Pathogen Profile of Children Hospitalised with Viral Respiratory Infections in Galati County, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Configuration
2.2. Patient’s Enrolment
- -
- hospitalised children of age 0–60 months
- -
- acute fever (temperature ≥ 38 °C) or at least one respiratory symptom (cough, rhinorrhea, nasal congestion, wheezing or sore throat)
- -
- undergoing the Allplex™ Respiratory Panel Assays kits 1,2,3,4
- -
- onset of illness within 3 days before admission
- -
- children admitted for other disorders
2.3. Sample Collection
2.4. Extraction of Viral Nucleic Acids and Multiplex RT-PCR Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Pathogens | n (%) |
---|---|
HRV A/B/C + S. pneumoniae + H. influenzae | 33 (5.4) |
HAdV + HRV A/B/C + H. influenzae | 11 (1.8) |
HMPV + S. pneumoniae + H. influenzae | 10 (1.7) |
HRV A/B/C + HBoV 1/2/3/4 + S. pneumoniae + H. influenzae HBoV 1/2/3/4 + HRV A/B/C + S. pneumoniae | 9 (1.5) 6 (1) |
HAdV + HRV A/B/C + S. pneumoniae + H. influenzae | 6 (1) |
HAdV + S. pneumoniae + H. influenzae | 5 (0.8) |
HAdV + HRV A/B/C + S. pneumoniae | 5 (0.8) |
HBoV 1/2/3/4 + HRV A/B/C + H. influenzae | 5 (0.8) |
EV + HRV A/B/C + S. pneumoniae + H. influenzae | 5 (0.8) |
EV + HRV A/B/C + S. pneumoniae HBoV 1/2/3/4 + S. pneumoniae + H. influenzae | 5 (0.8) 4 (0.7) |
RSV + S. pneumonie + H. influenzae | 3 (0.5) |
HPIV-4 + S. pneumoniae + H. influenzae | 3 (0.5) |
HCoV OC43 + S. pneumoniae + H. influenzae | 3 (0.5) |
EV + S. pneumoniae + H. influenzae | 3 (0.5) |
HPIV-3 + S. pneumoniae + H. influenzae | 3 (0.5) |
HPIV-3 + HRV A/B/C + H. influenzae | 2 (0.3) |
HPIV-3 + HRV A/B/C+ S. pneumoniae | 2 (0.3) |
HPIV-3 + HRV A/B/C + S. pneumoniae + H. influenzae | 2 (0.3) |
RSV + HRV A/B/C + S. pneumoniae + H. influenzae | 2 (0.3) |
HAdV + HMPV + S. pneumoniae | 2 (0.3) |
HAdV + HBoV 1/2/3/4 + H. influenzae | 2 (0.3) |
HAdV + HBoV 1/2/3/4 + S. pneumoniae + H. influenzae | 2 (0.3) |
HCoV NL63 + HBoV 1/2/3/4 + S. pneumonie | 2 (0.3) |
HCoV NL63 + HAdV + S. pneumoniae + H. influenzae HCoV OC43 + HRV A/B/C + S. pneumoniae | 2 (0.3) 1 (0.2) |
RSV + HAdV + H. influenzae | 1 (0.2) |
RSV + HAdV + HBoV 1/2/3/4 | 1 (0.2) |
RSV + HCoV OC43 + S. pneumoniae + H. influenzae | 1 (0.2) |
RSV + HAdV + HRV A/B/C | 1 (0.2) |
RSV + HAdV + HRV A/B/C + S. pneumoniae + H. influenzae | 1 (0.2) |
RSV + HBoV 1/2/3/4 + HCoV OC43 | 1 (0.2) |
FLU A + HAdV + H. influenzae | 1 (0.2) |
FLU A + S. pneumoniae + H. influenzae | 1 (0.2) |
FLU A + HBoV 1/2/3/4 + S. pneumoniae + H. influenzae | 1 (0.2) |
SARS-CoV-2 + HAdV + S. pneumoniae | 1 (0.2) |
SARS-CoV-2 + HRV A/B/C + S. pneumoniae + H. influenzae | 1 (0.2) |
SARS-CoV-2 + HBoV 1/2/3/4 + HRV A/B/C | 1 (0.2) |
HPIV-1 + EV + S. pneumoniae HPIV-1 + HAdV + HMPV + H. influenzae | 1 (0.2) 1 (0.2) |
HPIV-1 + HBoV 1/2/3/4 + S. pneumoniae | 1 (0.2) |
HPIV-1 + S. pneumoniae + H. influenzae HPIV-1 + HAdV + HMPV HPIV-1 + B.parapertussis + S. pneumoniae + H. influenzae | 1 (0.2) 1 (0.2) 1 (0.2) |
HAdV + HRV A/B/C + HPIV-3 + S. pneumoniae | 1 (0.2) |
HAdV + EV + H. influenzae HAdV + EV + HRV A/B/C | 1 (0.2) 1 (0.2) |
HAdV + HRV A/B/C + HBoV 1/2/3/4 + H. influenzae HAdV + B.parapertussis + S. pneumoniae + H. influenzae HAdV + HCoV OC43 + S. pneumoniae + H. influenzae HAdV + S. pneumoniae + M. pneumoniae + H. influenzae HAdV + HRV A/B/C + S. pneumoniae + H. influenzae + M. pneumoniae HAdV + HRV A/B/C + HCoV NL63 + S. pneumoniae + H. influenzae HAdV + HRV A/B/C + HBoV 1/2/3/4 + S. pneumoniae + H. influenzae | 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) |
HCoV OC43 + HBoV 1/2/3/4 + S. pneumoniae HCoV OC43 + HRV A/B/C + H. influenzae HCoV OC43 + HRV A/B/C + S. pneumoniae + H. influenzae | 1 (0.2) 1 (0.2) 1 (0.2) |
