Treating Adenovirus Infection in Transplant Populations: Therapeutic Options Beyond Cidofovir?
Abstract
:1. Introduction
2. Cidofovir (CDV)
3. Brincidofovir (BCV)
4. Ribavirin (RBV)
5. Ganciclovir (GCV)
6. Other Anti-AdV Agents
7. Adoptive T-Cell Therapy
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rowe, W.P.; Huebner, R.J.; Gilmore, L.K.; Parrott, R.H.; Ward, T.G. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc. Soc. Exp. Biol. Med. 1953, 84, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Hilleman, M.R.; Werner, J.H. Recovery of new agent from patients with acute respiratory illness. Proc. Soc. Exp. Biol. Med. 1954, 85, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Shields, A.F.; Hackman, R.C.; Fife, K.H.; Corey, L.; Meyers, J.D. Adenovirus infections in patients undergoing bone-marrow transplantation. N. Engl. J. Med. 1985, 312, 529–533. [Google Scholar] [CrossRef] [PubMed]
- International Committee on Taxonomy of Viruses: ICTV. Available online: https://ictv.global/report/chapter/adenoviridae/adenoviridae (accessed on 19 March 2025).
- Available online: http://hadvwg.gmu.edu (accessed on 25 November 2024).
- Seto, D.; Chodosh, J.; Brister, J.R.; Jones, M.S. Using the whole-genome sequence to characterize and name human adenoviruses. J. Virol. 2011, 85, 5701–5702. [Google Scholar] [CrossRef]
- Kajon, A.E. Adenovirus infections: New insights for the clinical laboratory. J. Clin. Microbiol. 2024, 62, e0083622. [Google Scholar] [CrossRef]
- Cupelli, K.; Stehle, T. Viral attachment strategies: The many faces of adenoviruses. Curr. Opin. Virol. 2011, 1, 84–91. [Google Scholar] [CrossRef]
- Nestić, D.; Božinović, K.; Pehar, I.; Wallace, R.; Parker, A.L.; Majhen, D. The Revolving Door of Adenovirus Cell Entry: Not All Pathways Are Equal. Pharmaceutics 2021, 13, 1585. [Google Scholar] [CrossRef]
- Stephenson, K.E.; Rhee, E.G.; Barouch, D.H. Adenoviruses. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier Inc.: Philadelphia, PA, USA, 2020; pp. 1908–1915. [Google Scholar]
- Inamoto, Y.; Takeda, W.; Hirakawa, T.; Sakaguchi, H.; Nakano, N.; Uchida, N.; Doki, N.; Ikegame, K.; Katayama, Y.; Sawa, M.; et al. Adenovirus disease after hematopoietic cell transplantation: A Japanese transplant registry analysis. Am. J. Hematol. 2022, 97, 1568–1579. [Google Scholar] [CrossRef]
- Sedláček, P.; Petterson, T.; Robin, M.; Sivaprakasam, P.; Vainorius, E.; Brundage, T.; Chandak, A.; Mozaffari, E.; Nichols, G.; Voigt, S. Incidence of Adenovirus Infection in Hematopoietic Stem Cell Transplantation Recipients: Findings from the AdVance Study. Biol. Blood Marrow Transplant. 2019, 25, 810–818. [Google Scholar] [CrossRef]
- Papanicolaou, G.A.; Dvorak, C.C.; Dadwal, S.; Maron, G.; Prasad, V.K.; Giller, R.; Abdel-Azim, H.; Sadanand, A.; Casciano, R.; Chandak, A.; et al. Practice patterns and incidence of adenovirus infection in allogeneic hematopoietic cell transplant recipients: Multicenter survey of transplant centers in the United States. Transpl. Infect. Dis. 2020, 22, e13283. [Google Scholar] [CrossRef]
- Florescu, D.F.; Schaenman, J.M. Adenovirus in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transplant. 2019, 33, e13527. [Google Scholar] [CrossRef] [PubMed]
- Matthes-Martin, S.; Boztug, H.; Lion, T. Diagnosis and treatment of adenovirus infection in immunocompromised patients. Expert Rev. Anti Infect. Ther. 2013, 11, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Munoz, F.M.; Piedra, P.A.; Demmler, G.J. Disseminated adenovirus disease in immunocompromised and immunocompetent children. Clin. Infect. Dis. 1998, 27, 1194–1200. [Google Scholar] [CrossRef]
- Takamatsu, A.; Tagashira, Y.; Hasegawa, S.; Honda, H. Disseminated adenovirus infection in a patient with a hematologic malignancy: A case report and literature review. Future Sci. OA 2019, 5, Fso412. [Google Scholar] [CrossRef]
- Echavarría, M. Adenoviruses in immunocompromised hosts. Clin. Microbiol. Rev. 2008, 21, 704–715. [Google Scholar] [CrossRef]
