A New Approach to the Etiology of Syncope: Infection as a Cause
Abstract
:1. Introduction
2. Materials and Methods
2.1. Head-Up Tilt Test (HUTT)
- -
- Extreme variation in blood pressure during the supine or passive phase: Sustained variation where the absolute difference between maximum and minimum systolic pressure values exceeded 20 mmHg.
- -
- Small variation in blood pressure: Sustained variation where the absolute difference between maximum and minimum systolic pressure was between 10 and 20 mmHg.
- -
- Hypertensive reaction: Sustained blood-pressure values exceeding 130/90 mmHg during the passive phase.
- -
- Extreme hypertensive reaction: Sustained blood-pressure values exceeding 170/120 mmHg during the passive phase.
- -
- Postural orthostatic tachycardia syndrome (POTS): A rapid increase in heart rate of more than 30 beats per minute or a heart rate exceeding 120 beats per minute within 10 min of standing, without OH, but with symptoms of orthostatic intolerance [20].
- -
- Orthostatic hypotension (OH): A progressive and sustained drop in systolic blood pressure of more than 20 mmHg from baseline, or a drop in diastolic blood pressure of more than 10 mmHg, or systolic blood pressure falling below 90 mmHg [1].
- -
- Bradycardia during the supine phase: Heart rate < 60 beats per minute (bpm).
- -
- Tachycardia during the supine phase: Heart rate > 100 bpm.
- -
- Hypotension during the supine phase: Blood pressure ≤ 90/60 mmHg.
- -
- Hypertension during the supine phase: Blood pressure > 130/90 mmHg.
2.2. Serology Testing
- Viruses: Herpes simplex virus 1 (HSV1), Herpes simplex virus 2 (HSV2), Varicella-zoster virus (VZV), Cytomegalovirus (CMV), Epstein–Barr virus (EBV), Human herpesvirus 6 (HHV6), Adenovirus, Parvovirus B19, Coxsackievirus, and SARS-CoV-2.
- Bacteria: Mycoplasma pneumoniae, Chlamydia pneumoniae, Coxiella burnetii, Bartonella henselae, Brucella, Toxoplasma gondii, Borrelia spp. (ELISA and Western blot), Helicobacter pylori, and Yersinia enterocolitica.
- Fungi: Candida albicans and Aspergillus fumigatus.
2.3. Statistical Analysis
3. Results
3.1. Head-Up Tilt Test
3.2. Serological Testing Results
3.3. Binary Logistic Regression
3.4. Multinomial Logistic Regression
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brignole, M.; Moya, A.; De Lange, F.J.; Deharo, J.C.; Elliott, P.M.; Fanciulli, A.; Fedorowski, A.; Furlan, R.; Kenny, R.A.; Martiın, A. 2018 ESC guidelines for the diagnosis and management of syncope. Eur. Heart J. 2018, 39, 1883–1948. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R. Reflex syncope: Diagnosis and treatment. J. Arrhythmia 2017, 33, 546. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Leung, T.W.H. Autonomic dysfunction in neurological disorders. Aging 2019, 11, 1903–1904. [Google Scholar] [CrossRef]
- Yu, T.Y.; Lee, M.K. Autonomic dysfunction, diabetes and metabolic syndrome. J. Diabetes Investig. 2021, 12, 2108–2111. [Google Scholar] [CrossRef]
