Identification of Early Biomarkers of Mortality in COVID-19 Hospitalized Patients: A LASSO-Based Cox and Logistic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
- Presence of acute respiratory failure;
- Blood samples obtained within 24 h of hospital admission.
2.2. Plasma Sample Collection and Biochemical Parameter Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weekly Epidemiological Update on COVID-19–1 September 2023; World Health Organization: Geneva, Switzerland, 2023.
- Borges do Nascimento, I.J.; Cacic, N.; Abdulazeem, H.M.; Von Groote, T.C.; Jayarajah, U.; Weerasekara, I.; Esfahani, M.A.; Civile, V.T.; Marusic, A.; Jeroncic, A.; et al. Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis. J. Clin. Med. 2020, 9, 941. [Google Scholar] [CrossRef]
- Xu, X.-W.; Wu, X.-X.; Jiang, X.-G.; Xu, K.-J.; Ying, L.-J.; Ma, C.-L.; Li, S.-B.; Wang, H.-Y.; Zhang, S.; Gao, H.-N.; et al. Clinical Findings in a Group of Patients Infected with the 2019 Novel Coronavirus (SARS-CoV-2) Outside of Wuhan, China: Retrospective Case Series. BMJ 2020, 368, m606. [Google Scholar] [CrossRef]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological Assessment of Hospitalized Patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Yang, L.; You, R. Physiological and Pathological Regulation of ACE2, the SARS-CoV-2 Receptor. Pharmacol. Res. 2020, 157, 104833. [Google Scholar] [CrossRef]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 2020, 94, 10–1128. [Google Scholar] [CrossRef]
- Burrell, L.M.; Johnston, C.I.; Tikellis, C.; Cooper, M.E. ACE2, a New Regulator of the Renin–Angiotensin System. Trends Endocrinol. Metab. 2004, 15, 166–169. [Google Scholar] [CrossRef]
- Zou, X.; Chen, K.; Zou, J.; Han, P.; Hao, J.; Han, Z. Single-Cell RNA-Seq Data Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of Different Human Organs Vulnerable to 2019-nCoV Infection. Front. Med. 2020, 14, 185–192. [Google Scholar] [CrossRef]
- Sungnak, W.; Huang, N.; Bécavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 Entry Factors Are Highly Expressed in Nasal Epithelial Cells Together with Innate Immune Genes. Nat. Med. 2020, 26, 681–687. [Google Scholar] [CrossRef]
- Ziegler, C.G.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 2020, 181, 1016–1103. [Google Scholar] [CrossRef]
- Perico, L.; Benigni, A.; Casiraghi, F.; Ng, L.F.; Renia, L.; Remuzzi, G.I. Endothelial Injury and Comple-Ment-Induced Coagulopathy in COVID-19. Nat. Rev. Nephrol. 2021, 17, 46–64. [Google Scholar] [CrossRef]
- Tojo, K.; Yamamoto, N.; Tamada, N.; Mihara, T.; Abe, M.; Nishii, M.; Takeuchi, I.; Goto, T. Early Alveolar Epithelial Cell Necrosis Is a Potential Driver of COVID-19-Induced Acute Respiratory Distress Syndrome. iScience 2023, 26, 105748. [Google Scholar] [CrossRef]
- Xu, T.; Ding, W.; Tariq, M.A.; Wang, Y.; Wan, Q.; Li, M.; Wang, J. Molecular Mechanism and Therapy Application of Necrosis during Myocardial Injury. J. Cell. Mol. Med. 2018, 22, 2547–2557. [Google Scholar] [CrossRef]
- Martin-Sanchez, D.; Poveda, J.; Fontecha-Barriuso, M.; Ruiz-Andres, O.; Sanchez-Niño, M.D.; Ruiz-Ortega, M.; Ortiz, A.; Sanz, A.B. Targeting of Regulated Necrosis in Kidney Disease. Nefrología 2018, 38, 125–135. [Google Scholar] [CrossRef]
- Tonnus, W.; Meyer, C.; Paliege, A.; Belavgeni, A.; von Mässenhausen, A.; Bornstein, S.R.; Hugo, C.; Becker, J.U.; Linkermann, A. The Pathological Features of Regulated Necrosis. J. Pathol. 2019, 247, 697–707. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar]
