Serologic Surveillance for Orthoflaviviruses and Chikungunya Virus in Bats and Opossums in Chiapas, Mexico
Abstract
:1. Impacts
- Orthoflavivirus-specific antibodies were detected by the plaque reduction neutralization test in 12 of 94 (12.8%) bats in the Lacandona Rainforest, Chiapas, Mexico. One bat (a Jamaican fruit bat) was seropositive for Zika virus, while the other 11 bats were seropositive for an undetermined orthoflavivirus.
- Orthoflavivirus-specific antibodies were detected by the plaque reduction neutralization test in 15 of 43 (34.9%) opossums in the Lacandona Rainforest. All seropositive opossums had antibodies to an undetermined orthoflavivirus.
- Antibodies that neutralized chikungunya virus were detected in 15 (34.9%) opossums in the Lacandona Rainforest, but the titers were low, and thus, another alphavirus may have caused the infections.
2. Introduction
3. Materials and Methods
3.1. Study Sites
3.2. Trapping of Bats
3.3. Trapping of Opossums
3.4. Blood Collections
3.5. Viruses
3.6. Plaque Reduction Neutralization Tests
4. Results
4.1. Bat Collections
4.2. Opossum Collections
4.3. Orthoflavivirus Serosurvey
4.4. Chikungunya Virus Serosurvey
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campos, R.K.; Rossi, S.L.; Tesh, R.B.; Weaver, S.C. Zoonotic mosquito-borne arboviruses: Spillover, spillback, and realistic mitigation strategies. Sci. Transl. Med. 2023, 15, eadj2166. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.S.; Higgs, S.; Vanlandingham, D.L. Emergence and re-emergence of mosquito-borne arboviruses. Curr. Opin. Virol. 2019, 34, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Reisen, W.K. Present and future arboviral threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef] [PubMed]
- Baak-Baak, C.M.; Cigarroa-Toledo, N.; Pinto-Castillo, J.F.; Cetina-Trejo, R.C.; Torres-Chable, O.; Blitvich, B.J.; Garcia-Rejon, J.E. Cluster Analysis of Dengue Morbidity and Mortality in Mexico from 2007 to 2020: Implications for the Probable Case Definition. Am. J. Trop. Med. Hyg. 2022, 106, 1515–1521. [Google Scholar] [CrossRef]
- Zubieta-Zavala, A.; López-Cervantes, M.; Salinas-Escudero, G.; Ramírez-Chávez, A.; Castañeda, J.R.; Hernández-Gaytán, S.I.; Yescas, J.G.L.; Durán-Arenas, L. Economic impact of dengue in Mexico considering reported cases for 2012 to 2016. PLoS Neglected Trop. Dis. 2018, 12, e0006938. [Google Scholar] [CrossRef]
- Contreras-Capetillo, S.N.; Valadéz-González, N.; Manrique-Saide, P.; Carcaño-Castillo, R.E.; Pacheco-Tugores, F.; Barrera-Pérez, H.A.M.; Pinto-Escalante, D.; Lliteras-Cardín, M.; Hoil-Parra, J.A.; Cáceres-Solís, J.L.; et al. Birth Defects Associated With Congenital Zika Virus Infection in Mexico. Clin. Pediatr. 2018, 57, 927–936. [Google Scholar] [CrossRef]
- Gonzalez Cortes, A.; Zarate Aquino, M.L.; Guzman Bahena, J.; Miro Abella, J.; Cano Avila, G.; Aguilera Arrayo, M. St. Louis encephalomyelitis in Hermosillo, Sonora, Mexico. Bull. Pan Am. Health Organ. 1975, 9, 306–316. [Google Scholar]
- Hernández-Ávila, J.E.; Palacio-Mejía, L.S.; López-Gatell, H.; Alpuche-Aranda, C.M.; Molina-Vélez, D.; González-González, L.; Hernández-Ávila, M. Zika virus infection estimates, Mexico. Bull. World Health Organ. 2018, 96, 306–313. [Google Scholar] [CrossRef]
- Rios-Ibarra, C.; Blitvich, B.J.; Farfan-Ale, J.; Ramos-Jimenez, J.; Muro-Escobedo, S.; Martínez-Rodriguez, H.R.; OrtizLópez, R.; Torres-López, E.; Rivas-Estilla, A.M. Fatal human case of West Nile disease, Mexico, 2009. Emerg. Infect. Dis. 2010, 16, 741–743. [Google Scholar] [CrossRef]
- Soto-Hernandez, J.L.; Ponce de Leon Rosales, S.; Vargas Canas, E.S.; Cardenas, G.; Carrillo Loza, K.; Diaz-Quinonez, J.A.; López-Martínez, I.; Jiménez-Corona, M.-E.; Ruiz-Matus, C.; Morales, P.K. Guillain–Barré Syndrome Associated With Zika Virus Infection: A Prospective Case Series From Mexico. Front. Neurol. 2019, 10, 435. [Google Scholar] [CrossRef]