HBoV 1/2/3/4 + B.parapertussis + S. pneumoniae HBoV 1/2/3/4 + HRV A/B/C + HCoV NL63 + S. pneumoniae HBoV 1/2/3/4 + HRV A/B/C + HCoV NL63 | 1 (0.2) 1 (0.2) 1 (0.2) |
HRV A/B/C + HMPV + H. influenzae | 1 (0.2) |
HRV A/B/C + HBoV 1/2/3/4 + HMPV | 1 (0.2) |
HRV A/B/C + B.parapertussis + H. influenzae | 1 (0.2) |
HRV A/B/C + HCoV 229E + HCoV NL63 HRV A/B/C + M. pneumoniae + H. influenzae HRV A/B/C + S. pneumoniae + H. influenzae + M. pneumoniae | 1 (0.2) 1 (0.2) 1 (0.2) |
HMPV + HRV A/B/C + HCoV NL63 + S. pneumoniae | 1 (0.2) |
HMPV + HBoV 1/2/3/4 + H. influenzae | 1 (0.2) |
HMPV + HBoV 1/2/3/4 + S. pneumoniae + H. influenzae | 1 (0.2) |
HMPV + HAdV + S. pneumoniae + H. influenzae HMPV + HPIV-1 + HPIV-3 + S. pneumoniae + M. pneumoniae HMPV + HPIV-1 + HRV A/B/C HMPV + HPIV-1 + EV + S. pneumoniae + M. pneumoniae HMPV + HBoV 1/2/3/4 + HAdV + S. pneumoniae | 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) |
EV + HAdV + HCoV OC43 + H. influenzae | 1 (0.2) |
EV + HRV A/B/C + H. influenzae EV + HPIV-2 + HRV A/B/C + S. pneumoniae EV + HPIV-3 + HRV A/B/C + S. pneumoniae + H. influenzae EV + HMPV + S. pneumoniae EV + HPIV-1 + HRV A/B/C + H. influenzae | 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2)1 (0.2) |
HPIV-4 + HRV A/B/C + S. pneumoniae + H. influenzae | 1 (0.2) |
HPIV-4 + HBoV 1/2/3/4 + HRV + S. pneumoniae HPIV-4 + M. pneumoniae + H. influenzae HPIV-4 + HBoV 1/2/3/4 + H. influenzae HPIV-4 + HRV A/B/C + S. pneumoniae | 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) |
HPIV-2 + S. pneumoniae + H. influenzae HCoV NL63 + HCoV 229E | 1 (0.2) 1 (0.2) |
HCoV NL63 + HPMV + H. influenzae | 1 (0.2) |
HCoV NL63 + HAdV + S. pneumoniae + H. influenzae | 1 (0.2) |
HCoV NL63 + S. pneumoniae + H. influenzae | 1 (0.2) |
HCoV NL63 + HRV A/B/C + H. influenzae HCoV NL63 + HRV A/B/C + S. pneumoniae + H. influenzae HCoV NL63 + HAdV + S. pneumoniae + H. influenzae + M. pnemoniae HCoV NL63 + HBoV 1/2/3/4 + S. pneumonie + H. influenzae HPIV-3 + EV + H. influenzae HPIV-3 + HBoV 1/2/3/4 + EV B. parapertussis + H. influenzae + S. pneumonie | 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) |
Viruses | Boys (%) n = 458 | Girls (%) n = 345 | Total (%) n = 803 | p Value |
---|---|---|---|---|
Viral monoinfections Viral coinfections Mixed coinfections Bacterial monoinfections Bacterial coinfections Positive tests | 123 (26.9) | 72 (20.9) | 195 (24.3) | 0.442 |
34 (7.4) 192 (41.9) 41 (9) 14 (3.1) | 21 (6.1) 165 (47.8) 32 (9.3) 9 (2.6) | 55 (6.9) 357 (44.5) 73 (9.1) 23 (2.9) | ||
404 (88.2) | 299 (86.7) | 703 (87.6) | ||
HRV A/B/C | 178 (38.9) | 131 (38) | 309 (38.5) | 0.797 |
HAdV | 60 (13.1) | 50 (14.5) | 110 (13.7) | 0.570 |
HBoV 1/2/3/4 | 48 (10.5) | 43 (12.5) | 91 (11.3) | 0.380 |
HMPV | 30 (6.6) | 22 (6.4) | 52 (6.5) | 0.921 |
HPIV-1 | 7 (1.5) | 6 (1.7) | 13 (1.6) | 0.815 |
HPIV-2 | 2 (0.4) | 2 (0.6) | 4 (0.5) | 1.000 |
HPIV-3 | 29 (6.3) | 20 (5.8) | 49 (6.1) | 0.754 |
HPIV-4 | 14 (3.1) | 8 (2.3) | 22 (2.7) | 0.526 |
EV | 23 (5) | 16 (4.6) | 39 (4.9) | 0.802 |
RSV | 23 (5) | 20 (5.8) | 43 (5.4) | 0.629 |
HCoV NL63 | 14 (3.1) | 10 (2.9) | 24 (3) | 0.896 |
HCoV OC43 | 14 (3.1) | 10 (2.9) | 24 (3) | 0.896 |
HCoV 229E | 2 (0.4) | 0 (0) | 2 (0.3) | 0.509 |
SARS-CoV-2 | 10 (2.2) | 7 (2) | 17 (2.1) | 1.000 |
FLUA | 4 (0.9) | 3 (0.9) | 7 (0.9) | 1.000 |
FLUB | 1 (0.2) | 1 (0.3) | 2 (0.3) | 1.000 |
Viruses | URTI n (%) n = 108 | LRTI n (%) n = 694 | p Value |
---|---|---|---|
HRV A/B/C | 30 (27.8) | 279 (40.2) | 0.014 * |
HAdV | 23 (21.3) | 87 (12.5) | 0.014 * |
HBoV 1/2/3/4 | 6 (5.6) | 84 (12.1) | 0.045 * |
HMPV | 4 (3.7) | 48 (6.9) | 0.207 |
HPIV-1 | 1 (0.9) | 12 (1.7) | 1.000 |
HPIV-2 | 0 | 4 (0.6) | 1.000 |
HPIV-3 | 3 (2.8) | 46 (6.6) | 0.120 |
HPIV-4 | 4 (3.7) | 18 (2.6) | 0.522 |
EV | 6 (5.6) | 33 (4.8) | 0.719 |
RSV | 0 | 43 (6.2) | 0.008 * |
HCoV NL63 | 2 (1.9) | 22 (3.2) | 0.760 |