- Felsenstein, S.; Herbert, J.A.; McNamara, P.S.; Hedrich, C.M. COVID-19: Immunology and Treatment Options. Clin. Immunol. 2020, 215, 108448. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Guan, Z.; Li, H.; Ye, M.; Chen, X.; Shen, J.; Zhou, Y.; Shi, Z.-L.; Zhou, P.; et al. SARS-CoV-2 Triggers Inflammatory Responses and Cell Death through Caspase-8 Activation. Signal Transduct. Target. Ther. 2020, 5, 235. [Google Scholar] [CrossRef]
- Cao, X. COVID-19: Immunopathology and Its Implications for Therapy. Nat. Rev. Immunol. 2020, 20, 269–270. [Google Scholar] [CrossRef]
- Potey, P.M.; Rossi, A.G.; Lucas, C.D.; Dorward, D.A. Neutrophils in the Initiation and Resolution of Acute Pulmonary Inflammation: Understanding Biological Function and Therapeutic Potential. J. Pathol. 2019, 247, 672–685. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological Findings of COVID-19 Associated with Acute Respiratory Distress Syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Yaman, E.; Demirel, B.; Yilmaz, A.; Avci, S.; Szarpak, L. Retrospective Evaluation of Laboratory Findings of Suspected Paediatric COVID-19 Patients with Positive and Negative RT-PCR. Disaster Emerg. Med. J. 2021, 6, 97–103. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Divine, G.; Norton, H.J.; Hunt, R.; Dienemann, J. A Review of Analysis and Sample Size Calculation Considerations for Wilcoxon Tests. Anesth. Analg. 2013, 117, 699–710. [Google Scholar] [CrossRef]
- Stekhoven, D.J.; Bühlmann, P. MissForest—Non-Parametric Missing Value Imputation for Mixed-Type Data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Cox, D.R. Regression Models and Life-tables. J. R. Stat. Soc. Ser. B Methodol. 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, H.; Mu, S.; Wei, W.; Jin, C.; Tong, C.; Song, Z.; Zha, Y.; Xue, Y.; Gu, G. Lactate Dehydrogenase, an Independent Risk Factor of Severe COVID-19 Patients: A Retrospective and Observational Study. Aging 2020, 12, 11245. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Huang, M.-Y.; Xiao, Z.; Yang, S.; Chen, X.-Q. Lactate Dehydrogenase Elevations Is Associated with Severity of COVID-19: A Meta-Analysis. Crit. Care 2020, 24, 459. [Google Scholar] [CrossRef] [PubMed]
- Fialek, B.; Pruc, M.; Smereka, J.; Jas, R.; Rahnama-Hezavah, M.; Denegri, A.; Szarpak, A.; Jaguszewski, M.J.; Peacock, F.W.; Szarpak, L. Diagnostic Value of Lactate Dehydrogenase in COVID-19: A Systematic Review and Meta-Analysis. Cardiol. J. 2022, 29, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Martha, J.W.; Wibowo, A.; Pranata, R. Prognostic Value of Elevated Lactate Dehydrogenase in Patients with COVID-19: A Systematic Review and Meta-Analysis. Postgrad. Med. J. 2022, 98, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Kojima, K.; Yoon, H.; Okishio, K.; Tsuyuguchi, K. Increased Lactate Dehydrogenase Reflects the Progression of COVID-19 Pneumonia on Chest Computed Tomography and Predicts Subsequent Severe Disease. Sci. Rep. 2023, 13, 1012. [Google Scholar] [CrossRef]