- Briese, T.; Loroño-Pino, M.A.; Garcia-Rejon, J.E.; Farfan-Ale, J.A.; Machain-Williams, C.; Dorman, K.S.; Lipkin, W.I.; Blitvich, B.J. Complete genome sequence of T’Ho virus, a novel putative flavivirus from the Yucatan Peninsula of Mexico. Virol. J. 2017, 14, 110. [Google Scholar] [CrossRef] [PubMed]
- Farfan-Ale, J.A.; Loroño-Pino, M.A.; Garcia-Rejon, J.E.; Hovav, E.; Powers, A.M.; Lin, M.; Dorman, K.S.; Platt, K.B.; Bartholomay, L.C.; Soto, V.; et al. Detection of RNA from a novel West Nile-like virus and high prevalence of an insect-specific flavivirus in mosquitoes in the Yucatan Peninsula of Mexico. Am. J. Trop. Med. Hyg. 2009, 80, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Cigarroa-Toledo, N.; Blitvich, B.J.; Cetina-Trejo, R.C.; Talavera-Aguilar, L.G.; Baak-Baak, C.M.; Torres-Chablé, O.M.; Hamid, M.-N.; Friedberg, I.; González-Martinez, P.; Alonzo-Salomon, G.; et al. Chikungunya Virus in Febrile Humans and Aedes aegypti Mosquitoes, Yucatan, Mexico. Emerg. Infect. Dis. 2016, 22, 1804–1807. [Google Scholar] [CrossRef]
- de Souza, W.M.; Ribeiro, G.S.; de Lima, S.T.S.; de Jesus, R.; Moreira, F.R.R.; Whittaker, C.; Sallum, M.A.M.; Carrington, C.V.; Sabino, E.C.; Kitron, U.; et al. Chikungunya: A decade of burden in the Americas. Lancet Reg. Health Am. 2024, 30, 100673. [Google Scholar] [CrossRef] [PubMed]
- Kautz, T.F.; Díaz-González, E.E.; Erasmus, J.H.; Malo-García, I.R.; Langsjoen, R.M.; Patterson, E.I.; Auguste, D.I.; Forrester, N.L.; Sanchez-Casas, R.M.; Hernández-Ávila, M.; et al. Chikungunya virus as cause of febrile illness outbreak, Chiapas, Mexico, 2014. Emerg. Infect. Dis. 2015, 21, 2070–2073. [Google Scholar] [CrossRef]
- Nunez-Avellaneda, D.; Tangudu, C.; Barrios-Palacios, J.; Salazar, M.I.; Machain-Williams, C.; Cisneros-Pano, J.; McKeen, L.A.; Blitvich, B.J. Chikungunya in Guerrero, Mexico, 2019 and evidence of gross underreporting in the region. Am. J. Trop. Med. Hyg. 2021, 105, 1281–1284. [Google Scholar] [CrossRef]
- Azar, S.R.; Campos, R.K.; Bergren, N.A.; Camargos, V.N.; Rossi, S.L. Epidemic alphaviruses: Ecology, emergence and outbreaks. Microorganisms 2020, 8, 1167. [Google Scholar] [CrossRef]
- Ciota, A.T. Eastern Equine Encephalitis Virus Taxonomy, Genomics, and Evolution. J. Med. Entomol. 2022, 59, 14–19. [Google Scholar] [CrossRef]
- Luethy, D. Eastern, Western, and Venezuelan Equine Encephalitis and West Nile Viruses: Clinical and Public Health Considerations. Vet. Clin. N. Am. Equine Pract. 2023, 39, 99–113. [Google Scholar] [CrossRef]
- Zacks, M.A.; Paessler, S. Encephalitic alphaviruses. Vet. Microbiol. 2010, 140, 281–286. [Google Scholar] [CrossRef]
- Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006, 19, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Chua, K.B.; Koh, C.L.; Hooi, P.S.; Wee, K.F.; Khong, J.H.; Chua, B.H.; Chan, Y.P.; Lim, M.E.; Lam, S.K. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect. 2002, 4, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Delaune, D.; Hul, V.; Karlsson, E.A.; Hassanin, A.; Ou, T.P.; Baidaliuk, A.; Gámbaro, F.; Prot, M.; Tu, V.T.; Chea, S.; et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat. Commun. 2021, 12, 6563. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.-Y.; Li, J.-L.; Yang, X.-L.; Chmura, A.A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013, 503, 535–538. [Google Scholar] [CrossRef]
- Halpin, K.; Young, P.L.; Field, H.E.; Mackenzie, J.S. Isolation of Hendra virus from pteropid bats: A natural reservoir of Hendra virus. J. Gen. Virol. 2000, 81 Pt 8, 1927–1932. [Google Scholar] [CrossRef]
- Towner, J.S.; Amman, B.R.; Sealy, T.K.; Carroll, S.A.; Comer, J.A.; Kemp, A.; Swanepoel, R.; Paddock, C.D.; Balinandi, S.; Khristova, M.L.; et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009, 5, e1000536. [Google Scholar] [CrossRef]