- Matthes-Martin, S.; Feuchtinger, T.; Shaw, P.J.; Engelhard, D.; Hirsch, H.H.; Cordonnier, C.; Ljungman, P. European guidelines for diagnosis and treatment of adenovirus infection in leukemia and stem cell transplantation: Summary of ECIL-4 (2011). Transpl. Infect. Dis. 2012, 14, 555–563. [Google Scholar] [CrossRef]
- Styczynski, J.; Tridello, G.; Knelange, N.; Wendel, L.; Ljungman, P.; Mikulska, M.; Gil, L.; Cesaro, S.; Averbuch, D.; von dem Borne, P.; et al. Adenovirus infections after allogeneic hematopoietic cell transplantation in children and adults: A study from the Infectious Diseases Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. 2024, 59, 1402–1412. [Google Scholar] [CrossRef]
- De Clercq, E.; Holý, A.; Rosenberg, I.; Sakuma, T.; Balzarini, J.; Maudgal, P.C. A novel selective broad-spectrum anti-DNA virus agent. Nature 1986, 323, 464–467. [Google Scholar] [CrossRef]
- De Clercq, E.; Sakuma, T.; Baba, M.; Pauwels, R.; Balzarini, J.; Rosenberg, I.; Holý, A. Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines. Antivir. Res. 1987, 8, 261–272. [Google Scholar] [CrossRef]
- Kirsch, L.S.; Arevalo, J.F.; De Clercq, E.; Chavez de la Paz, E.; Munguia, D.; Garcia, R.; Freeman, W.R. Phase I/II study of intravitreal cidofovir for the treatment of cytomegalovirus retinitis in patients with the acquired immunodeficiency syndrome. Am. J. Ophthalmol. 1995, 119, 466–476. [Google Scholar] [CrossRef]
- Tooker, G.M.; Stafford, K.A.; Nishioka, J.; Badros, A.Z.; Riedel, D.J. Intravesicular Cidofovir in the Treatment of BK Virus-Associated Hemorrhagic Cystitis Following Hematopoietic Stem Cell Transplantation. Ann. Pharmacother. 2020, 54, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Prévost, J.; Sloan, A.; Deschambault, Y.; Tailor, N.; Tierney, K.; Azaransky, K.; Kammanadiminti, S.; Barker, D.; Kodihalli, S.; Safronetz, D. Treatment efficacy of cidofovir and brincidofovir against clade II Monkeypox virus isolates. Antivir. Res. 2024, 231, 105995. [Google Scholar] [CrossRef] [PubMed]
- CDC. Available online: https://www.cdc.gov/smallpox/treatment/index.html (accessed on 3 February 2025).
- Vittecoq, D.; Dumitrescu, L.; Beaufils, H.; Deray, G. Fanconi syndrome associated with cidofovir therapy. Antimicrob. Agents Chemother. 1997, 41, 1846. [Google Scholar] [CrossRef] [PubMed]
- Parenteral cidofovir for cytomegalovirus retinitis in patients with AIDS: The HPMPC peripheral cytomegalovirus retinitis trial. A randomized, controlled trial. Studies of Ocular complications of AIDS Research Group in Collaboration with the AIDS Clinical Trials Group. Ann. Intern. Med. 1997, 126, 264–274. [CrossRef]
- Lalezari, J.P.; Stagg, R.J.; Kuppermann, B.D.; Holland, G.N.; Kramer, F.; Ives, D.V.; Youle, M.; Robinson, M.R.; Drew, W.L.; Jaffe, H.S. Intravenous cidofovir for peripheral cytomegalovirus retinitis in patients with AIDS. A randomized, controlled trial. Ann. Intern. Med. 1997, 126, 257–263. [Google Scholar] [CrossRef]
- Cundy, K.C.; Bidgood, A.M.; Lynch, G.; Shaw, J.P.; Griffin, L.; Lee, W.A. Pharmacokinetics, bioavailability, metabolism, and tissue distribution of cidofovir (HPMPC) and cyclic HPMPC in rats. Drug Metab. Dispos. 1996, 24, 745–752. [Google Scholar] [CrossRef]
- De Clercq, E.; Holý, A. Efficacy of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine in various models of herpes simplex virus infection in mice. Antimicrob. Agents Chemother. 1991, 35, 701–706. [Google Scholar] [CrossRef]
- Lacy, S.A.; Hitchcock, M.J.; Lee, W.A.; Tellier, P.; Cundy, K.C. Effect of oral probenecid coadministration on the chronic toxicity and pharmacokinetics of intravenous cidofovir in cynomolgus monkeys. Toxicol. Sci. 1998, 44, 97–106. [Google Scholar] [CrossRef]
- Cundy, K.C.; Li, Z.H.; Lee, W.A. Effect of probenecid on the distribution, metabolism, and excretion of cidofovir in rabbits. Drug Metab. Dispos. 1996, 24, 315–321. [Google Scholar] [CrossRef]