HCoV OC43 | 4 (3.7) | 20 (2.9) | 0.552 |
HCoV 229E | 1 (0.9) | 1 (0.1) | 0.251 |
SARS-CoV-2 | 7 (6.5) | 10 (1.4) | 0.004 * |
FLU A | 1 (0.9) | 6 (0.9) | 1.000 |
FLU B | 0 | 2 (0.3) | 1.000 |
S. pneumoniae | 26 (24.1) | 285 (41.1) | 0.001 * |
H. influenzae | 28 (25.9) | 252 (21.8) | 0.035 * |
B. parapertussis | 0 | 12 (1.7) | 0.386 |
M. pneumoniae | 3 (2.8) | 5 (0.7) | 0.080 |
Viruses | PICU n (%) | p Value | O2 Therapy n (%) | p Value |
---|---|---|---|---|
HRV A/B/C (n = 309) | 0.164 | 0.583 | ||
Monoinfection | 17 (5.5) | 4 (1.3) | ||
Viral coinfection | 9 (2.9) | 2 (0.7) | ||
Mixed coinfection | 50 (16.2) | 9 (2.9) | ||
HAdV (n = 110) | 0.174 | 1.000 | ||
Monoinfection | 1 (0.9) | 0 | ||
Viral coinfection | 2 (1.8) | 0 | ||
Mixed coinfection | 13 (11.8) | 3 (2.7) | ||
HBoV 1/2/3/4 (n = 91) | 0.394 | 0.654 | ||
Monoinfection | 3 (3.3) | 1 (1.1) | ||
Viral coinfection | 4 (4.4) | 1 (1.1) | ||
Mixed coinfection | 16 (17.6) | 2 (2.2) | ||
HMPV (n = 52) | 0.787 | 1.000 | ||
Monoinfection | 2 (3.9) | 0 | ||
Viral coinfection | 1 (1.9) | 0 | ||
Mixed coinfection | 9 (17.3) | 1 (1.9) | ||
HPIV-1 (n = 13) | 0.326 | 0.002 * | ||
Monoinfection | 1 (7.7) | 2 (15.4) | ||
Viral coinfection | 1 (7.7) | 0 | ||
Mixed coinfection | 2 (15.4) | 1 (7.7) | ||
HPIV-2 (n = 4) | 0.612 | 1.000 | ||
Monoinfection | 0 | 0 | ||
Mixed coinfection | 1 (25) | 0 | ||
HPIV-3 (n = 49) | 0.757 | 1.000 | ||
Monoinfection | 3 (6.1) | 0 | ||
Viral coinfection | 1 (2) | 0 | ||
Mixed coinfection | 3 (6.1) | 0 | ||
HPIV-4 (n = 22) | 0.862 | 1.000 | ||
Monoinfection | 2 (9.1) | 0 | ||
Viral coinfection | 0 | 0 | ||
Mixed coinfection | 3 (13.6) | 0 | ||
EV (n = 39) | 0.601 | 0.124 | ||
Monoinfection | 0 | 1 (2.6) | ||
Viral coinfection | 0 | 0 | ||
Mixed coinfection | 6 (15.4) | 2 (5.1) | ||
RSV (n = 43) | 0.773 | 0.102 | ||
Monoinfection | 3 (7) | 2 (4.7) | ||
Viral coinfection | 3 (7) | 1 (2.3) | ||
Mixed coinfection | 3 (7) | 1 (2.3) | ||
HCoV NL63 (n = 24) | 0.908 | 1.000 | ||
Monoinfection | 0 | 0 | ||
Viral coinfection | 0 | 0 | ||
Mixed coinfection | 3 (12.5) | 0 | ||
HCoV OC43 (n = 24) | 0.952 | 1.000 | ||
Monoinfection | 1 (4.2) | 0 | ||
Viral coinfection | 0 | 0 | ||
Mixed coinfection | 2 (8.3) | 0 | ||
HCoV 229E (n = 2) | 1.000 | 1.000 | ||
Viral coinfection | 0 | 0 | ||
Mixed coinfection | 0 | 0 | ||
SARS-CoV-2 (n = 17) | 0.017 * | 1.000 | ||
Monoinfection | 3 (17.7) | 0 | ||
Viral coinfection | 2 (11.8) | 0 | ||
Mixed coinfection | 3 (17.7) | 0 | ||
FLU A (n = 7) | 0.282 | 1.000 | ||
Monoinfection | 0 | 0 | ||
Viral coinfection | 1 | 0 | ||
Mixed coinfection | 0 | 0 | ||
FLU B (n = 2) | 0.377 | 1.000 | ||
Monoinfection | 1 (14.3) | 0 | ||
Viral coinfection | 0 | 0 | ||
S. pneumoniae (n = 311) | 0.472 | 0.636 | ||
Monobacterial infection | 10 (3.2) | 1 (0.3) | ||
Bacterial coinfection | 5 (1.6) | 1 (0.3) | ||
Mixed coinfection | 59 (19) | 7 (2.3) | ||
H. influenzae (n = 278) | 0.337 | 0.128 | ||
Monobacterial infection | 2 (0.7) | 0 | ||
Bacterial coinfection | 5 (1.8) | 1 (0.4) | ||
Mixed coinfection | 49 (17.6) | 4 (1.4) | ||
B. parapertussis (n = 12) | 1.000 | 0.379 | ||
Monobacterial infection | 0 | 0 | ||
Bacterial coinfection | 1 (8.3) | 0 | ||
Mixed coinfection | 1 (8.3) | 1 (8.3) | ||
M. pneumoniae (n = 8) | 1.000 | |||
Mixed coinfection | 1 (12.5) | 1.000 | 0 |
References
- Dominguez, S.R.; Briese, T.; Palacios, G.; Hui, J.; Villari, J.; Kapoor, V.; Tokarz, R.; Glodé, M.P.; Anderson, M.S.; Robinson, C.C.; et al. Multiplex MassTag-PCR for respiratory pathogens in pediatric nasopharyngeal washes negative by conventional diagnostic testing shows a high prevalence of viruses belonging to a newly recognized rhinovirus clade. J. Clin. Virol. 2008, 43, 219–222. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3147 (accessed on 1 December 2023).