- Schurink, B.; Roos, E.; Radonic, T.; Barbe, E.; Bouman, C.S.; de Boer, H.H.; de Bree, G.J.; Bulle, E.B.; Aronica, E.M.; Florquin, S.; et al. Viral Presence and Immunopathology in Patients with Lethal COVID-19: A Prospective Autopsy Cohort Study. Lancet Microbe 2020, 1, e290–e299. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Han, Y.; Liu, S.; Chen, X.; Jiang, C.; Wang, J.; Fan, X.; Wang, J. Regulated Necrosis in COVID-19: A Double-Edged Sword. Front. Immunol. 2022, 13, 917141. [Google Scholar] [CrossRef] [PubMed]
- Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of Chromatin Protein HMGB1 by Necrotic Cells Triggers Inflammation. Nature 2002, 418, 191–195. [Google Scholar] [CrossRef]
- Denning, N.-L.; Aziz, M.; Wang, P. DAMPs and NETs in Sepsis. Front. Immunol. 2019, 10, 472249. [Google Scholar] [CrossRef]
- Mázló, A.; Jenei, V.; Burai, S.; Molnár, T.; Bácsi, A.; Koncz, G. Types of Necroinflammation, the Effect of Cell Death Modalities on Sterile Inflammation. Cell Death Dis. 2022, 13, 423. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 Infection: The Perspectives on Immune Responses. Cell Death Differ. 2020, 27, 1451–1454. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and Immunological Features of Severe and Moderate Coronavirus Disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; et al. Clinical Course and Outcomes of Critically Ill Patients with SARS-CoV-2 Pneumonia in Wuhan, China: A Single-Centered, Retrospective, Observational Study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef]
- Patel, A.; Charani, E.; Ariyanayagam, D.; Abdulaal, A.; Denny, S.; Mughal, N.; Moore, L. New-Onset Anosmia and Ageusia in Adult Patients Diagnosed with SARS-CoV-2 Infection. Clin. Microbiol. Infect. 2020, 26, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Diao, B.; Chen, Y. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 544639. [Google Scholar] [CrossRef]
- Zheng, M.; Gao, Y.; Wang, G.; Song, G.; Liu, S.; Sun, D.; Xu, Y.; Tian, Z. Functional Exhaustion of Antiviral Lymphocytes in COVID-19 Patients. Cell. Mol. Immunol. 2020, 17, 533–535. [Google Scholar] [CrossRef]
- Junqueira, C.; Crespo, Â.; Ranjbar, S.; De Lacerda, L.B.; Lewandrowski, M.; Ingber, J.; Parry, B.; Ravid, S.; Clark, S.; Schrimpf, M.R.; et al. FcγR-Mediated SARS-CoV-2 Infection of Monocytes Activates Inflammation. Nature 2022, 606, 576–584. [Google Scholar] [CrossRef]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.-H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An Inflammatory Cytokine Signature Predicts COVID-19 Severity and Survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef] [PubMed]
- Laing, A.G.; Lorenc, A.; Del Molino Del Barrio, I.; Das, A.; Fish, M.; Monin, L.; Muñoz-Ruiz, M.; McKenzie, D.R.; Hayday, T.S.; Francos-Quijorna, I.; et al. A Dynamic COVID-19 Immune Signature Includes Associations with Poor Prognosis. Nat. Med. 2020, 26, 1623–1635. [Google Scholar] [CrossRef]
- Lucas, C.; Wong, P.; Klein, J.; Castro, T.B.; Silva, J.; Sundaram, M.; Ellingson, M.K.; Mao, T.; Oh, J.E.; Israelow, B.; et al. Longitudinal Analyses Reveal Immunological Misfiring in Severe COVID-19. Nature 2020, 584, 463–469. [Google Scholar] [CrossRef]
- Satış, H.; Özger, H.S.; Yıldız, P.A.; Hızel, K.; Gulbahar, Ö.; Erbaş, G.; Aygencel, G.; Tunccan, O.G.; Öztürk, M.A.; Dizbay, M.; et al. Prognostic Value of Interleukin-18 and Its Association with Other Inflammatory Markers and Disease Severity in COVID-19. Cytokine 2021, 137, 155302. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, L.; Zhang, P.; Li, K.; Liang, L.; Sun, J.; Xu, B.; Dai, Y.; Li, X.; Zhang, C.; et al. Longitudinal COVID-19 Profiling Associates IL-1RA and IL-10 with Disease Severity and RANTES with Mild Disease. JCI Insight 2020, 5, e139834. [Google Scholar] [CrossRef]