- de Oliveira, C.B.; Stevenson, D.; LaBree, L.; McDonnell, P.J.; Trousdale, M.D. Evaluation of Cidofovir (HPMPC, GS-504) against adenovirus type 5 infection in vitro and in a New Zealand rabbit ocular model. Antivir. Res. 1996, 31, 165–172. [Google Scholar] [CrossRef]
- Muller, W.J.; Levin, M.J.; Shin, Y.K.; Robinson, C.; Quinones, R.; Malcolm, J.; Hild, E.; Gao, D.; Giller, R. Clinical and in vitro evaluation of cidofovir for treatment of adenovirus infection in pediatric hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 2005, 41, 1812–1816. [Google Scholar] [CrossRef] [PubMed]
- Morfin, F.; Dupuis-Girod, S.; Mundweiler, S.; Falcon, D.; Carrington, D.; Sedlacek, P.; Bierings, M.; Cetkovsky, P.; Kroes, A.C.; van Tol, M.J.; et al. In vitro susceptibility of adenovirus to antiviral drugs is species-dependent. Antivir. Ther. 2005, 10, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Gordon, Y.J.; Araullo-Cruz, T.P.; Johnson, Y.F.; Romanowski, E.G.; Kinchington, P.R. Isolation of human adenovirus type 5 variants resistant to the antiviral cidofovir. Investig. Ophthalmol. Vis. Sci. 1996, 37, 2774–2778. [Google Scholar]
- Hedderwick, S.A.; Greenson, J.K.; McGaughy, V.R.; Clark, N.M. Adenovirus cholecystitis in a patient with AIDS. Clin. Infect. Dis. 1998, 26, 997–999. [Google Scholar] [CrossRef]
- Ribaud, P.; Scieux, C.; Freymuth, F.; Morinet, F.; Gluckman, E. Successful treatment of adenovirus disease with intravenous cidofovir in an unrelated stem-cell transplant recipient. Clin. Infect. Dis. 1999, 28, 690–691. [Google Scholar] [CrossRef]
- Legrand, F.; Berrebi, D.; Houhou, N.; Freymuth, F.; Faye, A.; Duval, M.; Mougenot, J.F.; Peuchmaur, M.; Vilmer, E. Early diagnosis of adenovirus infection and treatment with cidofovir after bone marrow transplantation in children. Bone Marrow Transplant. 2001, 27, 621–626. [Google Scholar] [CrossRef]
- Hoffman, J.A.; Shah, A.J.; Ross, L.A.; Kapoor, N. Adenoviral infections and a prospective trial of cidofovir in pediatric hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2001, 7, 388–394. [Google Scholar] [CrossRef]
- Bhadri, V.A.; Lee-Horn, L.; Shaw, P.J. Safety and tolerability of cidofovir in high-risk pediatric patients. Transpl. Infect. Dis. 2009, 11, 373–379. [Google Scholar] [CrossRef]
- Guerra Sanchez, C.H.; Lorica, C.D.; Arheart, K.L.; Perez, M.M.; Tekin, A.; Gonzalez, I.A. Virologic response with 2 different cidofovir dosing regimens for preemptive treatment of adenovirus DNAemia in pediatric solid organ transplant recipients. Pediatr. Transplant. 2018, 22, e13231. [Google Scholar] [CrossRef]
- Riggsbee, D.L.; Alali, M.; Kussin, M.L. Cidofovir for Viral Infections in Immunocompromised Children: Guidance on Dosing, Safety, Efficacy, and a Review of the Literature. Ann. Pharmacother. 2024, 58, 286–304. [Google Scholar] [CrossRef]
- Stern, A.; Alonso, C.D.; Garcia-Vidal, C.; Cardozo, C.; Slavin, M.; Yong, M.K.; Ho, S.A.; Mehta Steinke, S.; Avery, R.K.; Koehler, P.; et al. Safety and efficacy of intravenously administered cidofovir in adult haematopoietic cell transplant recipients: A retrospective multicentre cohort study. J. Antimicrob. Chemother. 2021, 76, 3020–3028. [Google Scholar] [CrossRef]
- Anderson, E.J.; Guzman-Cottrill, J.A.; Kletzel, M.; Thormann, K.; Sullivan, C.; Zheng, X.; Katz, B.Z. High-risk adenovirus-infected pediatric allogeneic hematopoietic progenitor cell transplant recipients and preemptive cidofovir therapy. Pediatr. Transplant. 2008, 12, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Nagafuji, K.; Aoki, K.; Henzan, H.; Kato, K.; Miyamoto, T.; Eto, T.; Nagatoshi, Y.; Ohba, T.; Obama, K.; Gondo, H.; et al. Cidofovir for treating adenoviral hemorrhagic cystitis in hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2004, 34, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Chemaly, R.F.; Hill, J.A.; Voigt, S.; Peggs, K.S. In vitro comparison of currently available and investigational antiviral agents against pathogenic human double-stranded DNA viruses: A systematic literature review. Antivir. Res. 2019, 163, 50–58. [Google Scholar] [CrossRef]