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of under-5 mortality in 2000-15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef] [PubMed]
- Bulata-Pop, I.; Stirbu, I.; Simionescu, B.; Grama, A.; Junie, L.M. Clinical, Biological, and Radiological Findings and Management of Lower Respiratory Tract Infections in a Tertiary Hospital in Romania. Cureus 2024, 16, 1–12. [Google Scholar] [CrossRef]
- Jain, S.; Williams, D.J.; Arnold, S.R.; Ampofo, K.; Bramley, A.M.; Reed, C.; Stockmann, C.; Anderson, E.J.; Grijalva, C.G.; Self, W.H.; et al. Community-acquired pneumonia requiring hospitalization among, U.S. children. N. Engl. J. Med. 2015, 372, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, G.S.; Hossain, M.A.; Sarker, S.K.; Rahat, A.; Islam, M.T.; Haque, T.N.; Begum, N.; Qadri, S.K.; Muraduzzaman, A.K.; Islam, N.N.; et al. Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city. PLoS ONE 2017, 12, e0174488. [Google Scholar] [CrossRef]
- Essa, S.; Owayed, A.; Altawalah, H.; Khadadah, M.; Behbehani, N.; Al-Nakib, W. Mixed viral infections circulating in hospitalized patients with respiratory tract infections in kuwait. Adv. Virol. 2015, 2015, 714062. [Google Scholar] [CrossRef]
- Gil, J.; Almeida, S.; Constant, C.; Pinto, S.; Barreto, R.; Melo Cristino, J.; Machado, M.D.C.; Bandeira, T. Short-term relevance of lower respiratory viral coinfection in inpatients under 2 years of age. An. Pediatr. (Engl. Ed.) 2018, 88, 127–135. [Google Scholar] [CrossRef]
- Lv, G.; Shi, L.; Liu, Y.; Sun, X.; Mu, K. Epidemiological characteristics of common respiratory pathogens in children. Sci. Rep. 2024, 14, 16299. [Google Scholar] [CrossRef]
- Basarab, M.; Macrae, M.B.; Curtis, C.M. Atypical pneumonia. Curr. Opin. Pulm. Med. 2014, 20, 247–251. [Google Scholar] [CrossRef]
- Salazar, F.; Bignell, E.; Brown, G.D.; Cook, P.C.; Warris, A. Pathogenesis of Respiratory Viral and Fungal Coinfections. Clin. Microbiol. Rev. 2022, 35, e00094-21. [Google Scholar] [CrossRef]
- Chandy, S.; Manoharan, A.; Hameed, A.; Jones, L.K.; Nachiyar, G.S.; Ramya, M.S.; Sudhakar, A.; Sumanth, A.; Balasubramanian, S. A study on pediatric respiratory tract infections in hospitalised children from Chennai. Clin. Epidemiol. Glob. Health 2022, 15, 101067. [Google Scholar] [CrossRef]
- Malhotra, B.; Swamy, M.A.; Janardhan Reddy, P.V.; Gupta, M.L. Viruses causing severe acute respiratory infections (SARI) in children ≤5 years of age at a tertiary care hospital in Rajasthan, India. Indian J. Med. Res. 2016, 144, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, K.; Chinnakali, P.; Majumdar, A.; Krishnan, I.S. Acute respiratory infections among under-5 children in India: A situational analysis. J. Nat. Sci. Biol. Med. 2014, 5, 15–20. [Google Scholar] [CrossRef]
- Mahony, J.B.; Blackhouse, G.; Babwah, J.; Smieja, M.; Buracond, S.; Chong, S.; Ciccotelli, W.; O’Shea, T.; Alnakhli, D.; Griffiths-Turner, M.; et al. Cost analysis of multiplex PCR testing for diagnosing respiratory virus infections. J. Clin. Microbiol. 2009, 47, 2812–2817. [Google Scholar] [CrossRef]
- Malhotra, B.; Swamy, M.A.; Reddy, P.V.; Kumar, N.; Tiwari, J.K. Evaluation of custom multiplex real-time RT-PCR in comparison to fast-track diagnostics respiratory 21 pathogens kit for detection of multiple respiratory viruses. Virol. J. 2016, 13, 91. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.A.; Malhotra, B.; Janardhan Reddy, P.V.; Tiwari, J. Profile of respiratory pathogens causing acute respiratory infections in hospitalised children at Rajasthan a 4 year’s study. Indian J. Med. Microbiol. 2018, 36, 163–171. [Google Scholar] [CrossRef]
- Huang, H.S.; Tsai, C.L.; Chang, J.; Hsu, T.C.; Lin, S.; Lee, C.C. Multiplex PCR system for the rapid diagnosis of respiratory virus infection: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2018, 24, 1055–1063. [Google Scholar] [CrossRef]
- Knobbe, R.B.; Diallo, A.; Fall, A.; Gueye, A.D.; Dieng, A.; van Immerzeel, T.D.; Ba, A.; Diop, A.; Diop, A.; Niang, M.; et al. Pathogens Causing Respiratory Tract Infections in Children Less Than 5 Years of Age in Senegal. Microbiol. Insights 2019, 12, 1178636119890885. [Google Scholar] [CrossRef]
- Akkoc, G.; Dogan, C.; Bayraktar, S.; Sahin, K.; Elevli, M. Evaluation of viral respiratory pathogens in children aged under five hospitalized with lower respiratory tract infections. North Clin. Istanb. 2022, 9, 162–172. [Google Scholar] [CrossRef]
- Wadilo, F.; Feleke, A.; Gebre, M.; Mihret, W.; Seyoum, T.; Melaku, K.; Howe, R.; Mulu, A.; Mihret, A. Viral etiologies of lower respiratory tract infections in children < 5 years of age in Addis Ababa, Ethiopia: A prospective case-control study. Virol. J. 2023, 20, 163. [Google Scholar] [CrossRef]