- Leroy, E.M.; Kumulungui, B.; Pourrut, X.; Rouquet, P.; Hassanin, A.; Yaba, P.; Délicat, A.; Paweska, J.T.; Gonzalez, J.-P.; Swanepoel, R. Fruit bats as reservoirs of Ebola virus. Nature 2005, 438, 575–576. [Google Scholar] [CrossRef]
- Memish, Z.A.; Mishra, N.; Olival, K.J.; Fagbo, S.F.; Kapoor, V.; Epstein, J.H.; Alhakeem, R.; Durosinloun, A.; Al Asmari, M.; Islam, A.; et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg. Infect. Dis. 2013, 19, 1819–1823. [Google Scholar] [CrossRef]
- Allen, R.; Taylor, S.K.; Sulkin, S.E. Studies of arthropod-borne virus infections in Chiroptera. 8. Evidence of natural St. Louis encephalitis virus infection in bats. Am. J. Trop. Med. Hyg. 1970, 19, 851–859. [Google Scholar] [CrossRef]
- Scherer, W.F.; Chia, C.W.; Terrian, J.; Dickerman, R.W.; La Fiandra, R.P. Ecologic studies of Venezuelan encephalitis virus in southeastern Mexico. IV. Infections of wild mammals. Am. J. Trop. Med. Hyg. 1971, 20, 980–988. [Google Scholar] [CrossRef]
- Wang, J.-L.; Pan, X.-L.; Zhang, H.-L.; Fu, S.-H.; Wang, H.-Y.; Tang, Q.; Wang, L.-F.; Liang, G.-D. Japanese encephalitis viruses from bats in Yunnan, China. Emerg. Infect. Dis. 2009, 15, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Calisher, C.H.; Karabatsos, N.; Dalrymple, J.M.; Shope, R.E.; Porterfield, J.S.; Westaway, E.G.; Brandt, W.E. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J. Gen. Virol. 1989, 70 Pt 1, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Bosco-Lauth, A.; Harmon, J.R.; Lash, R.R.; Weiss, S.; Langevin, S.; Savage, H.M.; Godsey, M.S.; Burkhalter, K.; Root, J.J.; Gidlewski, T.; et al. West Nile virus isolated from a Virginia opossum (Didelphis virginiana) in northwestern Missouri, USA, 2012. J. Wildl. Dis. 2014, 50, 976–978. [Google Scholar] [CrossRef]
- Emmons, R.W.; Lennette, E.H. Isolation of western equine encephalitis virus from an opossum. Science 1969, 163, 945–946. [Google Scholar] [CrossRef]
- Ferreira-Machado, E.; Conselheiro, J.A.; da Silva, B.E.B.; Matsumoto, P.S.S.; Castagna, C.L.; Nitsche, A.; de Lima, C.S.; Presotto, D.; da Silva, M.C.R.N.; Ervedosa, T.B.; et al. Naturally acquired rabies in white-eared opossum, Brazil. Emerg. Infect. Dis. 2023, 29, 2541–2545. [Google Scholar] [CrossRef]
- Ottendorfer, C.L.; Ambrose, J.H.; White, G.S.; Unnasch, T.R.; Stark, L.M. Isolation of genotype V St. Louis encephalitis virus in Florida. Emerg. Infect. Dis. 2009, 15, 604–606. [Google Scholar] [CrossRef]
- Corrin, T.; Ackford, R.; Mascarenhas, M.; Greig, J.; Waddell, L.A. Eastern equine encephalitis virus: A scoping review of the global evidence. Vector-Borne Zoonotic Dis. 2021, 21, 305–320. [Google Scholar] [CrossRef]
- de Thoisy, B.; Gardon, J.; Salas, R.A.; Morvan, J.; Kazanji, M. Mayaro virus in wild mammals, French Guiana. Emerg. Infect. Dis. 2003, 9, 1326–1329. [Google Scholar] [CrossRef]
- Swanepoel, R.; Burt, F.J. Flaviviruses of veterinary importance. In Encyclopedia of Virology, 3rd ed.; Mahy, B.W.J., Van Regenmortel, M.H.V., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 234–241. [Google Scholar]
- de Thoisy, B.; Lacoste, V.; Germain, A.; Muñoz-Jordán, J.; Colón, C.; Mauffrey, J.-F.; Delaval, M.; Catzeflis, F.; Kazanji, M.; Matheus, S.; et al. Dengue infection in neotropical forest mammals. Vector-Borne Zoonotic Dis. 2009, 9, 157–170. [Google Scholar] [CrossRef]
- Medellín, R.A.; Arita, H.T.; Sánchez, O. Identificación de Los Murciélagos de México, Clave de Campo, 2nd ed.; Instituto de Ecología, Universidad Nacional Autónoma de México-CONABIO: Mexico City, Mexico, 2008. [Google Scholar]
- Stoskopf, M.K.; Meyer, R.E.; Jones, M.; Baumbarger, D.O. Field immobilization and euthanasia of American opossum. J. Wildl. Dis. 1999, 35, 145–149. [Google Scholar] [CrossRef]
- Aranda, S.J.M. Manual Para El Rastreo de Mamíferos Silvesres de México, 1st ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO): Mexico City, Mexico, 2012; Available online: https://www.biodiversitylibrary.org/page/49770992 (accessed on 1 December 2024).
