann, J.; Quinn, O.; Gruber, M.A.M.; Lester, P.J. A diverse viral community from predatory wasps in their native and invaded range, with a new virus infectious to honey bees. Viruses 2021, 13, 1431. [Google Scholar] [CrossRef]
- Varsani, A.; Kraberger, S.; Jennings, S.; Porzig, E.L.; Julian, L.; Massaro, M.; Pollard, A.; Ballard, G.; Ainley, D.G. A novel papillomavirus in Adélie penguin (Pygoscelis adeliae) faeces sampled at the Cape Crozier colony, Antarctica. J. Gen. Virol. 2014, 95, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, P.K.; Stanley, M.A. The immunology of animal papillomaviruses. Vet. Immunol. Immunopathol. 2000, 73, 101–127. [Google Scholar] [CrossRef]
- Campo, M.S. Papillomavirus and disease in humans and animals. Vet. Comp. Oncol. 2003, 1, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Cubie, H.A. Diseases associated with human papillomavirus infection. Virology 2013, 445, 21–34. [Google Scholar] [CrossRef]
- Canuti, M.; Munro, H.J.; Robertson, G.J.; Kroyer, A.N.K.; Roul, S.; Ojkic, D.; Whitney, H.G.; Lang, A.S. New insight into avian papillomavirus ecology and evolution from characterization of novel wild bird papillomaviruses. Front. Microbiol. 2019, 10, 701. [Google Scholar] [CrossRef]
- Olivo, D.; Kraberger, S.; Varsani, A. New duck papillomavirus type identified in a mallard in Missouri, USA. Arch. Virol. 2024, 169, 77. [Google Scholar] [CrossRef] [PubMed]
- Van Doorslaer, K. Evolution of the Papillomaviridae. Virology 2013, 445, 11–20. [Google Scholar] [CrossRef]
- de Villiers, E.M.; Fauquet, C.; Broker, T.R.; Bernard, H.U.; zur Hausen, H. Classification of papillomaviruses. Virology 2004, 324, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Antonsson, A.; McMillan, N.A.J. Papillomavirus in healthy skin of Australian animals. J. Gen. Virol. 2006, 87, 3195–3200. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Holmes, E.C. Evidence for an endogenous papillomavirus-like element in the platypus genome. J. Gen. Virol. 2012, 93, 1362–1366. [Google Scholar] [CrossRef] [PubMed]
- Pénzes, J.J.; Söderlund-Venermo, M.; Canuti, M.; Eis-Hübinger, A.M.; Hughes, J.; Cotmore, S.F.; Harrach, B. Reorganizing the family Parvoviridae: A revised taxonomy independent of the canonical approach based on host association. Arch. Virol. 2020, 165, 2133–2146. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Yang, S.; Wang, H.; Wang, H.; Zhang, J.; Gong, G.; Xiao, Y.; Yang, J.; Wang, X.; Lu, J.; et al. Virome in the cloaca of wild and breeding birds revealed a diversity of significant viruses. Microbiome 2022, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Talukder, S.; Bhuiyan, M.S.A.; He, L.; Sarker, S. Opportunistic sampling of yellow canary (Crithagra flaviventris) has revealed a high genetic diversity of detected parvoviral sequences. Virology 2024, 595, 110081. [Google Scholar] [CrossRef]
- Sarker, S.; Athukorala, A.; Phalen, D.N. Characterization of a near-complete genome sequence of a chaphamaparvovirus from an australian boobook owl (Ninox boobook). Microbiol. Resour. Announc. 2022, 11, e0024922. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S. Characterization of a novel complete-genome sequence of a galliform chaphamaparvovirus from a free-range laying chicken clinically diagnosed with spotty liver disease. Microbiol. Resour. Announc. 2022, 11, e0101722. [Google Scholar] [CrossRef]