- Korsun, N.; Angelova, S.; Trifonova, I.; Georgieva, I.; Voleva, S.; Tzotcheva, I.; Mileva, S.; Ivanov, I.; Tcherveniakova, T.; Perenovska, P. Viral pathogens associated with acute lower respiratory tract infections in children younger than 5 years of age in Bulgaria. Braz J. Microbiol. 2019, 50, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Kunč, P.; Fábry, J.; Ferenc, P.; Pešátová, M.; Matiščáková, M.; Pecova, R. Epidemiological aspects of selected respiratory viruses in children with recurrent respiratory infections. Česko-Slov. Pediatr. 2024, 79, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Nitsch-Osuch, A.; Kuchar, E.; Topczewska-Cabanek, A.; Wardyn, K.; Życińska, K.; Brydak, L. Incidence and Clinical Course of Respiratory Viral Coinfections in Children Aged 0–59 Months. Adv. Exp. Med. Biol. 2016, 905, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Alsenaidy, A.M.; Mobaireek, K.F.; AlSaadi, M.M. Viral Etiology of Acute Respiratory Infections During 2014–2016 in Riyadh, Saudi Arabia. Future Virol. 2022, 17, 269–280. [Google Scholar] [CrossRef]
- Mantelli, C.; Colson, P.; Lesage, L.; Stoupan, D.; Chaudet, H.; Morand, A.; La Scola, B.; Boschi, C. Coinfections and iterative detection of respiratory viruses among 17,689 patients between March 2021 and December 2022 in Southern France. J. Clin. Virol. 2024, 175, 105744. [Google Scholar] [CrossRef]
- Vila, J.; Lera, E.; Andrés, C.; Piñana, M.; Rello-Saltor, V.; Tobeña-Rué, M.; Balcells, J.; Benítez-Díaz, Z.; Aller, M.B.; Muñoz, R.; et al. The burden of non-SARS-CoV2 viral lower respiratory tract infections in hospitalized children in Barcelona (Spain): A long-term, clinical, epidemiologic and economic study. Influenza Other Respir. Viruses 2023, 17, e13085. [Google Scholar] [CrossRef]
- Trapani, S.; Caporizzi, A.; Ricci, S.; Indolfi, G. Human Bocavirus in Childhood: A True Respiratory Pathogen or a “Passenger” Virus? A Comprehensive Review. Microorganisms 2023, 11, 1243. [Google Scholar] [CrossRef]
- Duyu, M.; Karakaya, Z. Viral etiology and outcome of severe lower respiratory tract infections among critically ill children admitted to the PICU. Med. Intensiva (Engl. Ed.) 2021, 45, 447–458. [Google Scholar] [CrossRef]
- Lamrani Hanchi, A.; Guennouni, M.; Rachidi, M.; Benhoumich, T.; Bennani, H.; Bourrous, M.; Maoulainine, F.M.R.; Younous, S.; Bouskraoui, M.; Soraa, N. Epidemiology of Respiratory Pathogens in Children with Severe Acute Respiratory Infection and Impact of the Multiplex PCR Film Array Respiratory Panel: A 2-Year Study. Int. J. Microbiol. 2021, 2021, 2276261. [Google Scholar] [CrossRef]
- Lin, C.Y.; Hwang, D.; Chiu, N.C.; Weng, L.C.; Liu, H.F.; Mu, J.J.; Liu, C.P.; Chi, H. Increased Detection of Viruses in Children with Respiratory Tract Infection Using PCR. Int. J. Environ. Res. Public. Health 2020, 17, 564. [Google Scholar] [CrossRef]
- Tabatabai, J.; Ihling, C.M.; Manuel, B.; Rehbein, R.M.; Schnee, S.V.; Hoos, J.; Pfeil, J.; Grulich-Henn, J.; Schnitzler, P. Viral Etiology and Clinical Characteristics of Acute Respiratory Tract Infections in Hospitalized Children in Southern Germany (2014–2018). Open Forum. Infect. Dis. 2023, 10, ofad110. [Google Scholar] [CrossRef] [PubMed]
- Calvo, C.; Aguado, I.; García-García, M.L.; Ruiz-Chercoles, E.; Díaz-Martinez, E.; Albañil, R.M.; Campelo, O.; Olivas, A.; Muñóz-Gonzalez, L.; Pozo, F.; et al. Respiratory viral infections in a cohort of children during the first year of life and their role in the development of wheezing. An. Pediatr. (Engl. Ed.) 2017, 87, 104–110. [Google Scholar] [CrossRef]
- Tsagarakis, N.J.; Sideri, A.; Makridis, P.; Triantafyllou, A.; Stamoulakatou, A.; Papadogeorgaki, E. Age-related prevalence of common upper respiratory pathogens, based on the application of the FilmArray Respiratory panel in a tertiary hospital in Greece. Medicine 2018, 97, e10903. [Google Scholar] [CrossRef]
- Richter, J.; Panayiotou, C.; Tryfonos, C.; Koptides, D.; Koliou, M.; Kalogirou, N.; Georgiou, E.; Christodoulou, C. Aetiology of Acute Respiratory Tract Infections in Hospitalised Children in Cyprus. PLoS ONE 2016, 11, e0147041. [Google Scholar] [CrossRef] [PubMed]
- Cason, C.; Zamagni, G.; Cozzi, G.; Tonegutto, D.; Ronfani, L.; Oretti, C.; De Manzini, A.; Barbi, E.; Comar, M.; Amaddeo, A. Spread of Respiratory Pathogens During the COVID-19 Pandemic Among Children in the Northeast of Italy. Front. Microbiol. 2022, 13, 804700. [Google Scholar] [CrossRef]
- Karaaslan, A.; Çetin, C.; Akın, Y.; Demir Tekol, S.; Söbü, E.; Demirhan, R. Coinfection in SARS-CoV-2 Infected Children Patients. J. Infect. Dev. Ctries 2021, 15, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Westbrook, A.; Wang, T.; Bhakta, K.; Sullivan, J.; Gonzalez, M.D.; Lam, W.; Rostad, C.A. Respiratory Coinfections in Children With SARS-CoV-2. Pediatr. Infect. Dis. J. 2023, 42, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Lebel, M.H.; Gauthier, M.; Lacroix, J.; Rousseau, E.; Buithieu, M. Respiratory failure and mechanical ventilation in severe bronchiolitis. Arch. Dis. Child 1989, 64, 1431–1437. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, Y.; Wang, H.; Zhang, L.; Bao, Y.; Zhou, X. High incidence of multiple viral infections identified in upper respiratory tract infected children under three years of age in Shanghai, China. PLoS ONE 2012, 7, e44568. [Google Scholar] [CrossRef]