- Laredo-Tiscareño, S.V.; Machain-Williams, C.; Rodríguez-Pérez, M.A.; Garza-Hernandez, J.A.; Doria-Cobos, G.L.; Cetina-Trejo, R.C.; Bacab-Cab, L.A.; Tangudu, C.S.; Charles, J.; De Luna-Santillana, E.J.; et al. Arbovirus Surveillance near the Mexico–U.S. Border: Isolation and Sequence Analysis of Chikungunya Virus from Patients with Dengue-like Symptoms in Reynosa, Tamaulipas. Am. J. Trop. Med. Hyg. 2018, 99, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Tangudu, C.S.; Hargett, A.M.; Mitrisin, B.C.; Laredo-Tiscareño, S.V.; Blitvich, B.J. Production of a chimeric flavivirus that contains the major structural glycoprotein genes of T’Ho virus in the genetic background of Zika virus. Virol. J. 2023, 20, 197. [Google Scholar] [CrossRef] [PubMed]
- Beaty, B.J.; Calisher, C.H.; Shope, R.S. Arboviruses. In Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections, 7th ed.; Lennette, E.H., Lennette, D.A., Lennette, E.T., Eds.; Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- D’Amore, C.; Grimaldi, P.; Ascione, T.; Conti, V.; Sellitto, C.; Franci, G.; Kafil, S.H.; Pagliano, P. West Nile Virus diffusion in temperate regions and climate change. A systematic review. Infez. Med. 2022, 31, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef]
- Ramos-Castañeda, J.; Barreto dos Santos, F.; Martínez-Vega, R.; Galvão de Araujo, J.M.; Joint, G.; Sarti, E. Dengue in Latin America: Systematic Review of Molecular Epidemiological Trends. PLoS Neglected Trop. Dis. 2017, 11, e0005224. [Google Scholar] [CrossRef]
- Yeh-Gorocica, A.; Torres-Castro, M.; Carrillo-Chan, C.; Suarez-Galaz, A.; Suarez-Galaz, M.; Moguel-Chin, W.; Panti-May, A.; Lugo-Caballero, C.; Puerta-Guardo, H.; Chable-Santos, J.; et al. Prevalence of flavivirus and alphavirus in bats captured in the state of Yucatan, southeastern Mexico. One Health 2024, 19, 100876. [Google Scholar] [CrossRef]
- Torres-Castro, M.; Noh-Pech, H.; Hernández-Betancourt, S.; Peláez-Sánchez, R.; Lugo-Caballero, C.; Puerto, F.I. West Nile and Zika viruses in bats from a suburban area of Merida, Yucatan, Mexico. Zoonoses Public Health 2021, 68, 834–841. [Google Scholar] [CrossRef]
- Malmlov, A.; Bantle, C.; Aboellail, T.; Wagner, K.; Campbell, C.L.; Eckley, M.; Chotiwan, N.; Gullberg, R.C.; Perera, R.; Tjalkens, R.; et al. Experimental Zika virus infection of Jamaican fruit bats (Artibeus jamaicensis) and possible entry of virus into brain via activated microglial cells. PLoS Neglected Trop. Dis. 2019, 13, e0007071. [Google Scholar] [CrossRef]
- Cui, J.; Shen, D.; He, H.; Sun, G.; Deubel, V.; Zhang, S.; Counor, D. Detection of Japanese encephalitis virus antibodies in bats in Southern China. Am. J. Trop. Med. Hyg. 2008, 78, 1007–1011. [Google Scholar] [CrossRef]
- Machain-Williams, C.; López-Uribe, M.; Talavera-Aguilar, L.; Carrillo-Navarrete, J.; Vera-Escalante, L.; Puerto-Manzano, F.; Ulloa, A.; Farfán-Ale, J.A.; Garcia-Rejon, J.; Blitvich, B.J.; et al. Serologic evidence of flavivirus infection in bats in the Yucatan Peninsula of Mexico. J. Wildl. Dis. 2013, 49, 684–689. [Google Scholar] [CrossRef]
- Platt, K.B.; Mangiafico, J.A.; Rocha, O.J.; Zaldivar, M.E.; Mora, J.; Trueba, G.; Rowley, W.A. Detection of dengue virus neutralizing antibodies in bats from Costa Rica and Ecuador. J. Med. Entomol. 2000, 37, 965–967. [Google Scholar] [CrossRef] [PubMed]
- Rucci, K.A.; Ferro, I.; Castilla, M.C.; Schaaf, A.A.; Aguilar, J.; Farias, A.A.; Urquizo, J.H.; Murgia, A.; Spinsanti, L.I.; Diaz, A. Dengue virus neutralizing antibodies in bats from the Yungas Rainforest in Northwestern Argentina Preprint. 2024. Available online: https://doi.org/10.20944/preprints202407.2449.v1 (accessed on 8 December 2024).