- Salman, I.M. Cardiovascular Autonomic Dysfunction in Chronic Kidney Disease: A Comprehensive Review. Curr. Hypertens. Rep. 2015, 17, 59. [Google Scholar] [CrossRef] [PubMed]
- Adler, B.L.; Chung, T.; Rowe, P.C.; Aucott, J. Dysautonomia following Lyme disease: A key component of post-treatment Lyme disease syndrome? Front. Neurol. 2024, 15, 1344862. [Google Scholar] [CrossRef]
- Petrun, A.M.; Sinkovic, A. Borreliosis presenting as autonomic nervous dysfunction, phrenic nerve palsy with respiratory failure and myocardial dysfunction—A case report. Cent. Eur. J. Med. 2013, 8, 463–467. [Google Scholar] [CrossRef]
- Younger, D.S.; Orsher, S. Lyme neuroborreliosis: Preliminary results froman urban referral center employing strict CDC criteria for case selection. Neurol. Res. Int. 2010, 1, 525206. [Google Scholar] [CrossRef]
- Shaw, B.H.; Stiles, L.E.; Bourne, K.; Green, E.A.; Shibao, C.A.; Okamoto, L.E.; Garland, E.M.; Gamboa, A.; Diedrich, A.; Raj, V. The face of postural tachycardia syndrome—Insights from a large cross-sectional online community-based survey. J. Intern. Med. 2019, 286, 438–448. [Google Scholar] [CrossRef]
- Blitshteyn, S.; Whitelaw, S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: A case series of 20 patients. Immunol. Res. 2021, 69, 205–211. [Google Scholar] [CrossRef]
- Miglis, M.G.; Prieto, T.; Shaik, R.; Muppidi, S.; Sinn, D.I.; Jaradeh, S. A case report of postural tachycardia syndrome after COVID-19. Clin. Auton. Res. 2020, 30, 449–451. [Google Scholar] [CrossRef] [PubMed]
- van Campen, C.L.M.C.; Visser, F.C. Orthostatic intolerance in long-haul COVIDafter SARS-CoV-2: A case-control comparison with post-EBV and insidious-onset myalgic encephalomyelitis/chronic fatigue syndrome patients. Healthcare 2022, 10, 2058. [Google Scholar] [CrossRef]
- de Freitas, R.F.; Torres, S.C.; Martín-Sánchez, F.J.; Carbó, A.V.; Lauria, G.; Nunes, J.P.L. Syncope and COVID-19 disease—A systematic review. Auton. Neurosci. 2021, 235, 102872. [Google Scholar] [CrossRef]
- Carod-Artal, F.J. Infectious diseases causing autonomic dysfunction. Clin. Auton. Res. 2018, 28, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Price, R.W. Viral infections of the autonomic nervous system and its target organs: Pathogenetic mechanisms. Med. Hypotheses 1977, 3, 33–36. [Google Scholar] [CrossRef]
- Price, R.W.; Katz, B.J.; Notkins, A.L. Latent infection of the peripheral ANS with herpes simplex virus. Nature 1975, 257, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Sivakorn, C.; Wilairatana, P.; Krudsood, S.; Schultz, M.J.; Techarang, T.; Kheawsawaung, K.; Dondorp, A.M. Severe orthostatic hypotension in otherwise uncomplicated Plasmodium vivax infection. Mala. J. 2021, 20, 28. [Google Scholar] [CrossRef] [PubMed]
- Milovanovic, B.; Djajic, V.; Bajic, D.; Djokovic, A.; Krajnovic, T.; Jovanovic, S.; Verhaz, A.; Kovacevic, P.; Ostojic, M. Assessment of Autonomic Nervous System Dysfunction in the Early Phase of Infection With SARS-CoV-Virus. Front. Neurosci. 2021, 15, 640835. [Google Scholar] [CrossRef]