- Pérez-Losada, M.; Arenas, M.; Galán, J.C.; Palero, F.; González-Candelas, F. Recombination in viruses: Mechanisms, methods of study, and evolutionary consequences. Infect. Genet. Evol. 2015, 30, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Breitbart, M.; Delwart, E.; Rosario, K.; Segalés, J.; Varsani, A.; Ictv Report, C. ICTV Virus Taxonomy Profile: Circoviridae. J. Gen. Virol. 2017, 98, 1997–1998. [Google Scholar] [CrossRef]
- Sarker, S.; Terron, M.C.; Khandokar, Y.; Aragao, D.; Hardy, J.M.; Radjainia, M.; Jimenez-Zaragoza, M.; de Pablo, P.J.; Coulibaly, F.; Luque, D.; et al. Structural insights into the assembly and regulation of distinct viral capsid complexes. Nat. Commun. 2016, 7, 13014. [Google Scholar] [CrossRef] [PubMed]
- Rosario, K.; Mettel, K.A.; Benner, B.E.; Johnson, R.; Scott, C.; Yusseff-Vanegas, S.Z.; Baker, C.C.M.; Cassill, D.L.; Storer, C.; Varsani, A.; et al. Virus discovery in all three major lineages of terrestrial arthropods highlights the diversity of single-stranded DNA viruses associated with invertebrates. PeerJ 2018, 6, e5761. [Google Scholar] [CrossRef]
- Varsani, A.; Krupovic, M. Family Genomoviridae: 2021 taxonomy update. Arch. Virol. 2021, 166, 2911–2926. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Ke, F.; Gui, L.; Zhao, Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. Water Biol. Secur. 2022, 1, 100062. [Google Scholar] [CrossRef]
- Vasilakis, N.; Tesh, R.B. Insect-specific viruses and their potential impact on arbovirus transmission. Curr. Opin. Virol. 2015, 15, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.V.; Tesh, R.B.; Vasilakis, N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Trop. 2017, 166, 155–163. [Google Scholar] [CrossRef]
- Longdon, B.; Brockhurst, M.A.; Russell, C.A.; Welch, J.J.; Jiggins, F.M. The evolution and genetics of virus host shifts. PLoS Pathog. 2014, 10, e1004395. [Google Scholar] [CrossRef]
- Kock, R.A.; Woodford, M.H.; Rossiter, P.B. Disease risks associated with the translocation of wildlife. Rev. Sci. Tech. Int. Off. Epizoot. 2010, 29, 329–350. [Google Scholar] [CrossRef]
Sample ID | Location | Weight (gram) | Sex | History | Gross Path | Sample | Library ID |
---|---|---|---|---|---|---|---|
W837-17 | Apollo Bay | 1900 | male | Barham R | trauma, predation | spleen | PTP06 |
W653-18 | Templestowe | 630 | on road | liver | PTP03 | ||
W1098-19 | Strathbogie | 1448 | male | spleen | PTP05 | ||
W475-19 | Forest | 1500 | male | Lake Elizabeth | entanglement, drowned | spleen | PTP02 |
W354-21 | Bright | 979 | female | spleen | PTP04 | ||
W1057-22 | Gunbower | on road | spleen | PTP01 |
Gene Synteny | Genome Coordinates | nt Size | AA Size | Best Blast Hits (GenBank Accession Number) | Product | Similarity (%) | Note |
---|---|---|---|---|---|---|---|
Ornithorhynchus anatinus papillomavirus 1 (OaPV1, GenBank accession no. PQ629428), length-6153 bp, complete genome | |||||||