- Stone, D.; Lyons, A.C.; Huang, Y.S.; Vanlandingham, D.L.; Higgs, S.; Blitvich, B.J.; Adesiyun, A.A.; Santana, S.E.; Leiser-Miller, L.; Cheetham, S. Serological evidence of widespread exposure of Grenada fruit bats to chikungunya virus. Zoonoses Public Health 2018, 65, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Rathore, A.P.S.; St John, A.L. Cross-Reactive Immunity Among Flaviviruses. Front. Immunol. 2020, 11, 334. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.F.; Thomas, L.A. A New Virus, “MML”, Enzootic in Bats (Myotis Lucifugus) of Montana. Am. J. Trop. Med. Hyg. 1964, 13, 607–612. [Google Scholar] [CrossRef]
- Blitvich, B.J.; Firth, A.E. A Review of Flaviviruses that Have No Known Arthropod Vector. Viruses 2017, 9, 154. [Google Scholar] [CrossRef]
- Burns, K.F.; Farinacci, C.J. Virus of bats antigenically related to St. Louis encephalitis. Science 1956, 123, 227–228. [Google Scholar] [CrossRef]
- Price, J.L. Isolation of Rio Bravo and a hitherto undescribed agent, Tamana bat virus, from insectivorous bats in Trinidad, with serological evidence of infection in bats and man. Am. J. Trop. Med. Hyg. 1978, 27 Pt 1, 153–161. [Google Scholar] [CrossRef]
- Aguilar-Setién, A.; Salas-Rojas, M.; Gálvez-Romero, G.; Almazán-Marín, C.; Moreira-Soto, A.; Alfonso-Toledo, J.; Obregón-Morales, C.; García-Flores, M.; García-Baltazar, A.; Serra-Cobo, J.; et al. Experimental infection of Artibeus lituratus bats and no detection of Zika virus in neotropical bats from French Guiana, Peru, and Costa Rica suggests a limited role of bats in Zika transmission. PLoS Neglected Trop. Dis. 2023, 17, e0010439. [Google Scholar] [CrossRef]
- Cabrera-Romo, S.; Recio-Tótoro, B.; Alcalá, A.C.; Lanz, H.; del Ángel, R.M.; Sánchez-Cordero, V.; Rodríguez-Moreno, Á.; Ludert, J.E. Experimental inoculation of Artibeus jamaicensis bats with dengue virus serotypes 1 or 4 showed no evidence of sustained replication. Am. J. Trop. Med. Hyg. 2014, 91, 1227–1234. [Google Scholar] [CrossRef]
- Davis, A.; Bunning, M.; Gordy, P.; Panella, N.; Blitvich, B.; Bowen, R. Experimental and natural infection of North American bats with West Nile virus. Am. J. Trop. Med. Hyg. 2005, 73, 467–469. [Google Scholar] [CrossRef]
- LA Motte, L.C. Japanese B encephalitis in bats during simulated hibernation. Am. J. Epidemiol. 1958, 67, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Perea-Martínez, L.; Moreno-Sandoval, H.N.; Moreno-Altamirano, M.M.; Salas-Rojas, M.; García-Flores, M.M.; Aréchiga-Ceballos, N.; Tordo, N.; Marianneau, P.; Aguilar-Setién, A. Experimental infection of Artibeus intermedius bats with serotype-2 dengue virus. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 193–198. [Google Scholar] [CrossRef] [PubMed]
- van den Hurk, A.F.; Smith, C.S.; Field, H.E.; Smith, I.L.; Northill, J.A.; Taylor, C.T.; Jansen, C.C.; Smith, G.A.; Mackenzie, J.S. Transmission of Japanese Encephalitis virus from the black flying fox, Pteropus alecto, to Culex annulirostris mosquitoes, despite the absence of detectable viremia. Am. J. Trop. Med. Hyg. 2009, 81, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Blitvich, B.J.; Juarez, L.I.; Tucker, B.J.; Rowley, W.A.; Platt, K.B. Antibodies to West Nile virus in raccoons and other wild peridomestic mammals in Iowa. J. Wildl. Dis. 2009, 45, 1163–1168. [Google Scholar] [CrossRef]
- Gómez, A.; Kilpatrick, A.M.; Kramer, L.D.; Dupuis, A.P.; Maffei, J.G.; Goetz, S.J.; Marra, P.P.; Daszak, P.; Aguirre, A.A. Land use and west nile virus seroprevalence in wild mammals. Emerg. Infect. Dis. 2008, 14, 962–965. [Google Scholar] [CrossRef]
- Root, J.J.; Hall, J.S.; Mclean, R.G.; Marlenee, N.L.; Beaty, B.J.; Gansowski, J.; Clark, L. Serologic evidence of exposure of wild mammals to flaviviruses in the central and eastern United States. Am. J. Trop. Med. Hyg. 2005, 72, 622–630. [Google Scholar] [CrossRef]
- Figueiredo, L.T.M. The Brazilian flaviviruses. Microbes Infect. 2000, 2, 1643–1649. [Google Scholar] [CrossRef]