- Fitzpatrick, A.P.; Theodorakis, G.; Vardas, P.; Sutton, R. Methodology of head-up tilt testing in patients with unexplained syncope. J. Am. Coll. Cardiol. 1991, 17, 125–130. [Google Scholar] [CrossRef]
- Schwalm, T. Modern Tilt Table Testing and Non-Invasive Monitoring, Traditional and Innovaritve Applications in Theory and Practice, 1st ed.; ABW Wissenschaftsverlag GmbH: Berlin, Germany, 2007. [Google Scholar]
- Barón-Esquivias, G.; Cayuela, A.; Pedrote, A.; Cabezón, S.; Morán, J.E.; Errázquin, F. Características Clínicas y resultados del test de tabla basculante utilizando tres protocolos en 1.661 Pacientes con síncope. Rev. Española Cardiol. 2003, 56, 916–920. [Google Scholar] [CrossRef]
- Noormand, R.; Shafiee, A.; Davoodi, G.; Tavakoli, F.; Gheini, A.; Yaminisharif, A.; Jalali, A.; Sadeghian, S. Age and the Head-Up Tilt Test Outcome in Syncope Patients. Res. Cardiovasc. Med. 2015, 4, e27871. [Google Scholar] [CrossRef] [PubMed]
- Julu, P.O.; Cooper, V.L.; Hansen, S.; Hainsworth, R. Cardiovascular regulation in the period preceding vasovagal syncope in conscious humans. J. Physiol. 2003, 549, 299–311. [Google Scholar] [CrossRef]
- Hausenloy, D.J.; Arhi, C.; Chandra, N.; Franzen-McManus, A.-C.; Meyer, A.; Sutton, R. Blood pressure oscillations during tilt testing as a predictive marker of vasovagal syncope. Europace 2009, 11, 1696–1701. [Google Scholar] [CrossRef]
- Petersen, Á.; Salas-Herrera, C.; Lerma, C.; Brown-Escobar, C.; Kostin, A.; Sierra-Beltrán, M.; González-Hermosillo, J.A. Transient Orthostatic Hypertension During Head-Up Tilt Test in Young Adults: A Phenotype of Blood Pressure Variability. J. Clin. Neurophysiol. 2021, 38, 242–249. [Google Scholar] [CrossRef]
- Naschitz, J.E.; Rosner, I. Orthostatic hypotension: Framework of the syndrome. Postgrad. Med. J. 2007, 83, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Budzyński, J.; Kłopocka, M.; Bujak, R.; Swiatkowski, M.; Pulkowski, G.; Sinkiewicz, W. Autonomic nervous function in Helicobacter pylori-infected patients with atypical chest pain studied by analysis of heart rate variability. Eur. J. Gastroenterol. Hepatol. 2004, 16, 451–457. [Google Scholar] [CrossRef]
- Cohen, J.A.; Miller, L.; Polish, L. Orthostatic hypotension in human immunodeficiency virus infection may be the result of generalized autonomic nervous system dysfunction. J. Acquir. Immune Defic. Syndr. 1991, 4, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Goin, J.C.; Venera, G.; Biscoglio de Jiménez Bonino, M.; Sterin-Borda, L. Circulating antibodies against nicotinic acetylcholine receptors in chagasic patients. Clin. Exp. Immunol. 1997, 110, 219–225. [Google Scholar] [CrossRef]
- Rassi, A., Jr.; Rassi, A.; Marcondes de Rezende, J. American trypanosomiasis (Chagas disease). Infect. Dis. Clin. N. Am. 2012, 26, 275–291. [Google Scholar] [CrossRef]
- Günlü, S.; Aktan, A. Cardiac arrhythmias, conduction system abnormalities, and autonomic tone in patients with brucellosis. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 9473–9479. [Google Scholar] [CrossRef]