ORF1 | 170–808 | 639 | 212 | no significant Blast hit | hypothetical gene | ||
ORF2 | 258–638 | 381 | 126 | no significant Blast hit | hypothetical gene | ||
ORF3 | 811–2313 | 1503 | 500 | Papillomavirus ambystoma6078 (DBA51064.1) | E1 | 45.12 | |
ORF4 | 2261–3115 | 855 | 284 | Sparus aurata papillomavirus 1 (YP_009272701.1) | E2 | 26.05 | |
ORF5 | 3144–3428 | 285 | 94 | no significant Blast hit | hypothetical gene | ||
ORF6 | 3422–4045 | 624 | 207 | no significant Blast hit | hypothetical gene | ||
ORF7 | 4045–5502 | 1458 | 485 | Papillomavirus ambystoma6078 (DBA51069.1) | L1 | 37.52 | |
Ornithorhynchus anatinus papillomavirus 2 (OaPV2, GenBank accession no. PQ629429), length-6151 bp, complete genome | |||||||
ORF1 | 168–779 | 612 | 203 | no significant Blast hit | hypothetical gene | ||
ORF2 | 256–630 | 375 | 124 | no significant Blast hit | hypothetical gene | ||
ORF3 | 781–2280 | 1500 | 499 | Papillomavirus ambystoma6078 (DBA51064.1) | E1 | 40 | |
ORF4 | 2228–3100 | 873 | 290 | Papillomavirus sparus5907 (DBA50395.1) | E2 | 25.09 | |
ORF5 | 3111–3713 | 603 | 200 | no significant Blast hit | hypothetical gene | ||
ORF6 | 3332–4360 | 1029 | 342 | no significant Blast hit | hypothetical gene | ||
ORF7 | 4360–5841 | 1482 | 493 | Papillomavirus ambystoma6078 (DBA51069.1) | L1 | 39.17 | |
Ornithorhynchus anatinus papillomavirus 3 (OaPV3, GenBank accession no. PQ629430), length-6104 bp, complete genome | |||||||
ORF1 | 61–351 | 291 | 96 | no significant Blast hit | hypothetical gene | ||
ORF2 | 509–2023 | 1515 | 504 | Papillomavirus ambystoma6078 (DBA51064.1) | E1 | 40.08 | |
ORF3 | 1956–2801 | 846 | 281 | no significant Blast hit | hypothetical gene | ||
ORF4 | 2801–4243 | 1443 | 480 | no significant Blast hit | hypothetical gene | ||
ORF5 | 4243–5694 | 1452 | 483 | Papillomavirus ambystoma6078 (DBA51069.1) | L1 | 41.13 | |
Ornithorhynchus anatinus papillomavirus 4 (OaPV4, GenBank accession no. PQ629431), length-6100 bp, complete genome | |||||||
ORF1 | 148–780 | 633 | 210 | no significant Blast hit | hypothetical gene | ||
ORF2 | 236–613 | 378 | 125 | no significant Blast hit | hypothetical gene | ||
ORF3 | 782–2311 | 1530 | 509 | Papillomavirus ambystoma6078 (DBA51064.1) | E1 | 46.45 | |
ORF4 | 2244–3068 | 825 | 274 | no significant Blast hit | hypothetical gene | ||
ORF5 | 3068–4027 | 960 | 319 | no significant Blast hit | hypothetical gene | ||
ORF6 | 4027–5502 | 1476 | 491 | Papillomavirus ambystoma6078 (DBA51069.1) | L1 | 38.54 | |
Ornithorhynchus anatinus papillomavirus 5 (OaPV5, GenBank accession no. PQ629432), length-1135 bp, partial cds | |||||||
ORF3 | 161–1072 | 912 | 303 | Papillomavirus ambystoma6078 (DBA51064.1) | E1 | 49.29 |
Gene Synteny | Genome Coordinates | nt Size | AA Size | Best Blast Hits (GenBank Accession Number) | Product | Similarity (%) | Note |
---|---|---|---|---|---|---|---|
Ornithorhynchus anatinus densovirus 1 (OaDPV1, GenBank accession no. PQ629433), length-4639 bp, complete genome | |||||||
ORF1 | 220–423 | 204 | 67 | no significant Blast hit | hypothetical gene | ||
ORF2 | 360–2699 | 2340 | 779 | Ambidensovirus sp. (AVM80379.1) | NS1 | 32.32 | |