- Rodriguez-Morales, A.J.; Bonilla-Aldana, D.K. Neglected arboviruses in Latin America. In New Advances in Neglected Tropical Diseases; Sperança, M.A., Ed.; IntechOpen: London, UK, 2022. [Google Scholar]
- Bernal, M.K.; Chiang, J.O.; Mendes, F.F.; Andrade, S.L.; Silva, S.K.; Pereira, W.L. Study of arboviruses in Philander opossum, Didelphis marsupialis and Nectomys rattus captured from forest fragments in the municipality of Belém, Pará, Brazil. Ciência Rural 2021, 51, e20200515. Available online: https://www.scielo.br/j/cr/a/5HVdVyK4r8W6rjL3RFpPvhH/ (accessed on 8 December 2024). [CrossRef]
- Kokernot, R.H.; Radivojevic, B.; Anderson, R.J. Susceptibility of wild and domesticated mammals to four arboviruses. Am. J. Vet. Res. 1969, 30, 2197–2203. [Google Scholar]
- McLean, R.G.; Francy, D.B.; Campos, E.G. Experimental studies of St. Louis encephalitis virus in vertebrates. J. Wildl. Dis. 1985, 21, 85–93. [Google Scholar] [CrossRef]
- Thomas, J.; Garcia, J.; Terry, M.; Mahaney, S.; Quintanilla, O.; Silva, D.C.; Morales, M.; VandeBerg, J.L. Monodelphis domestica as a Fetal Intra-Cerebral Inoculation Model for Zika Virus Pathogenesis. Pathogens 2023, 12, 733. [Google Scholar] [CrossRef] [PubMed]
- de Souza, W.M.; Gaye, A.; Ndiaye, E.H.; Morgan, A.L.; Sylla, E.H.D.; Sy, F.A.; Diallo, M.; Weaver, S.C. Serosurvey of Chikungunya Virus in Old World Fruit Bats, Senegal, 2020–2022. Emerg. Infect. Dis. 2024, 30, 1490–1492. [Google Scholar] [CrossRef] [PubMed]
- Kading, R.C.; Borland, E.M.; Mossel, E.C.; Nakayiki, T.; Nalikka, B.; Ledermann, J.P.; Crabtree, M.B.; Panella, N.A.; Nyakarahuka, L.; Gilbert, A.T.; et al. Exposure of Egyptian Rousette Bats (Rousettus aegyptiacus) and a Little Free-Tailed Bat (Chaerephon pumilus) to Alphaviruses in Uganda. Diseases 2022, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Bittar, C.; Machado, R.R.G.; Comelis, M.T.; Bueno, L.M.; Morielle-Versute, E.; Beguelini, M.R.; de Souza, R.P.; Nogueira, M.L.; Rahal, P. Lack of serological and molecular evidence of arbovirus infections in bats from Brazil. PLoS ONE 2018, 13, e0207010. [Google Scholar] [CrossRef]
- Hernández-Aguilar, I.; Lorenzo, C.; Ramírez-Palacios, L.R.; Santos-Moreno, A.; Naranjo, E.J. Molecular Detection of Dengue Virus, Zika Virus, and Chikungunya Virus Arboviruses in Neotropical Bats. Vector-Borne Zoonotic Dis. 2023, 23, 428–436. [Google Scholar] [CrossRef]
- Bosco-Lauth, A.M.; Nemeth, N.M.; Kohler, D.J.; Bowen, R.A. Viremia in North American mammals and birds after experimental infection with chikungunya viruses. Am. J. Trop. Med. Hyg. 2016, 94, 504–506. [Google Scholar] [CrossRef]
- Murillo, D.F.B.; Piche-Ovares, M.; Gamboa-Solano, J.C.; Romero, L.M.; Soto-Garita, C.; Alfaro-Alarcón, A.; Corrales-Aguilar, E. Serological positivity against selected flaviviruses and alphaviruses in free-ranging bats and birds from Costa Rica evidence exposure to arboviruses seldom reported locally in humans. Viruses 2022, 14, 93. [Google Scholar] [CrossRef]
- Fischer, C.; Pontier, D.; Filippi-Codaccioni, O.; Pons, J.-B.; Postigo-Hidalgo, I.; Duhayer, J.; Brünink, S.; Drexler, J.F. Venezuelan Equine Encephalitis Complex Alphavirus in Bats, French Guiana. Emerg. Infect. Dis. 2021, 27, 1141–1145. [Google Scholar] [CrossRef]
- Guzmán, C.; Calderón, A.; Martinez, C.; Oviedo, M.; Mattar, S. Eco-epidemiology of the Venezuelan equine encephalitis virus in bats of Córdoba and Sucre, Colombia. Acta Trop. 2019, 191, 178–184. [Google Scholar] [CrossRef]
- Marrero, L.M.; Botto Nunez, G.; Frabasile, S.; Delfraro, A. Alphavirus Identification in Neotropical Bats. Viruses 2022, 14, 269. [Google Scholar] [CrossRef]
- Thompson, N.N.; Auguste, A.J.; da Rosa, A.P.A.T.; Carrington, C.V.F.; Blitvich, B.J.; Chadee, D.D.; Tesh, R.B.; Weaver, S.C.; Adesiyun, A.A. Seroepidemiology of selected alphaviruses and flaviviruses in bats in Trinidad. Zoonoses Public Health 2014, 62, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Bigler, W.J.; Lassing, E.; Buff, E.; Lewis, A.L.; Hoff, G.L. Arbovirus surveillance in Florida: Wild vertebrate studies 1965–1974. J. Wildl. Dis. 1975, 11, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Bigler, W.J.; Lassing, E.B.; Buff, E.E.; Hoff, G.L.; Beck, E.C.; Prather, E.C. Endemic eastern equine encephalomyelitis in Florida: A twenty-year analysis, 1955–1974. Am. J. Trop. Med. Hyg. 1976, 25, 884–890. [Google Scholar] [CrossRef]