- Kumar, N.; Barua, S.; Riyesh, T.; Chaubey, K.K.; Rawat, K.D.; Khandelwal, N.; Mishra, A.K.; Sharma, N.; Chandel, S.S.; Sharma, S.; et al. Complexities in Isolation and Purification of Multiple Viruses from Mixed Viral Infections: Viral Interference, Persistence and Exclusion. PLoS ONE 2016, 11, e0156110. [Google Scholar] [CrossRef]
- Goka, E.A.; Vallely, P.J.; Mutton, K.J.; Klapper, P.E. Single and multiple respiratory virus infections and severity of respiratory disease: A systematic review. Paediatr. Respir. Rev. 2014, 15, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Sharma, S.; Barua, S.; Tripathi, B.N.; Rouse, B.T. Virological and immunological outcomes of coinfections. Clin. Microbiol. Rev. 2018, 31, 10-1128. [Google Scholar] [CrossRef]
- Baroudy, N.R.E.; Refay, A.S.E.; Hamid, T.A.A.; Hassan, D.M.; Soliman, M.S.; Sherif, L. Respiratory Viruses and Atypical Bacteria Co-Infection in Children with Acute Respiratory Infection. Open Access Maced. J. Med. Sci. 2018, 6, 1588–1593. [Google Scholar] [CrossRef]
- Meskill, S.D.; O’Bryant, S.C. Respiratory Virus Co-infection in Acute Respiratory Infections in Children. Curr. Infect. Dis. Rep. 2020, 22, 3. [Google Scholar] [CrossRef] [PubMed]
- Sajjan Umadevi, S.; Jia Yue Newcomb Dawn, C.; Bentley, J. Kelley, Lukacs Nicholas, W., LiPuma John, J., Hershenson Marc, B.H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J. 2006, 20, 2121–2123. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, S.V.; Bakel, L.A.; Okumura, M.J.; Auerbach, A.D.; Rosenthal, J.; Cabana, M.D. Risk Factors for Prolonged Length of Stay or Complications During Pediatric Respiratory Hospitalizations. Hosp. Pediatr. 2015, 5, 461–473. [Google Scholar] [CrossRef]
- Ilboudo, A.K.; Cissé, A.; Milucky, J.; Tialla, D.; Mirza, S.A.; Diallo, A.O.; Bicaba, B.W.; Charlemagne, K.J.; Diagbouga, P.S.; Owusu, D.; et al. Predictors of severity and prolonged hospital stay of viral acute respiratory infections (ARI) among children under five years in Burkina Faso, 2016–2019. BMC Infect. Dis. 2024, 24, 331. [Google Scholar] [CrossRef]
- Hasegawa, K.; Jartti, T.; Mansbach, J.M.; Laham, F.R.; Jewell, A.M.; Espinola, J.A.; Piedra, P.A.; Camargo, C.A., Jr. Respiratory syncytial virus genomic load and disease severity among children hospitalized with bronchiolitis: Multicenter cohort studies in the United States and Finland. J. Infect. Dis. 2015, 211, 1550–1559. [Google Scholar] [CrossRef]
- McLaurin, K.K.; Farr, A.M.; Wade, S.W.; Diakun, D.R.; Stewart, D.L. Respiratory syncytial virus hospitalization outcomes and costs of full-term and preterm infants. J. Perinatol. 2016, 36, 990–996. [Google Scholar] [CrossRef]
- Yakovlev, A.S.; Belyaletdinova, I.K.; Mazankova, L.N.; Samitova, E.R.; Osmanov, I.M.; Gavelya, N.V.; Volok, V.P.; Kolpakova, E.S.; Shishova, A.A.; Dracheva, N.A.; et al. SARS-CoV-2 infection in children in Moscow in 2020: Clinical features and impact on circulation of other respiratory viruses: SARS-CoV-2 infection in children in Moscow in 2020. Int. J. Infect. Dis. 2022, 116, 331–338. [Google Scholar] [CrossRef]
- Dias, C.S.; Diniz, L.M.; Oliveira, M.C.L.; Simões ESilva, A.C.; Colosimo, E.A.; Mak, R.H.; Pinhati, C.C.; Galante, S.C.; Veloso, I.Y.; Martelli-Júnior, H.; et al. Outcomes of SARS-CoV-2 and Seasonal Viruses Among Children Hospitalized in Brazil. Pediatrics 2024, 153, e2023064326. [Google Scholar] [CrossRef]
- Flaxman, S.; Whittaker, C.; Semenova, E.; Rashid, T.; Parks, R.M.; Blenkinsop, A.; Unwin, H.J.T.; Mishra, S.; Bhatt, S.; Gurdasani, D.; et al. Assessment of COVID-19 as the underlying cause of death among children and young people aged 0 to 19 years in the United States. JAMA Netw. Open. 2023, 6, e2253590. [Google Scholar] [CrossRef]
- Yen, C.Y.; Wu, W.T.; Chang, C.Y.; Wong, Y.C.; Lai, C.C.; Chan, Y.J.; Wu, K.G.; Hung, M.C. Viral etiologies of acute respiratory tract infections among hospitalized children-A comparison between single and multiple viral infections. J. Microbiol. Immunol. Infect. 2019, 52, 902–910. [Google Scholar] [CrossRef]
- Yoo, B.; Yune, I.; Kim, E.S.; Lim, S.; Yoo, S.; Jung, S.; Kim, M.; Kim, J.; Kim, D.; Lee, H. 2605. Etiology of Community Acquired Lower Respiratory Tract Infection (LRTI) in Children. Open Forum Infect. Dis. 2023, 10 (Suppl. 2), ofad500.2219. [Google Scholar] [CrossRef]
- Thaver, L.; Zar, H.J. Determining the aetiology of lower respiratory tract illness in children. Afr. J. Thorac. Crit Care Med. 2024, 30, e2378. [Google Scholar] [CrossRef] [PubMed]
- Debes, S.; Haug, J.B.; de Blasio, B.F.; Jonassen, C.M.; Dudman, S.G. Etiology of viral respiratory tract infections in hospitalized adults, and evidence of the high frequency of prehospitalization antibiotic treatment in Norway. Health Sci. Rep. 2021, 4, e403. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.T.K.; Robinson, P.D.; Fitzgerald, D.A.; Marais, B.J. The dilemma of improving rational antibiotic use in pediatric community-acquired pneumonia. Front. Pediatr. 2023, 11, 1095166. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xue, Z.; Feng, Y.; Zhou, X.; Qi, Y.; Feng, N.; Li, Y. Epidemiological characteristics of eleven common respiratory viral infections in children. BMC Pediatr. 2024, 24, 827. [Google Scholar] [CrossRef]