- Kasmani, R.; Elkambergy, H.; Okoli, K. Postural orthostatic tachycardia syndrome associated with Mycoplasma pneumoniae. Infect. Dis. Clin. Pract. 2009, 17, 342–343. [Google Scholar] [CrossRef]
- Bennett, J.L.; Mahalingam, R.; Wellish, M.C.; Gilden, D.H. Epstein-Barr virus--associated acute autonomic neuropathy. Ann. Neurol. 1996, 4, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Nakao, K.; Namekawa, M.; Kondo, S.; Ono, S.; Nakano, I. Subacute autonomic and sensory neuropathy closely related to cytomegalovirus infection preceded by frequent syncopal attacks. Rinsho Shinkeigaku 2016, 56, 555–559. [Google Scholar] [CrossRef]
- Neville, B.G.; Sladen, G.E. Acute autonomic neuropathy following primary herpes simplex infection. J. Neurol. Neurosurg. Psychiatry 1984, 47, 648–650. [Google Scholar] [CrossRef] [PubMed]
- Hanai, S.; Komaki, H.; Sakuma, H.; Nakagawa, E.; Sugai, K.; Sasaki, M.; Oya, Y.; Higurashi, N.; Hamano, S. Acute autonomic sensory and motor neuropathy associated with parvovirus B19 infection. Brain Dev. 2011, 33, 161–165. [Google Scholar] [CrossRef]
- Pavesi, G.; Gemignani, F.; Macaluso, G.M.; Ventrua, P.; Magnani, G.; Fiocchi, A.; Medici, D.; Marbini, A.; Mancia, D. Acute sensory and autonomic neuropathy: Possible association with coxsackie B virus infection. J. Neurol. Neurosurg. Psychiatry 1992, 55, 613–615. [Google Scholar] [CrossRef]
- Gravelsina, S.; Vilmane, A.; Svirskis, S.; Rasa-Dzelzkaleja, S.; Nora-Krukle, Z.; Vecvagare, K.; Krumina, A.; Leineman, I.; Shoenfeld, Y.; Murovska, M. Biomarkers in the diagnostic algorithm of myalgic encephalomyelitis/chronic fatigue syndrome. Front. Immunol. 2022, 13, 928945. [Google Scholar] [CrossRef]
- Wang, H.; Siddharthan, V.; Hall, J.O.; Morrey, J.D. Autonomic nervous dysfunction in hamsters infected with West Nile virus. PLoS ONE 2011, 6, e19575. [Google Scholar] [CrossRef]
- Burch, G.E.; Chu, K.C.; Soike, K.F. Coxsackievirus B4 infection of sympathetic ganglia in squirrel monkeys. Angiology 1985, 36, 23–26. [Google Scholar] [CrossRef]
- Pieknik, J.R.; Bertke, A.S.; Krause, P.R. Herpes Simplex Virus 2 in Autonomic Ganglia: Evidence for Spontaneous Reactivation. J. Virol. 2019, 93, e00227-19. [Google Scholar] [CrossRef]
- Sanjuan, N.A.; Lascano, E.F. Autonomic nervous system involvement in experimental genital infection by herpes simplex virus type 2. Arch. Virol. 1986, 91, 329–339. [Google Scholar] [CrossRef]
- Sakakibara, R.; Sawai, S.; Ogata, T. Varicella-zoster virus infection and autonomic dysfunction. Auton. Neurosci. 2022, 242, 103018. [Google Scholar] [CrossRef]
- Mathuranath, P.S.; Duralpandian, J.; Kishore, A. Acute dysautonomia following mumps. Neurol. India 1999, 47, 130–132. [Google Scholar] [PubMed]
- Tsui, C.Y.; Burch, G.E. Lesions of peripheral autonomic ganglia in mice infected with coxsackie virus B1. Arch. Pathol. 1972, 94, 286–290. [Google Scholar] [PubMed]