- Walder, R.; Suarez, O.M.; Calisher, C.H. Arbovirus studies in southwestern Venezuela during 1973–1981. II. Isolations and further studies of Venezuelan and eastern equine encephalitis, Una, Itaqui, and Moju viruses. Am. J. Trop. Med. Hyg. 1984, 33, 483–491. [Google Scholar] [CrossRef]
- Estrada-Franco, J.G.; Navarro-Lopez, R.; Freier, J.E.; Cordova, D.; Clements, T.; Moncayo, A.; Kang, W.; Gomez-Hernandez, C.; Rodriguez-Dominguez, G.; Ludwig, G.V.; et al. Venezuelan equine encephalitis virus, southern Mexico. Emerg. Infect. Dis. 2004, 10, 2113–2121. [Google Scholar] [CrossRef]
Species | Common Name | No. Sampled | No. (%) with Orthoflavivirus-Specific Antibodies |
---|---|---|---|
Artibeus jamaicensis | Jamaican fruit bat | 10 | 4 (40.0) |
Artibeus lituratus | Great fruit-eating bat | 5 | 2 (40.0) |
Artibeus spp. | - | 1 | 0 (0) |
Carollia perspicillata | Seba’s short-tailed bat | 11 | 0 (0) |
Carollia sowelli | Sowell’s short-tailed bat | 7 | 0 (0) |
Dermanura watsoni | Solitary fruit-eating bat | 6 | 0 (0) |
Desmodus rotundus | Common vampire bat | 5 | 1 (20.0) |
Glossophaga mutica | Merriam’s long-tongued bat | 1 | 0 (0) |
Noctilio leporinus | Greater bulldog bat | 15 | 0 (0) |
Phyllostomus hastatus | Greater spear-nosed bat | 2 | 0 (0) |
Platyrrhinus helleri | Heller’s broad-nosed bat | 5 | 1 (20.0) |
Saccopteryx bilineata | Greater sac-winged bat | 11 | 2 (18.2) |
Sturnira parvidens | Little yellow-shouldered Mesoamerican bat | 5 | 1 (20.0) |
Trachops cirrhosus | Fringe-lipped bat | 6 | 1 (16.7) |
Uroderma bilobatum | Tent-making bat | 1 | 0 (0) |
Uroderma convexum | Pacific tent-making bat | 3 | 0 (0) |
Total | 94 | 12 (12.8) |
Species | Common Name | No. Sampled | No. (%) with Orthoflavivirus-Specific Antibodies |
---|---|---|---|
Didelphis marsupialis | Common opossum | 14 | 5 (35.7) |
Didelphis virginiana | Virginia opossum | 11 | 2 (18.2) |
Philander opossum | Gray four-eyed opossum | 18 | 8 (44.4) |
Total | 43 | 15 (34.9) |
Identification Number | Species | Collection Date (Day/Month/Year) | Study Site ‡ | Age Class | Sex | PRNT70 Outcome | |
---|---|---|---|---|---|---|---|
DENV2 | WNV | ||||||
M95 | Artibeus lituratus | 01/28/2024 | 3 | Adult | F | + § | − ¶ |
M96 | Artibeus jamaicensis | 01/28/2024 | 3 | Adult | M | − | + |
M104 | Sturnida parvidens | 03/28/2024 | 2 | Sub-adult | F | − | + |
M139 | Trachops cirrhosus | 07/30/2024 | 6 | Adult | F | + | + |
M141 | Saccopteryx bilineata | 07/30/2024 | 6 | Adult | F | + | + |
M142 | Saccopteryx bilineata | 07/30/2024 | 6 | Juvenile | F | + | − |
M147 | Desmodus rotundus | 07/30/2024 | 6 | Adult | M | − | + |
M158 | Artibeus jamaicensis | 08/01/2024 | 3 | Adult | M | − | + |
M162 | Platyrrhinus helleri | 08/01/2024 | 1 | Sub-adult | M | − | + |
M167 | Artibeus jamaicensis | 08/01/2024 | 1 | Adult | M | − | + |
M168 | Artibeus jamaicensis | 08/01/2024 | 5 | Juvenile | M | − | + |
M169 | Artibeus lituratus | 08/01/2024 | 5 | Adult | F | − | + |
Identification Number | Species | Collection Date (Day/Month/Year) | Study Site ‡ | Age Class | Sex | PRNT70 Outcome | |
---|---|---|---|---|---|---|---|
DENV2 | WNV | ||||||
T17 | Philander opossum | 10/17/2023 | 4 | Adult | F | + § | + |
T19 | Didelphis virginiana | 10/18/2023 | 3 | Juvenile | F | − ¶ | + |
T24 | Philander opossum | 01/27/2024 | 6 | Sub-adult | M | − | + |
T25 | Didelphis virginiana | 01/28/2024 | 1 | Adult | M | − | + |
T26 | Philander opossum | 01/28/2024 | 5 | Adult | M | + | + |
T28 | Philander opossum | 01/29/2024 | 5 | Adult | M | + | + |
T29 | Philander opossum | 01/29/2024 | 5 | Adult | F | − | + |
T31 | Didelphis marsupialis | 01/29/2024 | 5 | Adult | F | + | + |
T32 | Philander opossum | 01/30/2024 | 2 | Adult | M | − | + |
T33 | Didelphis marsupialis | 01/30/2024 | 1 | Adult | M | − | + |
T35 | Didelphis marsupialis | 01/30/2024 | 2 | Adult | M | − | + |