- Symeonidis, N.; Jakubowski, A.; Pierre-Louis, S.; Jaffe, D.; Pamer, E.; Sepkowitz, K.; O’Reilly, R.J.; Papanicolaou, G.A. Invasive adenoviral infections in T-cell-depleted allogeneic hematopoietic stem cell transplantation: High mortality in the era of cidofovir. Transpl. Infect. Dis. 2007, 9, 108–113. [Google Scholar] [CrossRef]
- Robin, M.; Marque-Juillet, S.; Scieux, C.; Peffault de Latour, R.; Ferry, C.; Rocha, V.; Molina, J.M.; Bergeron, A.; Devergie, A.; Gluckman, E.; et al. Disseminated adenovirus infections after allogeneic hematopoietic stem cell transplantation: Incidence, risk factors and outcome. Haematologica 2007, 92, 1254–1257. [Google Scholar] [CrossRef]
- Lugthart, G.; Oomen, M.A.; Jol-van der Zijde, C.M.; Ball, L.M.; Bresters, D.; Kollen, W.J.; Smiers, F.J.; Vermont, C.L.; Bredius, R.G.; Schilham, M.W.; et al. The effect of cidofovir on adenovirus plasma DNA levels in stem cell transplantation recipients without T cell reconstitution. Biol. Blood Marrow Transplant. 2015, 21, 293–299. [Google Scholar] [CrossRef]
- Yusuf, U.; Hale, G.A.; Carr, J.; Gu, Z.; Benaim, E.; Woodard, P.; Kasow, K.A.; Horwitz, E.M.; Leung, W.; Srivastava, D.K.; et al. Cidofovir for the treatment of adenoviral infection in pediatric hematopoietic stem cell transplant patients. Transplantation 2006, 81, 1398–1404. [Google Scholar] [CrossRef]
- Al-Heeti, O.M.; Cathro, H.P.; Ison, M.G. Adenovirus Infection and Transplantation. Transplantation 2022, 106, 920–927. [Google Scholar] [CrossRef]
- Heemskerk, B.; Lankester, A.C.; van Vreeswijk, T.; Beersma, M.F.; Claas, E.C.; Veltrop-Duits, L.A.; Kroes, A.C.; Vossen, J.M.; Schilham, M.W.; van Tol, M.J. Immune reconstitution and clearance of human adenovirus viremia in pediatric stem-cell recipients. J. Infect. Dis. 2005, 191, 520–530. [Google Scholar] [CrossRef]
- Rubinstein, J.D.; Zhu, X.; Leemhuis, T.; Pham, G.; Ray, L.; Emberesh, S.; Jodele, S.; Thomas, S.; Cancelas, J.A.; Bollard, C.M.; et al. Virus-specific T cells for adenovirus infection after stem cell transplantation are highly effective and class II HLA restricted. Blood Adv. 2021, 5, 3309–3321. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, K.; Yoshihara, S.; Tamaki, H.; Fujimoto, T.; Ikegame, K.; Kaida, K.; Nakata, J.; Inoue, T.; Kato, R.; Fujioka, T.; et al. Incidence and treatment strategy for disseminated adenovirus disease after haploidentical stem cell transplantation. Ann. Hematol. 2012, 91, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, S.; Berger, M.; Tridello, G.; Mikulska, M.; Ward, K.N.; Ljungman, P.; Van Der Werf, S.; Averbuch, D.; Styczynski, J. A survey on incidence and management of adenovirus infection after allogeneic HSCT. Bone Marrow Transplant. 2019, 54, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Dadwal, S.S.; Papanicolaou, G.A.; Boeckh, M. How I prevent viral reactivation in high-risk patients. Blood 2023, 141, 2062–2074. [Google Scholar] [CrossRef]
- Hiwarkar, P.; Kosulin, K.; Cesaro, S.; Mikulska, M.; Styczynski, J.; Wynn, R.; Lion, T. Management of adenovirus infection in patients after haematopoietic stem cell transplantation: State-of-the-art and real-life current approach: A position statement on behalf of the Infectious Diseases Working Party of the European Society of Blood and Marrow Transplantation. Rev. Med. Virol. 2018, 28, e1980. [Google Scholar] [CrossRef]
- Lanier, R.; Trost, L.; Tippin, T.; Lampert, B.; Robertson, A.; Foster, S.; Rose, M.; Painter, W.; O’Mahony, R.; Almond, M.; et al. Development of CMX001 for the Treatment of Poxvirus Infections. Viruses 2010, 2, 2740–2762. [Google Scholar] [CrossRef]
- Chimerix. 2018. Available online: https://www.congress.gov/115/meeting/house/108389/witnesses/HHRG-115-IF14-Wstate-BerreyM-20180606.pdf (accessed on 19 March 2025).