- Besnard, M.; Faure, C.; Fromont-Hankard, G.; Ansart-Pirenne, H.; Peuchmaur, M.; Cezard, J.P.; Navarro, J. Intestinal pseudo-obstruction and acute pandysautonomia associated with Epstein-Barr virus infection. Am. J. Gastroenterol. 2000, 95, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, F.B.; Gherbesi, E.; Faggiano, A.; Gnan, E.; Maruccio, A.; Schiavone, M.; Iacuzio, L.; Carugo, S. Viral Myocarditis: Classification, Diagnosis, and Clinical Implications. Front. Cardiovasc. Med. 2022, 9, 908663. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, R.A.; Di Marco, J.P.; Akar, J.G.; Voros, S.; Kramer, C.M. Chagas myocarditis and syncope. J. Cardiovasc. Magn. Reson. 2005, 7, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; Reddy, S.; Abboud, J.; Jonnalagadda, K.; Ghanta, S.K.; Kondamudi, V. Brief, recurrent, and spontaneous episodes of loss of consciousness in a healthy young male. Int. Med. Case Rep. J. 2010, 3, 71–76. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
(1) Syncope N = 506 | (2) Syncope with OH N = 235 | (3) OH N = 65 | p Value | |
---|---|---|---|---|
Male (n, %) | 146 (28.9%) 2 | 50 (21.3%) 1,3 | 22 (33.8%) 2 | <0.05 a |
Female (n, %) | 360 (71.1%) 2 | 185 (78.7%) 1,3 | 43 (66.2%) 2 | |
Age (mean ± SD) | 45.68 ± 16.03 | 47.67 ± 15.16 | 45 ± 13.35 | >0.05 b |
Hypertension (n, %) | 105 (20.8%) | 32 (13.6%) | 8 (12.3%) | 0.003 a |
DM (n, %) | 27 (5.3%) | 7 (3%) | 0 | 0.002 a |
ME/CFS (n, %) | 107 (21.1%) | 72 (30.6%) | 29 (44.6%) | <0.001 a |
Groups | Syncope (n = 506) | Syncope with OH (n = 235) | OH (n = 65) | Sig. |
---|---|---|---|---|
n (%) | ||||
Positive head-up tilt test | 30 (61.6%) | 213 (90.6%) | 0(0.0%) | p 1 < 0.001 p 2 < 0.001 p 3 < 0.001 |
Extreme variation in blood pressure—supine position, passive phase | 238 (47%) | 79 (33.6%) | 35 (53.8%) | p 1 < 0.001 p 2 > 0.05 p 3 < 0.001 |
Small variation in blood pressure—supine position | 24 (4.7%) | 26 (11.1%) | 8 (12.3%) | p 1 < 0.01 p 2 < 0.05 p 3 >0.05 |
Small variation in blood pressure—supine position, passive phase | 50 (9.9%) | 28 (11.9%) | 19 (29.2%) | p 1 > 0.001 p 2< 0.05 p 3 < 0.001 |
Hypertensive reaction | 91 (18.00%) | 3 (1.3%) | 3 (4.6%) | p 1 < 0.001 p 2 > 0.01 p 3 > 0.05 |
Extreme hypertensive reaction | 38 (7.5%) | 0 (0.0%) | 1 (1.5%) | p 1 < 0.001 p 2 > 0.05 p 3 > 0.05 |
POTS | 40 (7.9%) | 0 (0%) | 0 (0.0%) | p 1 < 0.001 p 2 < 0.001 p 3 > 0.05 |
Hypotension in supine position | 12 (2.4%) | 20 (8.5%) | 2 (3.1%) | p 1 < 0.001 p 2 > 0.05 p 3 > 0.05 |
Group | Syncope (n = 242) | Syncope with OH (n = 194) | OH (n = 59) | Sig. |
---|---|---|---|---|
Positive IgM and IgG Antibodies (n, %) | ||||
IgM Mycoplasma pneumoniae | 18 (7.4%) | 13 (6.7%) | 9 (15.3%) | p 1 > 0.05 p 2 > 0.05 p 3 < 0.05 |
IgG Mycoplasma pneumoniae | 97 (40.1%) | 37 (19.1%) | 15 (25.4%) | p 1 < 0.001 p 2 < 0.05 p 3 > 0.05 |
IgG Coxiella burnetii | 15 (6.2%) | 4 (2.1%) | 0 (0%) | p 1 < 0.05 p 2 < 0.05 p 3 > 0.05 |
IgG Yersinia enterocolitica | 7 (2.9%) | 5 (2.6%) | 6 (10.2%) | p 1 > 0.05 p 2 < 0.05 p 3 < 0.05 |
IgG Bartonella henselae | 16 (6.6%) | 3 (1.5%) | 3 (5.1%) | p 1 < 0.05 p 2 > 0.05 p 3 > 0.05 |
Group | Syncope (n = 242) | Syncope with OH (n = 194) | OH (n = 59) | Sig. |
---|---|---|---|---|