- Khomenco, V.E.; Iemets, O.V.; Volosovets, O.P.; Kryvopustov, S.P.; Kryvopustova, M.V.; Mozyrska, O.V. Epidemiology of respiratory pathogens in children with acute respiratory tract infection in Ukraine during 2018–2020 years. Wiad Lek 2021, 74, 1389–1395. [Google Scholar] [CrossRef]
- Savolainen-Kopra, C.; Korpela, T.; Simonen-Tikka, M.-L.; Amiryousefi, A.; Ziegler, T.; Roivainen, M.; Hovi, T. Single treatment with ethanol hand rub is ineffective against human rhinovirus—Hand washing with soap and water removes the virus efficiently. J. Med. Virol. 2012, 84, 543–547. [Google Scholar] [CrossRef]
- Winther, B.; McCue, K.; Ashe, K.; Rubino, J.; Hendley, J.O. Rhinovirus contamination of surfaces in homes of adults with natural colds: Transfer of virus to fingertips during normal daily activities. J. Med. Virol. 2011, 83, 906–909. [Google Scholar] [CrossRef] [PubMed]
- Shirreff, G.; Chaves, S.S.; Coudeville, L.; Mengual-Chuliá, B.; Mira-Iglesias, A.; Puig-Barberà, J.; Orrico-Sanchez, A.; Díez-Domingo, J.; Valencia Hospital Surveillance Network for the Study of Influenza Other Respiratory Viruses (VAHNSI); Opatowski, L.; et al. Seasonality and Co-Detection of Respiratory Viral Infections Among Hospitalised Patients Admitted With Acute Respiratory Illness-Valencia Region, Spain, 2010–2021. Influenza Other Respir. Viruses 2024, 18, e70017. [Google Scholar] [CrossRef] [PubMed]
Viral Pathogen | 0–12 Months (%) n = 305 | 13–24 Months (%) n = 152 | 25–36 Months (%) n = 122 | 37–48 Months (%) n = 130 | 49–60 Months (%) n = 94 | Total (%) n = 803 | p Value |
---|---|---|---|---|---|---|---|
HRV A/B/C | 96 (31.5) | 58 (38.2) | 52 (42.6) | 63 (48.5) | 40 (42.6) | 309 (38.5) | 0.010 * |
HAdV | 24 (7.9) | 24 (15.8) | 19 (15.6) | 26 (20) | 17 (18.1) | 110 (13.7) | 0.004 * |
HBoV 1/2/3/4 | 22 (7.2) | 30 (19.7) | 22 (18) | 14 (10.8) | 3 (3.2) | 91 (11.3) | <0.001 * |
HMPV | 26 (8.5) | 7 (4.6) | 7 (5.7) | 8 (6.2) | 4 (4.3) | 52 (6.5) | 0.421 |
HPIV-1 | 3 (1) | 1 (0.7) | 3 (2.5) | 4 (3.1) | 2 (2.1) | 13 (1.6) | 0.331 |
HPIV-2 | 2 (0.7) | 1 (0.7) | 1 (0.8) | 0 (0) | 0 (0) | 4 (0.5) | 0.947 |
HPIV-3 | 22 (7.2) | 16 (10.4) | 2 (1.6) | 6 (4.6) | 3 (3.2) | 49 (6.1) | 0.017 * |
HPIV-4 | 9 (3) | 2 (1.3) | 3 (2.5) | 5 (3.9) | 3 (3.2) | 22 (2.7) | 0.752 |
EV | 13 (4.3) | 4 (2.6) | 12 (9.8) | 6 (4.6) | 4 (4.3) | 39 (4.9) | 0.075 |
RSV | 29 (9.5) | 6 (4) | 5 (4.1) | 1 (0.8) | 2 (2.1) | 43 (5.4) | 0.001 * |
HCoV NL63 | 11 (3.6) | 5 (3.3) | 3 (2.5) | 2 (1.5) | 3 (3.2) | 24 (3) | 0.853 |
HCoV OC43 | 12 (3.9) | 6 (4) | 2 (1.6) | 3 (2.3) | 1 (1.1) | 24 (3) | 0.548 |
HCoV 229E | 0 (0) | 0 (0) | 1 (0.8) | 0 (0) | 1 (1.1) | 2 (0.4) | 0.098 |
SARS-CoV-2 | 9 (3) | 3 (2) | 1 (0.8) | 3 (2.3) | 1 (1.1) | 17 (2.1) | 0.739 |
FLUA | 2 (0.7) | 0 (0) | 1 (0.8) | 3 (2.3) | 1 (1) | 7 (0.9) | 0.257 |
FLU B | 2 (0.7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (0.3) | 1.000 |
Number of pathogens Viral monoinfections | 90 (29.5) | 31 (20.4) | 27 (22.1) | 25 (19.2) | 22 (23.4) | 195 (24.3) | <0.001 * |
Viral coinfections | 18 (5.9) | 11 (7.2) | 7 (5.7) | 15 (11.5) | 4 (4.3) | 55 (6.9) | |
Mixed coinfections | 109 (35.7) | 77 (50.7) | 64 (52.5) | 63 (48.5) | 44 (46.8) | 357 (44.5) | |
Bacterial monoinfections | 23 (7.5) | 17 (11.2) | 14 (11.5) | 9 (6.9) | 10 (10.6) | 73 (9.1) | |
Bacterial coinfections | 8 (2.6) | 4 (2.6) | 2 (1.6) | 5 (3.9) | 4 (4.3) | 23 (2.9) | |
Total | 248 (81.3) | 140 (92.1) | 114 (93.4) | 117 (90) | 84 (89.4) | 703 (87.6) |
Pathogens | Spring n, % n = 175 | Summer n, % n = 93 | Autumn n, % n = 269 | Winter n, % n = 266 | p Value |
---|---|---|---|---|---|
Viral monoinfections | 33 (18.9) | 19 (20.4) | 80 (29.7) | 63 (23.7) | 0.055 |
Viral coinfections | 13 (7.4) | 3 (3.2) | 20 (7.4) | 19 (7.1) | |
Mixed coinfections | 95 (54.3) | 42 (45.2) | 116 (43.1) | 104 (39.1) | |
Bacterial monoinfections | 12 (6.9) | 11 (11.8) | 23 (8.6) | 27 (10.2) | |
Bacterial coinfections | 2 (1.1) | 4 (4.3) | 5 (1.9) | 12 (4.5) | |
Viral pathogens HRV A/B/C | 70 (40) | 27 (29) | 136 (50.6) | 76 (28.6) | <0.001 * |
HAdV | 41 (23.4) | 14 (15.1) | 20 (7.4) | 35 (13.2) | <0.001 * |
HBoV 1/2/3/4 | 11 (6.3) | 5 (5.4) | 42 (15.6) | 33 (12.4) | 0.005 * |
HMPV | 26 (14.9) | 1 (1.1) | 2 (0.7) | 23 (8.7) | <0.001 * |
HPIV-1 | 4 (2.3) | 0 (0) | 8 (3) | 1 (0.4) | 0.045 * |
HPIV-2 | 3 (1.7) | 0 (0) | 1 (0.4) | 0 (0) | 0.109 |
HPIV-3 | 8 (4.6) | 19 (20.4) | 18 (6.7) | 4 (1.5) | <0.001 * |
HPIV-4 | 3 (1.7) | 3 (3.2) | 12 (4.5) | 4 (1.5) | 0.161 |
EV | 5 (2.9) | 9 (9.7) | 21 (7.8) | 4 (1.5) | 0.001 * |
RSV | 0 (0) | 0 (0) | 9 (3.4) | 34 (12.8) | <0.001 * |
HCoV NL63 | 17 (9.7) | 2 (2.2) | 0 (0) | 5 (1.9) | <0.001 * |