- Hostetler, K.Y. Synthesis and early development of hexadecyloxypropylcidofovir: An oral antipoxvirus nucleoside phosphonate. Viruses 2010, 2, 2213–2225. [Google Scholar] [CrossRef]
- Ciesla, S.L.; Trahan, J.; Wan, W.B.; Beadle, J.R.; Aldern, K.A.; Painter, G.R.; Hostetler, K.Y. Esterification of cidofovir with alkoxyalkanols increases oral bioavailability and diminishes drug accumulation in kidney. Antivir. Res. 2003, 59, 163–171. [Google Scholar] [CrossRef]
- Kern, E.R.; Hartline, C.; Harden, E.; Keith, K.; Rodriguez, N.; Beadle, J.R.; Hostetler, K.Y. Enhanced inhibition of orthopoxvirus replication in vitro by alkoxyalkyl esters of cidofovir and cyclic cidofovir. Antimicrob. Agents Chemother. 2002, 46, 991–995. [Google Scholar] [CrossRef]
- Beadle, J.R.; Hartline, C.; Aldern, K.A.; Rodriguez, N.; Harden, E.; Kern, E.R.; Hostetler, K.Y. Alkoxyalkyl esters of cidofovir and cyclic cidofovir exhibit multiple-log enhancement of antiviral activity against cytomegalovirus and herpesvirus replication in vitro. Antimicrob. Agents Chemother. 2002, 46, 2381–2386. [Google Scholar] [CrossRef]
- Aldern, K.A.; Ciesla, S.L.; Winegarden, K.L.; Hostetler, K.Y. Increased antiviral activity of 1-O-hexadecyloxypropyl-[2-(14)C]cidofovir in MRC-5 human lung fibroblasts is explained by unique cellular uptake and metabolism. Mol. Pharmacol. 2003, 63, 678–681. [Google Scholar] [CrossRef] [PubMed]
- ASPR. Available online: https://aspr.hhs.gov/SNS/Pages/Mpox.aspx (accessed on 5 March 2025).
- Hartline, C.B.; Gustin, K.M.; Wan, W.B.; Ciesla, S.L.; Beadle, J.R.; Hostetler, K.Y.; Kern, E.R. Ether lipid-ester prodrugs of acyclic nucleoside phosphonates: Activity against adenovirus replication in vitro. J. Infect. Dis. 2005, 191, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Toth, K.; Spencer, J.F.; Dhar, D.; Sagartz, J.E.; Buller, R.M.; Painter, G.R.; Wold, W.S. Hexadecyloxypropyl-cidofovir, CMX001, prevents adenovirus-induced mortality in a permissive, immunosuppressed animal model. Proc. Natl. Acad. Sci. USA 2008, 105, 7293–7297. [Google Scholar] [CrossRef]
- Florescu, D.F.; Pergam, S.A.; Neely, M.N.; Qiu, F.; Johnston, C.; Way, S.; Sande, J.; Lewinsohn, D.A.; Guzman-Cottrill, J.A.; Graham, M.L.; et al. Safety and efficacy of CMX001 as salvage therapy for severe adenovirus infections in immunocompromised patients. Biol. Blood Marrow Transplant. 2012, 18, 731–738. [Google Scholar] [CrossRef]
- Paolino, K.; Sande, J.; Perez, E.; Loechelt, B.; Jantausch, B.; Painter, W.; Anderson, M.; Tippin, T.; Lanier, E.R.; Fry, T.; et al. Eradication of disseminated adenovirus infection in a pediatric hematopoietic stem cell transplantation recipient using the novel antiviral agent CMX001. J. Clin. Virol. 2011, 50, 167–170. [Google Scholar] [CrossRef]
- Voigt, S.; Hofmann, J.; Edelmann, A.; Sauerbrei, A.; Kühl, J.S. Brincidofovir clearance of acyclovir-resistant herpes simplex virus-1 and adenovirus infection after stem cell transplantation. Transpl. Infect. Dis. 2016, 18, 791–794. [Google Scholar] [CrossRef]
- Ramsay, I.D.; Attwood, C.; Irish, D.; Griffiths, P.D.; Kyriakou, C.; Lowe, D.M. Disseminated adenovirus infection after allogeneic stem cell transplant and the potential role of brincidofovir—Case series and 10 year experience of management in an adult transplant cohort. J. Clin. Virol. 2017, 96, 73–79. [Google Scholar] [CrossRef]
- Meena, J.P.; Phillips, R.S.; Kinsey, S. Brincidofovir as a Salvage Therapy in Controlling Adenoviremia in Pediatric Recipients of Hematopoietic Stem Cell Transplant. J. Pediatr. Hematol./Oncol. 2019, 41, e467–e472. [Google Scholar] [CrossRef]
- Sulejmani, N.; Nagai, S.; Safwan, M.; Rizzari, M.D.; Raoufi, M.; Abouljoud, M.S.; Ramesh, M. Brincidofovir as Salvage Therapy for Adenovirus Disease in Intestinal Transplant Recipients. Pharmacotherapy 2018, 38, 470–475. [Google Scholar] [CrossRef]
- Londeree, J.; Winterberg, P.D.; Garro, R.; George, R.P.; Shin, S.; Liverman, R.; Serluco, A.; Romero, R.; Yildirim, I. Brincidofovir for the treatment of human adenovirus infection in pediatric solid organ transplant recipients: A case series. Pediatr. Transplant. 2020, 24, e13769. [Google Scholar] [CrossRef]