Positive IgM and IgG Antibodies (n, %) | ||||
IgG Adenovirus | 147 (60.7%) | 65 (33.5%) | 23 (39%) | p 1 < 0.001 p 2 < 0.01 p 3 > 0.05 |
IgM Coxsackievirus | 8 (3.3%) | 42 (21.6%) | 20 (33.9%) | p 1 < 0.001 p 2 < 0.001 p 3 > 0.05 |
IgG Coxsackievirus | 16 (6.6%) | 34 (17.5%) | 17 (28.8%) | p 1 < 0.001 p 2 < 0.001 p 3 > 0.05 |
IgM CMV | 19 (7.9%) | 21 (10.8%) | 11 (18.6%) | p 1 < 0.05 p 2 < 0.001 p 3 < 0.05 |
IgG CMV | 187 (77.3%) | 135 (69.6%) | 32 (54.2%) | p 1 > 0.05 p 2 < 0.001 p 3 < 0.05 |
IgM EBV | 4 (1.7%) | 11 (5.7%) | 8 (13.6%) | p 1 < 0.05 p 2 < 0.001 p 3 < 0.05 |
IgG EBV | 190 (78.5%) | 139 (71.6%) | 32 (54.2%) | p 1 > 0.05 p 2 < 0.001 p 3 < 0.05 |
IgG VZV | 191 (78.9%) | 88 (45.4%) | 26 (44.1%) | p 1 < 0.001 p 2 < 0.001 p 3 > 0.05 |
IgM HSV1 | 30 (12.4%) | 11 (5.7%) | 4 (6.8%) | p 1 < 0.05 p 2 > 0.05 p 3 > 0.05 |
IgG HSV1 | 147 (60.7%) | 61 (31.4%) | 17 (28.8%) | p 1 < 0.001 p 2 < 0.001 p 3 > 0.05 |
Positive Head-Up Tilt Test | ||||
---|---|---|---|---|
Univariate | Multivariate | |||
Parameter | Sig. | Exp (B) | Sig. | Adjusted Exp (B) |
Sex (Female) | 0.000 *** | 3.44 (2.05–5.44) | 0.000 *** | 3.24 (1.95–5.39) |
Small variation in blood pressure at supine position | 0.000 *** | 0.17 (0.07–046) | 0.002 ** | 0.21 (0.08–0.56) |
IgG-positive CMV | 0.004 ** | 2.14 (1.28–3.56) | 0.01 * | 2.07 (1.19–3.6) |
IgG-positive Mycoplasma pneumoniae | 0.038 * | 0.62 (0.4–0.97) | 0.049 * | 0.61(0.38–0.98 |
IgG-positive SARS-CoV 19 | 0.02 * | 0.45 (0.23–0.88 | 0.094 | 0.54 (0.26–1.11) |
Extreme Variation in Blood Pressure During HUTT | ||||
Sex (male) | 0.009 ** | 1.89 (1.18–3.03) | 0.011 * | 1.89 (1.16–3.03) |
IgG-Positive Coxsackievirus | 0.02 * | 2.65 (1.17–6.02) | 0.029 * | 2.55 (1.1–5.89) |
IgG-Positive CMV | 0.011 * | 0.52 (0.31–0.86) | 0.039 * | 0.58 (0.34–0.97) |
IgG-Positive Chlamydia pneumoniae | 0.041 | 0.63 (0.4–0.98) | 0.112 | 0.69 (0.43–1.09) |
Small Variation in Blood Pressure During HUTT | ||||
IgM-Positive Coxsackievirus | 0.04 * | 3.06 (1.06–12.28) | 0.04 * | 3.06 (1.06–12.28) |
Hypertensive Response | ||||
Sex (Male) | 0.028 * | 2.25 (1.09–4.63) | 0.022 * | 2.35 (1.13–4.88) |
Positive IgM Parvo B19 virus | 0.042 * | 4.27 (1.05–17.36) | 0.032 * | 4.78 (1.15–19.93) |
POTS | ||||
Age | 0.001 ** | 0.94 (0.91–0.98) | 0.001 ** | 0.94 (0.91–0.98) |
OH | ||||
---|---|---|---|---|
Univariate | Multivariate | |||
Parameter | Sig. | Exp (B) | Sig. | Adjusted Exp (B) |
Sex (Female) | 0.021 * | 1.61 (1.07–2.42) | 0.008 ** | 1.92 (1.19–3.13) |
IgG-positive Adenovirus | 0.000 *** | 0.34 (0.24–0.5) | 0.08 * | 0.65 (0.41–1.05) |
IgM-positive Coxsackievirus | 0.000 *** | 9.46 (4.42–20.25) | 0.005 ** | 3.39 (1.44–7.96) |
IgG-positive Coxsackievirus | 0.000 *** | 3.99 (2.14–7.43) | 0.051 | 2.11 (1–4.47) |
IgG-positive CMV | 0.003 ** | 0.55 (0.38–0.82) | 0.711 | 0.91 (0.54–1.53) |
IgM-positive EBV | 0.004 ** | 6.05 (1.76–20.83) | 0.031 * | 4.36 (1.15–16.6) |
IgG-positive EBV | 0.008 ** | 0.58 (0.38–0.86) | 0.691 | 1.12 (0.65–1.94) |
IgG-positive Mycoplasma pneumoniae | 0.000 *** | 0.4 (0.27–0.6) | 0.166 | 0.72 (0.45–1.15) |