HCoV OC43 | 1 (0.6) | 0 (0) | 7 (2.6) | 16 (6) | 0.002 * |
HCoV 229E | 1 (0.6) | 0 (0) | 0 (0) | 1 (0.4) | 0.632 |
SARS-CoV-2 | 4 (2.3) | 2 (2.2) | 8 (3) | 3 (1.1) | 0.515 |
FLUA | 1 (0.6) | 0 (0) | 0 (0) | 6 (2.3) | 0.028 * |
FLUB | 1 (0.6) | 0 (0) | 0 (0) | 1 (0.4) | 0.632 |
Variables | Positive n (%) n = 703 | Prolonged LOS (>7 Days) n (%) n = 230 | p Value |
---|---|---|---|
Gender Male Female | 404 (57.5) 299 (42.5) | 133 (57.8) 97 (42.2) | 0.893 |
Age groups 0–12 months 13–24 months 25–36 months 37–48 months 49–60 months | 248 (35.3) 140 (19.9) 114 (16.2) 117 (16.6) 84 (12) | 106 (46.1) 37 (16.1) 29 (12.6) 30 (13) 28 (12.2) | 0.001 * |
Type of infections Monoviral Two viruses Three viruses Monobacterial Bacterial coinfection Mixed coinfection | 195 (27.7) 45 (6.4) 10 (1.4) 73 (10.4) 23 (3.3) 357 (50.8) | 72 (31.3) 14 (6.1) 1 (0.4) 16 (7) 8 (3.5) 119 (51.7) | 0.160 |
HRV A/B/C | 309 (44) | 100 (43.5) | 0.716 |
HAdV | 110 (15.7) | 29 (12.6) | 0.105 |
HBoV 1/2/3/4 | 91 (12.9) | 37 (16.1) | 0.105 |
HMPV | 52 (7.4) | 19 (8.3) | 0.589 |
HPIV-1 | 13 (1.9) | 4 (1.7) | 1.000 |
HPIV-2 | 4 (0.6) | 1 (0.4) | 1.000 |
HPIV-3 | 49 (7) | 18 (7.8) | 0.580 |
HPIV-4 | 22 (3.1) | 11 (4.8) | 0.108 |
EV | 39 (5.6) | 10 (4.4) | 0.309 |
RSV | 43 (6.1) | 25 (10.9) | <0.001 * |
HCoV NL63 | 24 (3.4) | 7 (3) | 0.827 |
HCoV OC43 | 24 (3.4) | 8 (3.5) | 1.000 |
HCoV 229E | 3 (0.4) | 0 (0) | - |
SARS-CoV-2 | 17 (2.4) | 4 (1.7) | 0.603 |
FLU A | 7 (1) | 2 (0.9) | 1.000 |
FLU B | 2 (0.3) | 1 (0.4) | 0.553 |
Variables | Viral Mono-Infection n (%) n = 195 | Coinfection 2 Viruses n (%) n = 45 | Coinfection 3 Viruses n (%) n = 10 | Bacterial Mono- Infection n = 73 | Bacterial Coinfection n (%) n = 23 | Mixed co- Infections n (%) n = 357 | Negative PCR Result n (%) n = 100 | p Value |
---|---|---|---|---|---|---|---|---|
Fever | 102 (52.3) | 26 (57.8) | 4 (40) | 44 (60.3) | 9 (39.1) | 208 (58.3) | 51 (51) | 0.326 |
Cough | 142 (72.8) | 30 (66.7) | 10 (100) | 57 (78.1) | 20 (87) | 290 (81.2) | 63 (63) | 0.001 * |
Wheezing | 22 (11.3) | 1 (2.2) | 0 | 1 (1.4) | 2 (8.7) | 25 (7) | 3 (3) | 0.029 * |
Rhinorrhea | 30 (15.4) | 7 (15.6) | 1 (10) | 14 (19.2) | 2 (8.7) | 81 (22.7) | 16 (16) | 0.245 |
Dyspnoea | 62 (31.8) | 12 (26.7) | 3 (30) | 12 (16.4) | 6 (26.1) | 117 (32.8) | 23 (23) | 0.099 |
Nasal obstruction | 20 (10.3) | 2 (4.4) | 2 (20) | 9 (12.3) | 2 (8.7) | 32 (9) | 11 (11) | 0.636 |
Upper RTIs Lower RTIs | 31 (15.9) 163 (83.6) | 5 (11.1) 40 (88.9) | 2 (20) 8 (80) | 6 (8.2) 67 (91.8) | 3 (13) 20 (87) | 38 (10.6) 319 (89.4) | 23 (23) 77 (77) | 0.034 * |
SpO2 < 92% | 8 (4.1) | 4 (8.9) | 0 | 3 (4.1) | 1 (4.4) | 24 (6.7) | 6 (6) | 0.666 |
Sepsis | 4 (2.1) | 3 (6.7) | 0 | 2 (2.7) | 1 (4.4) | 11 (3.1) | 10 (10) | 0.045 * |
PICU admission | 37 (19) | 8 (17.8) | 2 (20) | 12 (16.4) | 5 (21.7) | 81 (22.7) | 24 (24) | 0.828 |
Death | 1 (0.5) | 0 | 0 | 0 | 0 | 1 (0.3) | 4 (4) | 0.066 |
Chest X-ray Interstitial Opacity Condensation Normal | 123 (63.1) 14 (7.2) 1 (0.5) 6 (3.1) | 27 (60) 2 (4.4) 0 1 (2.2) | 7 (70) 0 0 1 (10) | 51 (69.9) 10 (13.7) 1 (1.4) 2 (2.7) | 15 (65.2) 3 (13) 0 1 (4.4) | 222 (62.2) 36 (10.1) 3 (0.8) 12 (3.4) | 63 (63) 7 (7) 1 (1) 2 (2) | 0.073 |
Diagnosis at discharge Lower RTIs Pneumonia Bronchitis Bronchiolitis Upper RTIs (pharyngitis, laryngitis etc.) | 150 (76.9) 6 (3.1) 6 (3.1) 32 (16.4) | 38 (84.4) 1 (2.2) 1 (2.2) 38 (84.4) | 8 (80) 0 0 2 (20) | 62 (84.9) 3 (4.1) 2 (2.7) 8 (11) | 19 (82.6) 1 (4.4) 0 3 (13) | 290 (81.2) 1 (0.3) 3 (0.8) 38 (10.6) | 68 (68) 3 (3) 1 (1) 23 (23) | <0.001 * |
Oxygen therapy | 10 (5.1) | 2 (4.4) | 0 | 1 (1.4) | 1 (4.4) | 12 (3.4) | 5 (5) | 0.746 |
Antibiotics | 182 (93.3) | 43 (95.6) | 8 (80) | 70 (95.9) | 20 (87) | 342 (95.8) | 90 (90) | 0.066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matache, E.-R.; Gurau, G.; Raileanu, C.-R.; Zaharescu, A.; Popa, G.V.; Maftei, N.-M.; Busila, C.; Matei, M.N.; Tutunaru, D. Pathogen Profile of Children Hospitalised with Viral Respiratory Infections in Galati County, Romania. Viruses 2025, 17, 586. https://doi.org/10.3390/v17040586
Matache E-R, Gurau G, Raileanu C-R, Zaharescu A, Popa GV, Maftei N-M, Busila C, Matei MN, Tutunaru D. Pathogen Profile of Children Hospitalised with Viral Respiratory Infections in Galati County, Romania. Viruses. 2025; 17(4):586. https://doi.org/10.3390/v17040586
Chicago/Turabian StyleMatache (Vasilache), Elena-Roxana, Gabriela Gurau, Cosmin-Raducu Raileanu, Anamaria Zaharescu, Gabriel Valeriu Popa, Nicoleta-Maricica Maftei, Camelia Busila, Madalina Nicoleta Matei, and Dana Tutunaru. 2025. "Pathogen Profile of Children Hospitalised with Viral Respiratory Infections in Galati County, Romania" Viruses 17, no. 4: 586. https://doi.org/10.3390/v17040586
APA StyleMatache, E.-R., Gurau, G., Raileanu, C.-R., Zaharescu, A., Popa, G. V., Maftei, N.-M., Busila, C., Matei, M. N., & Tutunaru, D. (2025). Pathogen Profile of Children Hospitalised with Viral Respiratory Infections in Galati County, Romania. Viruses, 17(4), 586. https://doi.org/10.3390/v17040586