- Hiwarkar, P.; Amrolia, P.; Sivaprakasam, P.; Lum, S.H.; Doss, H.; O’Rafferty, C.; Petterson, T.; Patrick, K.; Silva, J.; Slatter, M.; et al. Brincidofovir is highly efficacious in controlling adenoviremia in pediatric recipients of hematopoietic cell transplant. Blood 2017, 129, 2033–2037. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.J.; Young, R.T.; Steinbach, W.J.; Lugo, D.J. Risks and outcomes of adenovirus disease in pediatric hematopoietic stem cell transplant recipients-Comparison of current antiviral treatment options. Transpl. Infect. Dis. 2021, 23, e13505. [Google Scholar] [CrossRef] [PubMed]
- Perruccio, K.; Menconi, M.; Galaverna, F.; Pagliara, D.; Carraro, F.; Fagioli, F.; Calore, E.; Biffi, A.; Baretta, V.; Massei, M.S.; et al. Safety and efficacy of brincidofovir for Adenovirus infection in children receiving allogeneic stem cell transplantation: An AIEOP retrospective analyses. Bone Marrow Transplant. 2021, 56, 3104–3107. [Google Scholar] [CrossRef] [PubMed]
- Grimley, M.S.; Chemaly, R.F.; Englund, J.A.; Kurtzberg, J.; Chittick, G.; Brundage, T.M.; Bae, A.; Morrison, M.E.; Prasad, V.K. Brincidofovir for Asymptomatic Adenovirus Viremia in Pediatric and Adult Allogeneic Hematopoietic Cell Transplant Recipients: A Randomized Placebo-Controlled Phase II Trial. Biol. Blood Marrow Transplant. 2017, 23, 512–521. [Google Scholar] [CrossRef]
- Grimley, M.; Marón, G.M.; Gomez, C.A.; Prasad, V.K.; Dara, J.; Lion, T.; Papanicola, K.; Wynn, R.F.; Boeckh, M.J. Preliminary Results of a Phase 2a Clinical Trial to Evaluate Safety, Tolerability and Antiviral Activity of Intravenous Brincidofovir (BCV IV) in Immunocompromised Patients with Adenovirus Infection. Transplant. Cell. Ther. 2024, 30 (Suppl. S2), S89. [Google Scholar] [CrossRef]
- Sidwell, R.W.; Huffman, J.H.; Khare, G.P.; Allen, L.B.; Witkowski, J.T.; Robins, R.K. Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science 1972, 177, 705–706. [Google Scholar] [CrossRef]
- Witkowski, J.T.; Robins, R.K.; Sidwell, R.W.; Simon, L.N. Design, synthesis, and broad spectrum antiviral activity of 1- -D-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. J. Med. Chem. 1972, 15, 1150–1154. [Google Scholar] [CrossRef]
- Graci, J.D.; Cameron, C.E. Mechanisms of action of ribavirin against distinct viruses. Rev. Med. Virol. 2006, 16, 37–48. [Google Scholar] [CrossRef]
- Ramírez-Olivencia, G.; Estébanez, M.; Membrillo, F.J.; Ybarra, M.D.C. Use of ribavirin in viruses other than hepatitis C. A review of the evidence. Enfermedades Infecc. Microbiol. Clin. (Engl. Ed.) 2019, 37, 602–608. [Google Scholar] [CrossRef]
- Riner, A.; Chan-Tack, K.M.; Murray, J.S. Original research: Intravenous ribavirin—Review of the FDA’s Emergency Investigational New Drug Database (1997–2008) and literature review. Postgrad. Med. 2009, 121, 139–146. [Google Scholar] [CrossRef]
- Canonico, P.; Kastello; Cosgriff, T.; Donovan, J.; Ross, P.; Spears, C.; Stephen, E. Hematological and bone marrow effects of ribavirin in rhesus monkeys. Toxicol. Appl. Pharmacol. 1984, 74, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Sulkowski, M.S.; Wasserman, R.; Brooks, L.; Ball, L.; Gish, R. Changes in haemoglobin during interferon alpha-2b plus ribavirin combination therapy for chronic hepatitis C virus infection. J. Viral. Hepat. 2004, 11, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Sulkowski, M.S. Anemia in the treatment of hepatitis C virus infection. Clin. Infect. Dis. 2003, 37 (Suppl. S4), S315–S322. [Google Scholar] [CrossRef] [PubMed]
- Ferm, V.H.; Willhite, C.; Kilham, L. Teratogenic effects of ribavirin on hamster and rat embryos. Teratology 1978, 17, 93–101. [Google Scholar] [CrossRef]
- Sinclair, S.M.; Jones, J.K.; Miller, R.K.; Greene, M.F.; Kwo, P.Y.; Maddrey, W.C. The Ribavirin Pregnancy Registry: An interim analysis of potential teratogenicity at the mid-point of enrollment. Drug Saf. 2017, 40, 1205–1218. [Google Scholar] [CrossRef]
- Avery, L.; Hoffmann, C.; Whalen, K.M. The use of aerosolized ribavirin in respiratory syncytial virus lower respiratory tract infections in adult immunocompromised patients: A systematic review. Hosp. Pharm. 2020, 55, 224–235. [Google Scholar] [CrossRef]
- Virazole (Ribavirin for Inhalation Solution) [Package Insert]; Bausch Health: Bridgewater, NJ, USA, 2019.