ORF3 | 449–997 | 549 | 182 | Aedes vexans densovirus (UTQ11533.1) | NS2 | 33.33 | |
ORF4 | 2783–4090 | 1308 | 435 | no significant Blast hit | hypothetical gene | ||
Ornithorhynchus anatinus chaphamaparvovirus 1 (OaChPV1, GenBank accession no. PQ629434), length-4000 bp, complete genome | |||||||
ORF1 | 34–288 | 255 | 84 | Psittacine parvovirus 1 (YP_010805269.1) | hypothetical gene | 43.75 | |
ORF2 | 285–695 | 411 | 136 | Mouse kidney parvovirus (QLM06160.1) | NS3 | 71.56 | |
ORF3 | 596–2584 | 1989 | 662 | Bat chaphamaparvovirus (QOR29549.1) | NS1 | 65.21 | |
ORF4 | 1869–2522 | 654 | 217 | Mouse kidney parvovirus (AXX39021.1) | NS2 | 69.12 | |
ORF5 | 2577–3956 | 1380 | 459 | Bat chaphamaparvovirus (QOR29550.1) | VP1 | 72.08 | |
Ornithorhynchus anatinus densovirus 2 (OaDPV2, GenBank accession no. PQ629435), length-1612 bp, partial cds | |||||||
ORF1 | 33–638 | 606 | 201 | Parvoviridae sp. (WAQ80633.1) | NS | 41.41 | |
ORF2 | 1222–1566 | 345 | 114 | Turdus hortulorum ambidensovirus (QTE04092.1) | NS | 29.27 | |
Ornithorhynchus anatinus parvoviridae sp.1 (OaPV sp1, GenBank accession no. PQ629436), length-2146 bp, partial cds | |||||||
ORF1 | 119–1906 | 1788 | 595 | Periparus ater parvoviridae sp. (QTE03714.1) | NS1 | 40.00 | |
Ornithorhynchus anatinus parvoviridae sp.2 (OaPV sp2, GenBank accession no. PQ629437), length-1077 bp, partial cds | |||||||
ORF1 | 50–844 | 795 | 264 | Periparus ater parvoviridae sp. (QTE03714.1) | NS1 | 49.19 |
Gene Synteny | Genome Coordinates | nt Size | AA Size | Best Blast Hits (GenBank Accession Number) | Product | Similarity (%) |
---|---|---|---|---|---|---|
Ornithorhynchus anatinus tombus-like virus 1 (OaTLV1, GenBank accession no. PQ629438), length-3944 bp, partial genome | ||||||
ORF1 | 40–1248 | 1209 | 402 | putative hypothetical protein (ASM93999.1) | hypothetical protein | 58.35 |
ORF2 | 1660–2742 | 1083 | 360 | putative replicase (ASM94000.1) | replicase | 86.15 |
ORF3 | 2748–3821 | 1074 | 357 | putative capsid (ASM94001.1) | capsid | 75.89 |
Ornithorhynchus anatinus Tombusviridae sp. (GenBank accession no. PQ629441), length-1201 bp, partial genome | ||||||
ORF1 | 519–1133 | 615 | 204 | putative coat protein (UHS72286.1) | capsid | 32.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarker, S.; Talukder, S.; Athukorala, A.; Whiteley, P.L. The Spleen Virome of Australia’s Endemic Platypus Is Dominated by Highly Diverse Papillomaviruses. Viruses 2025, 17, 176. https://doi.org/10.3390/v17020176
Sarker S, Talukder S, Athukorala A, Whiteley PL. The Spleen Virome of Australia’s Endemic Platypus Is Dominated by Highly Diverse Papillomaviruses. Viruses. 2025; 17(2):176. https://doi.org/10.3390/v17020176
Chicago/Turabian StyleSarker, Subir, Saranika Talukder, Ajani Athukorala, and Pam L. Whiteley. 2025. "The Spleen Virome of Australia’s Endemic Platypus Is Dominated by Highly Diverse Papillomaviruses" Viruses 17, no. 2: 176. https://doi.org/10.3390/v17020176
APA StyleSarker, S., Talukder, S., Athukorala, A., & Whiteley, P. L. (2025). The Spleen Virome of Australia’s Endemic Platypus Is Dominated by Highly Diverse Papillomaviruses. Viruses, 17(2), 176. https://doi.org/10.3390/v17020176