- Buszko, M.; Park, J.-H.; Verthelyi, D.; Sen, R.; Young, H.A.; Rosenberg, A.S. The Dynamic Changes in Cytokine Responses in COVID-19: A Snapshot of the Current State of Knowledge. Nat. Immunol. 2020, 21, 1146–1151. [Google Scholar] [CrossRef]
- Kudo, S.; Mizuno, K.; Hirai, Y.; Shimizu, T. Clearance and Tissue Distribution of Recombinant Human Interleukin 1β in Rats. Cancer Res. 1990, 50, 5751–5755. [Google Scholar]
- Vora, S.M.; Lieberman, J.; Wu, H. Inflammasome Activation at the Crux of Severe COVID-19. Nat. Rev. Immunol. 2021, 21, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; O’Garra, A. IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity 2019, 50, 871–891. [Google Scholar] [CrossRef]
- Dumoutier, L.; Louahed, J.; Renauld, J.C. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J. Immunol. 2000, 164, 1814–1819. [Google Scholar] [CrossRef] [PubMed]
- Dumoutier, L.; Van Roost, E.; Colau, D.; Renauld, J.C. Human interleukin-10-related T cell derived inducible factor: Molecular cloning and functional characterization as an hepatocytestimulating factor. Proc. Natl Acad. Sci. USA 2000, 97, 10144–10149. [Google Scholar] [CrossRef]
- Xie, M.H.; Aggarwal, S.; Ho, W.H.; Foster, J.; Zhang, Z.; Stinson, J.; Wood, W.I.; Goddard, A.D.; Gurney, A.L. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22RJ. Biol. Chem. 2000, 275, 31335–31339. [Google Scholar] [CrossRef] [PubMed]
- Wolk, K.; Kunz, S.; Witte, E.; Friedrich, M.; Asadullah, K.; Sabat, R. IL-22 increases the innate immunity of tissues. Immunity 2004, 21, 241–254. [Google Scholar] [CrossRef]
- Zhang, Z.; Zou, J.; Shi, Z.; Zhang, B.; Etienne-Mesmin, L.; Wang, Y.; Shi, X.; Shao, F.; Chassaing, B.; Gewirtz, A.T. IL-22-induced cell extrusion and IL-18-induced cell death prevent and cure rotavirus infection. Sci. Immunol. 2020, 5, eabd2876. [Google Scholar] [CrossRef]
- Neil, J.A.; Matsuzawa-Ishimoto, Y.; Kernbauer-Hölzl, E.; Schuster, S.L.; Sota, S.; Venzon, M.; Dallari, S.; Galvao Neto, A.; Hine, A.; Hudesman, D.; et al. IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nat. Microbiol. 2019, 4, 1737–1749. [Google Scholar] [CrossRef]
- Shabgah, A.G.; Navashenaq, J.G.; Shabgah, O.G.; Mohammadi, H.; Sahebkar, A. Interleukin-22 in human inflammatory diseases and viral infections. Autoimmun. Rev. 2017, 16, 1209–1218. [Google Scholar] [CrossRef]
- Albayrak, N.; Orte Cano, C.; Karimi, S.; Dogahe, D.; Van Praet, A.; Godefroid, A.; Del Marmol, V.; Grimaldi, D.; Bondue, B.; Van Vooren, J.P.; et al. Distinct Expression Patterns of Interleukin-22 Receptor 1 on Blood Hematopoietic Cells in SARS-CoV-2 Infection. Front. Immunol. 2022, 13, 769839. [Google Scholar] [CrossRef]
- Fang, S.; Ju, D.; Lin, Y.; Chen, W. The role of interleukin-22 in lung health and its therapeutic potential for COVID-19. Front. Immunol. 2022, 13, 951107. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, H.; Dauphars, D.J.; He, Y.-W. A Potential Role of Interleukin 10 in COVID-19 Pathogenesis. Trends Immunol. 2021, 42, 3–5. [Google Scholar] [CrossRef]
- Dhar, S.K.; Vishnupriyan, K.; Damodar, S.; Gujar, S.; Das, M. IL-6 and IL-10 as Predictors of Disease Severity in COVID-19 Patients: Results from Meta-Analysis and Regression. Heliyon 2021, 7, e06155. [Google Scholar] [CrossRef]
- Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; et al. Multiorgan and Renal Tropism of SARS-CoV-2. N. Engl. J. Med. 2020, 383, 590–592. [Google Scholar] [CrossRef]
- Gavriatopoulou, M.; Korompoki, E.; Fotiou, D.; Ntanasis-Stathopoulos, I.; Psaltopoulou, T.; Kastritis, E.; Terpos, E.; Dimopoulos, M.A. Organ-Specific Manifestations of COVID-19 Infection. Clin. Exp. Med. 2020, 20, 493–506. [Google Scholar] [CrossRef]
- Amann, K.; Boor, P.; Wiech, T.; Singh, J.; Vonbrunn, E.; Knöll, A.; Hermann, M.; Büttner-Herold, M.; Daniel, C.; Hartmann, A. COVID-19 Effects on the Kidney. Der Pathol. 2021, 42, 76–80. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney Disease Is Associated with In-Hospital Death of Patients with COVID-19. Kidney Int. 2020, 97, 829–838. [Google Scholar] [CrossRef]
- Cei, F.; Chiarugi, L.; Brancati, S.; Montini, M.S.; Dolenti, S.; Di Stefano, D.; Beatrice, S.; Sellerio, I.; Messiniti, V.; Gucci, M.M.; et al. Early Reduction of Estimated Glomerular Filtration Rate (eGFR) Predicts Poor Outcome in Acutely Ill Hospitalized COVID-19 Patients Firstly Admitted to Medical Regular Wards (eGFR-COV19 Study). Biomed. Pharmacother. 2022, 153, 113454. [Google Scholar] [CrossRef]
- Inker, L.A.; Titan, S. Measurement and Estimation of GFR for Use in Clinical Practice: Core Curriculum 2021. Am. J. Kidney Dis. 2021, 78, 736–749. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, J.; Zhang, D.; Ji, J. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front. Immunol. 2020, 11, 544100. [Google Scholar] [CrossRef]
- Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The Cytokine Storm in COVID-19: An Overview of the Involvement of the Chemokine/Chemokine-Receptor System. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef]
- Saraiva, M.; Vieira, P.; O’garra, A. Biology and Therapeutic Potential of Interleukin-10. J. Exp. Med. 2019, 217, e20190418. [Google Scholar] [CrossRef]
- Gorby, C.; Sotolongo Bellón, J.; Wilmes, S.; Warda, W.; Pohler, E.; Fyfe, P.K.; Cozzani, A.; Ferrand, C.; Walter, M.R.; Mitra, S.; et al. Engineered IL-10 Variants Elicit Potent Immunomodulatory Effects at Low Ligand Doses. Sci. Signal. 2020, 13, eabc0653. [Google Scholar] [CrossRef]
- Najafi-Fard, S.; Petruccioli, E.; Farroni, C.; Petrone, L.; Vanini, V.; Cuzzi, G.; Salmi, A.; Altera, A.M.G.; Navarra, A.; Alonzi, T.; et al. Evaluation of the immunomodulatory effects of interleukin-10 on peripheral blood immune cells of COVID-19 patients: Implication for COVID-19 therapy. Front. Immunol. 2022, 13, 984098. [Google Scholar] [CrossRef]
SURVIVORS (n. 40) | NON-SURVIVORS (n. 40) | p- Value | |
---|---|---|---|
Age | 77.5 [73–84] | 80.5 [76.7–86] | NS |
Sex (M/F) | 21/19 | 21/19 | NS |
Onset of symptoms (days) | 5.5 [2–7.7] | 8 [5–12] | <0.05 |
PaO2/FiO2 (ratio) | 281 [229–314] | 224 [166.5–252] | <0.0005 |
Admission to ICU n. (%) | 5 (12.5) | 10 (20) | <0.005 |
Orotracheal intubation n. (%) | 4 (10) | 8 (20) | NS |
Comorbidities | |||
Hypertension n. (%) | 24 (60) | 18 (45) | NS |
Diabetes mellitus n. (%) | 9 (22.5) | 4 (10) | NS |
Chronic kidney disease n. (%) | 3 (7.5) | 5 (12.5) | NS |
Chronic liver disease n. (%) | 2 (5) | 2 (5) | NS |
Biochemical parameters | |||
Creatinine (mg/dL) | 0.8 [0.7–1] | 1.0 [0.7–1.5] | NS |
eGFR (mL/min/1.73 m2) | 81.5 [64.8–87] | 60 [35.2–84] | <0.05 |