- Scheffler, P.; Haghchenas, D.; Wigand, R. The effect of purine and pyrimidine analogues and virazole on adenovirus replication. Acta Virol. 1975, 19, 106–115. [Google Scholar]
- Lagrota, M.H.; Ciribelli-Guimaräes, J.; Pereira, N.A.; Wigg, M.D.; Fonseca, M.E. Antiviral chemotherapy: In vitro activity of ribavirin on DNA and RNA viruses. Rev. Latinoam. Microbiol. 1982, 24, 121–124. [Google Scholar]
- Buchdahl, R.M.; Taylor, P.; Warner, J.D. Nebulised ribavirin for adenovirus pneumonia. Lancet 1985, 2, 1070–1071. [Google Scholar] [CrossRef]
- Cassano, W.F. Intravenous ribavirin therapy for adenovirus cystitis after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1991, 7, 247–248. [Google Scholar]
- Ulrych, E.E.; Dzieciątkowski, T.; Przybylski, M.; Zduńczyk, D.; Boguradzki, P.; Torosian, T.; Waszczuk-Gajda, A.; Rynans, S.; Wróblewska, M.; Jędrzejczak, W.W.; et al. Disseminated adenovirus disease in immunocompromised patient successfully treated with oral ribavirin: A case report. Arch. Immunol. Ther. Exp. 2011, 59, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.Y.; Cho, H.H.; Ryu, Y.J. Adenovirus pneumonia treated with Cidofovir in an immunocompetent high school senior. Respir. Med. Case Rep. 2019, 26, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Tang, M.; Li, D.; Fei, H.; Zhang, H. Combined intravenous ribavirin and recombinant human interferon α1b aerosol inhalation for adenovirus pneumonia with plastic bronchitis in children: A case report and review of literature. Front. Pediatr. 2024, 12, 1295133. [Google Scholar] [CrossRef] [PubMed]
- Schleuning, M.; Buxbaum-Conradi, H.; Jäger, G.; Kolb, H.J. Intravenous ribavirin for eradication of respiratory syncytial virus (RSV) and adenovirus isolates from the respiratory and/or gastrointestinal tract in recipients of allogeneic hematopoietic stem cell transplants. Hematol. J. 2004, 5, 135–144. [Google Scholar] [CrossRef]
- Hromas, R.; Clark, C.; Blanke, C.; Tricot, G.; Cornetta, K.; Hedderman, A.; Broun, E.R. Failure of ribavirin to clear adenovirus infections in T cell-depleted allogeneic bone marrow transplantation. Bone Marrow Transplant. 1994, 14, 663–664. [Google Scholar]
- Bordigoni, P.; Carret, A.S.; Venard, V.; Witz, F.; Le Faou, A. Treatment of adenovirus infections in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 2001, 32, 1290–1297. [Google Scholar] [CrossRef]
- La Rosa, A.M.; Champlin, R.E.; Mirza, N.; Gajewski, J.; Giralt, S.; Rolston, K.V.; Raad, I.; Jacobson, K.; Kontoyiannis, D.; Elting, L.; et al. Adenovirus infections in adult recipients of blood and marrow transplants. Clin. Infect. Dis. 2001, 32, 871–876. [Google Scholar] [CrossRef]
- Lankester, A.C.; Heemskerk, B.; Claas, E.C.; Schilham, M.W.; Beersma, M.F.; Bredius, R.G.; van Tol, M.J.; Kroes, A.C. Effect of ribavirin on the plasma viral DNA load in patients with disseminating adenovirus infection. Clin. Infect. Dis. 2004, 38, 1521–1525. [Google Scholar] [CrossRef]
- Liles, W.C.; Cushing, H.; Holt, S.; Bryan, C.; Hackman, R.C. Severe adenoviral nephritis following bone marrow transplantation: Successful treatment with intravenous ribavirin. Bone Marrow Transplant. 1993, 12, 409–412. [Google Scholar]
- Murphy, G.F.; Wood, D.P., Jr.; McRoberts, J.W.; Henslee-Downey, P.J. Adenovirus-associated hemorrhagic cystitis treated with intravenous ribavirin. J. Urol. 1993, 149, 565–566. [Google Scholar] [CrossRef]
- Jurado, M.; Navarro, J.M.; Hernández, J.; Molina, M.A.; DePablos, J.M. Adenovirus-associated haemorrhagic cystitis after bone marrow transplantation successfully treated with intravenous ribavirin. Bone Marrow Transplant. 1995, 15, 651–652. [Google Scholar] [PubMed]