IgM-positive Coxiella burnetti | 0.017 * | 0.44 (0.23–0.86) | 0.12 | 0.52 (0.23–1.19) |
IgG-positive Coxiella burnetti | 0.012 * | 0.24 (0.08–0.74) | 0.295 | 0.5 (0.14–1.82) |
IgA-positive Helicobacter pylori | 0.012 * | 0.43 (0.22–0.83) | 0.061 | 0.48 (0.22–1.03) |
IgG-positive VZV | 0.000 *** | 0.23 (0.15–0.34) | 0.001 ** | 0.43 (0.26–0.7) |
IgM-positive HSV1 | 0.008 ** | 0.41 (0.21–0.79) | 0.043 * | 0.46 (0.22–0.98) |
IgG-positive HSV1 | 0.000 *** | 0.3 (0.2–0.43) | 0.084 | 0.66 (0.41–1.06) |
IgM-positive Bartonella henselae | 0.000 *** | 0.3 (0.08–0.8) | 0.303 | 0.51 (0.14–1.85) |
IgG-positive Bartonella henselae | 0.027 * | 0.4 (0.13–0.88) | 0.491 | 0.68 (0.23–2.04) |
Reference Category: Group 1 (Syncope) | |||||
---|---|---|---|---|---|
Sig. | Exp(B) | 95% Confidence Interval for Exp(B) | |||
Lower Bound | Upper Bound | ||||
Group 2 (syncope with OH) | [AdenoIgG = negative] | 0.046 * | 1.731 | 1.009 | 2.970 |
[AdenoIgG = positive] | 0 *. | ||||
[ParvoIgM = negative] | 0.020 * | 5.096 | 1.292 | 20.102 | |
[ParvoIgM = positive] | 0 *. | ||||
[KoksIgM = negative] | 0.010 * | 0.290 | 0.114 | 0.741 | |
[KoksIgM = positive] | 0 *. | ||||
[MikoPnIgG = negative] | 0.026 * | 1.830 | 1.074 | 3.116 | |
[MikoPnIgG = 1.00] | 0 *. | ||||
[HerpesZosterIgG = negative] | 0.000 *** | 2.710 | 1.554 | 4.726 | |
[HerpesZosterIgG = positive] | 0 *. | ||||
[Sex = male] | 0.001 * | 0.394 | 0.225 | 0.689 | |
[Sex = female] | 0 *. | ||||
Group 3 (OH) | [BorIgG = negative] | 0.006 ** | 0.173 | 0.050 | 0.599 |
[BorIgG1 = positive] | 0 *. | ||||
[KoksIgM = negative] | 0.001 * | 0.146 | 0.045 | 0.471 | |
[KoksIgM = positive] | 0 *. | ||||
[EBVIgM = negative] | 0.041 * | 0.206 | 0.045 | 0.938 | |
[EBVIgM = positive] | 0 *. | ||||
Reference Category: Group 2 (Syncope with OH) | |||||
Group 3 (OH) | [BorIgG = negative | 0.029 * | 0.251 | 0.073 | 0.869 |
[BorIgG = positive | 0 *. | ||||
[BartonelaIgG = negative | 0.008 ** | 0.061 | 0.008 | 0.482 | |
[Bartonela_IgG = positive | 0 *. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milovanovic, B.; Markovic, N.; Petrovic, M.; Zugic, V.; Ostojic, M.; Dragicevic-Antonic, M.; Bojic, M. A New Approach to the Etiology of Syncope: Infection as a Cause. Viruses 2025, 17, 427. https://doi.org/10.3390/v17030427
Milovanovic B, Markovic N, Petrovic M, Zugic V, Ostojic M, Dragicevic-Antonic M, Bojic M. A New Approach to the Etiology of Syncope: Infection as a Cause. Viruses. 2025; 17(3):427. https://doi.org/10.3390/v17030427
Chicago/Turabian StyleMilovanovic, Branislav, Nikola Markovic, Masa Petrovic, Vasko Zugic, Milijana Ostojic, Milica Dragicevic-Antonic, and Milovan Bojic. 2025. "A New Approach to the Etiology of Syncope: Infection as a Cause" Viruses 17, no. 3: 427. https://doi.org/10.3390/v17030427
APA StyleMilovanovic, B., Markovic, N., Petrovic, M., Zugic, V., Ostojic, M., Dragicevic-Antonic, M., & Bojic, M. (2025). A New Approach to the Etiology of Syncope: Infection as a Cause. Viruses, 17(3), 427. https://doi.org/10.3390/v17030427