T42 | Philander opossum | 03/28/2024 | 2 | Juvenile | M | + | - |
T44 | Didelphis marsupialis | 04/26/2024 | 3 | Sub-adult | M | − | + |
T53 | Didelphis marsupialis | 06/28/2024 | 4 | Juvenile | M | − | + |
T54 | Philander opossum | 07/30/2024 | 6 | Adult | M | + | + |
Description | No. Positive/Tested (%) for Orthoflavivirus-Specific Antibodies | |||||
---|---|---|---|---|---|---|
Bats | χ² | p-Value | Opossums | χ² | p-Value | |
Sex | ||||||
Male | 6/52 (11.5) | 11/32 (34.4) | ||||
Female | 6/42 (14.3) | 0.157 | 0.762 | 4/11 (36.4) | 0.014 | 1.0 |
Life stage | ||||||
Juvenile | 2/11 (18.1) | 3/18 (16.7) | ||||
Sub-adult | 2/19 (10.5) | 2/5 (40.0) | ||||
Adult | 8/64 (12.5) | 0.636 | 0.793 | 10/20 (50.0) | 4.77 | 0.086 |
Study site | ||||||
Disturbed | 7/64 (10.9) | 8/17 (47.1) | ||||
Undisturbed | 5/30 (16.7) | 0.602 | 0.512 | 7/26 (26.9) | 1.835 | 0.202 |
Identification Number | PRNT90 Titer | PRNT90 Outcome | |||||||
---|---|---|---|---|---|---|---|---|---|
DENV1 | DENV2 | DENV3 | DENV4 | SLEV | THOV | WNV | ZIKV | ||
M95 | - | - † | - | - | - | 40 | - | 80 | ORTHO |
M96 | - | - | - | - | 40 | 40 | - | 160 | ZIKV |
M104 | - | - | - | - | - | - | 40 | - | ORTHO |
M139 | 40 | 40 | - | 80 | - | 80 | 40 | 80 | ORTHO |
M141 | 80 | 40 | - | 80 | - | 80 | 40 | 160 | ORTHO |
M142 | - | 80 | - | 40 | - | 40 | - | 40 | ORTHO |
M147 | 80 | - | 40 | - | - | - | - | - | ORTHO |
M158 | 80 | - | 40 | - | - | - | - | - | ORTHO |
M162 | - | - | - | - | - | - | - | - | Negative |
M167 | 40 | - | - | - | - | - | - | - | ORTHO |
M168 | 40 | - | - | - | - | - | - | - | ORTHO |
M169 | 40 | - | - | 40 | - | - | - | 40 | ORTHO |
Identification Number | PRNT90 Titer | PRNT90 Outcome | |||||||
---|---|---|---|---|---|---|---|---|---|
DENV1 | DENV2 | DENV3 | DENV4 | SLEV | THOV | WNV | ZIKV | ||
T17 | - † | - | - | 40 | - | - | - | - | ORTHO |
T19 | - | - | - | - | - | - | - | - | Negative |
T24 | - | - | - | - | - | - | - | - | Negative |
T25 | 160 | - | 40 | 40 | - | 80 | 40 | 80 | ORTHO |
T26 | - | - | - | - | - | 40 | - | - | ORTHO |
T28 | 160 | 40 | 80 | 80 | - | 40 | 40 | - | ORTHO |
T29 | - | - | - | - | - | - | 40 | - | ORTHO |
T31 | 1280 | 640 | 320 | 640 | 320 | 640 | 320 | 160 | ORTHO |
T32 | - | - | - | - | - | - | - | - | Negative |
T33 | - | - | - | - | - | - | - | - | Negative |
T35 | - | - | - | - | - | - | - | - | Negative |
T42 | - | 40 | - | - | - | - | - | - | ORTHO |
T44 | 40 | - | - | - | - | - | - | - | ORTHO |
T53 | - | - | - | - | - | - | - | - | Negative |
T54 | 40 | 40 | - | 80 | - | - | - | - | ORTHO |
Identification Number | Species | Collection Date (Day/Month/Year) | Study Site ‡ | Age Class | Sex | PRNT70 Outcome |
---|---|---|---|---|---|---|
T25 | Didelphis virginiana | 01/28/2024 | 1 | Adult | M | + § |
T27 | Philander opossum | 01/29/2024 | 5 | Adult | M | + |
T30 | Philander opossum | 01/29/2024 | 5 | Juvenile | M | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda-Coello, J.M.; Machain-Williams, C.; Weber, M.; Dzul Rosado, A.R.; Simpkins, T.R.; Blitvich, B.J. Serologic Surveillance for Orthoflaviviruses and Chikungunya Virus in Bats and Opossums in Chiapas, Mexico. Viruses 2025, 17, 590. https://doi.org/10.3390/v17050590
Aranda-Coello JM, Machain-Williams C, Weber M, Dzul Rosado AR, Simpkins TR, Blitvich BJ. Serologic Surveillance for Orthoflaviviruses and Chikungunya Virus in Bats and Opossums in Chiapas, Mexico. Viruses. 2025; 17(5):590. https://doi.org/10.3390/v17050590
Chicago/Turabian StyleAranda-Coello, J. Manuel, Carlos Machain-Williams, Manuel Weber, Alma R. Dzul Rosado, Tyler R. Simpkins, and Bradley J. Blitvich. 2025. "Serologic Surveillance for Orthoflaviviruses and Chikungunya Virus in Bats and Opossums in Chiapas, Mexico" Viruses 17, no. 5: 590. https://doi.org/10.3390/v17050590
APA StyleAranda-Coello, J. M., Machain-Williams, C., Weber, M., Dzul Rosado, A. R., Simpkins, T. R., & Blitvich, B. J. (2025). Serologic Surveillance for Orthoflaviviruses and Chikungunya Virus in Bats and Opossums in Chiapas, Mexico. Viruses, 17(5), 590. https://doi.org/10.3390/v17050590