AST (U/L) | 35 [26–52] | 38.5 [30–47] | NS |
ALT (U/L) | 25 [17.5–47.5] | 27 [21.0–37.2] | NS |
LDH (U/L) | 239.5 [159.8–315] | 325.5 [301–367] | <0.00005 |
CRP (mg/L) | 68 [36–126] | 78 [46–147] | NS |
Iron (mcg/dL) | 33.9 [24.6–53.6] | 35.1 [26.5–47.8] | NS |
Transferrin (g/L) | 1.5 [1.3–1.9] | 1.6 [1.1–1.9] | NS |
Transferrin sat. (%) | 16 [11.5–25.5] | 16 [11–26.5] | NS |
Ferritin (mcg/L) | 870 [495–1194] | 813.5 [504–1555.2] | NS |
Hematocrit (%) | 40.5 [34–43] | 39.0 [36–43] | NS |
Hb (g/dL) | 13.1 [11.2–13.7] | 12.5 [12–14] | NS |
Hepcidine (ng/mL) | 199.9 [114.7–244.6] | 188.2 [87.7–270] | NS |
RBC (1012/L) | 4.3 [3.8–4.7] | 4.2 [3.8–4.7] | NS |
RDW (%) | 13.5 [12.9–14.8] | 14.3 [13–15.8] | NS |
Platelets (109/L) | 212 [177.8–267.8] | 188 [137.5–232] | NS |
WBC (109/L) | 6.8 [5.2–9.9] | 6.5 [4.3–10.6] | NS |
Neutrophils (109/L) | 5.2 [4–7.1] | 5.3 [3.1–9] | NS |
Lymphocytes (109/L) | 0.7 [0.5–1] | 0.5 [0.4–0.9] | <0.05 |
Monocytes (109/L) | 0.34 [0.3–0.7] | 0.2 [0.2–0.4] | <0.05 |
Biomarker (pg/mL) | SURVIVORS (n. 40) | NON-SURVIVORS (n. 40) | p-Value |
---|---|---|---|
IFNγ | 1.9 [0.5–7.5] | 1.6 [0.8–6.4] | NS |
IL-1β | 0.3 [0.2–0.5] | 0.2 [0.1–0.3] | <0.05 |
IL-1Ra | 995 [700–1792] | 1179 [765–2271] | NS |
IL-10 | 9.5 [4.7–20.5] | 16.2 [10.9–24.1] | <0.05 |
IL-22 | 16.5 [10.4–26.7] | 16.1 [10.5–42.6] | NS |
IL-8 | 6.9 [4.8–10.6] | 10.5 [8–19.1] | <0.005 |
IL-6 | 19.6 [7–44.9] | 29.2 [11.9–62.4] | NS |
TNF-α | 13.6 [11.3–16.1] | 14.8 [11.6–21] | NS |
Feature 1 | Feature 2 | Correlation | p-Value |
---|---|---|---|
LDH | IL-10 | 0.6066 | 3.1 × 10−9 |
LDH | IFNγ | 0.3614 | 9.9 × 10−4 |
LDH | IL-6 | 0.3458 | 1.8 × 10−3 |
LDH | IL-1Ra | 0.3405 | 2.0 × 10−3 |
LDH | Hepcidine | 0.3333 | 2.5 × 10−3 |
LDH | CRP | 0.3228 | 5.7 × 10−3 |
LDH | IL-1β | −0.2760 | 1.3 × 10−2 |
LDH | Iron (Fe) | −0.2882 | 9.5 × 10−3 |
LDH | Lymphocytes | −0.3633 | 1.2 × 10−3 |
LDH | P/F | −0.7929 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fratta Pasini, A.M.; Stranieri, C.; Di Leo, E.G.; Bertolone, L.; Aparo, A.; Busti, F.; Castagna, A.; Vianello, A.; Chesini, F.; Friso, S.; et al. Identification of Early Biomarkers of Mortality in COVID-19 Hospitalized Patients: A LASSO-Based Cox and Logistic Approach. Viruses 2025, 17, 359. https://doi.org/10.3390/v17030359
Fratta Pasini AM, Stranieri C, Di Leo EG, Bertolone L, Aparo A, Busti F, Castagna A, Vianello A, Chesini F, Friso S, et al. Identification of Early Biomarkers of Mortality in COVID-19 Hospitalized Patients: A LASSO-Based Cox and Logistic Approach. Viruses. 2025; 17(3):359. https://doi.org/10.3390/v17030359
Chicago/Turabian StyleFratta Pasini, Anna Maria, Chiara Stranieri, Edoardo Giuseppe Di Leo, Lorenzo Bertolone, Antonino Aparo, Fabiana Busti, Annalisa Castagna, Alice Vianello, Fabio Chesini, Simonetta Friso, and et al. 2025. "Identification of Early Biomarkers of Mortality in COVID-19 Hospitalized Patients: A LASSO-Based Cox and Logistic Approach" Viruses 17, no. 3: 359. https://doi.org/10.3390/v17030359
APA StyleFratta Pasini, A. M., Stranieri, C., Di Leo, E. G., Bertolone, L., Aparo, A., Busti, F., Castagna, A., Vianello, A., Chesini, F., Friso, S., Girelli, D., & Cominacini, L. (2025). Identification of Early Biomarkers of Mortality in COVID-19 Hospitalized Patients: A LASSO-Based Cox and Logistic Approach. Viruses, 17(3), 359. https://doi.org/10.3390/v17030359