- Kapelushnik, J.; Or, R.; Delukina, M.; Nagler, A.; Livni, N.; Engelhard, D. Intravenous ribavirin therapy for adenovirus gastroenteritis after bone marrow transplantation. J. Pediatr. Gastroenterol. Nutr. 1995, 21, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Wulffraat, N.M.; Geelen, S.P.; van Dijken, P.J.; de Graeff-Meeder, B.; Kuis, W.; Boven, K. Recovery from adenovirus pneumonia in a severe combined immunodeficiency patient treated with intravenous ribavirin. Transplantation 1995, 59, 927. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.; Moreb, J.; Smith, S.; Gian, V. Failure of intravenous ribavirin in the treatment of invasive adenovirus infection following allogeneic bone marrow transplantation: A case report. J. Infect. 1998, 36, 227–228. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Collingham, K.E.; Fegan, C.D.; Milligan, D.W. Fulminant adenovirus hepatitis following unrelated bone marrow transplantation: Failure of intravenous ribavirin therapy. Bone Marrow Transplant. 1999, 23, 1209–1211. [Google Scholar] [CrossRef]
- Hale, G.A.; Heslop, H.E.; Krance, R.A.; Brenner, M.A.; Jayawardene, D.; Srivastava, D.K.; Patrick, C.C. Adenovirus infection after pediatric bone marrow transplantation. Bone Marrow Transplant. 1999, 23, 277–282. [Google Scholar] [CrossRef]
- Howard, D.S.; Phillips, I.G.; Reece, D.E.; Munn, R.K.; Henslee-Downey, J.; Pittard, M.; Barker, M.; Pomeroy, C. Adenovirus infections in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 1999, 29, 1494–1501. [Google Scholar] [CrossRef]
- Lakhani, A.; Raptis, A.; Frame, D.; Simpson, D.; Berkahn, L.; Mellon-Reppen, S.; Klingemann, H. Intravesicular instillation of E-aminocaproic acid for patients with adenovirus-induced hemorrhagic cystitis. Bone Marrow Transplant. 1999, 24, 1259–1260. [Google Scholar] [CrossRef]
- Miyamura, K.; Hamaguchi, M.; Taji, H.; Kanie, T.; Kohno, A.; Tanimoto, M.; Saito, H.; Kojima, S.; Matsuyama, T.; Kitaori, K.; et al. Successful ribavirin therapy for severe adenovirus hemorrhagic cystitis after allogeneic marrow transplant from close HLA donors rather than distant donors. Bone Marrow Transplant. 2000, 25, 545–548. [Google Scholar] [CrossRef]
- Ikegame, K.; Takimoto, T.; Takahashi, R.; Murakami, M.; Tamaki, H.; Fujioka, T.; Kawakami, M.; Hirabayashi, N.; Soma, T.; Sugiyama, H.; et al. Lethal adenovirus infection in a patient who had undergone nonmyeloablative stem cell transplantation. Int. J. Hematol. 2001, 74, 95–100. [Google Scholar] [CrossRef]
- Gavin, P.J.; Katz, B.Z. Intravenous ribavirin treatment for severe adenovirus disease in immunocompromised children. Pediatrics 2002, 110 Pt 1, e9. [Google Scholar] [CrossRef] [PubMed]
- Aebi, C.; Headrick, C.L.; McCracken, G.H.; Lindsay, C.A. Intravenous ribavirin therapy in a neonate with disseminated adenovirus infection undergoing extracorporeal membrane oxygenation: Pharmacokinetics and clearance by hemofiltration. J. Pediatr. 1997, 130, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Omar, H.; Yun, Z.; Lewensohn-Fuchs, I.; Pérez-Bercoff, L.; Orvell, C.; Engström, L.; Vuong, G.K.; Ljungman, P. Poor outcome of adenovirus infections in adult hematopoietic stem cell transplant patients with sustained adenovirus viremia. Transpl. Infect. Dis. 2010, 12, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Sahu, K.K.; Prakash, G.; Khadwal, A.; Varma, S.C.; Malhotra, P. A Rare Case of Hemorrhagic Cystitis in Allogeneic Hematopoietic Stem Cell Transplant Patient. Indian. J. Hematol. Blood Transfus. 2016, 32 (Suppl. S1), 196–200. [Google Scholar] [CrossRef]
- Takada, Y.; Kurosawa, S.; Ueki, T.; Najima, Y.; Wakita, S.; Yamaguchi, H.; Yokota, T.; Hibi, M.; Hirahara, A.; Yoshida, T.; et al. Overcoming post-transplant graft failure and adenovirus infection in a patient with FLT3-TKD-mutated mixed-phenotype acute leukemia: A case report. EJHaem 2024, 5, 802–809. [Google Scholar] [CrossRef]
- Emovon, O.E.; Lin, A.; Howell, D.N.; Afzal, F.; Baillie, M.; Rogers, J.; Baliga, P.K.; Chavin, K.; Nickeleit, V.; Rajagapalan, P.R.; et al. Refractory adenovirus infection after simultaneous kidney-pancreas transplantation: Successful treatment with intravenous ribavirin and pooled human intravenous immunoglobulin. Nephrol. Dial. Transplant. 2003, 18, 2436–2438. [Google Scholar] [CrossRef]
- Hofland, C.A.; Eron, L.J.; Washecka, R.M. Hemorrhagic adenovirus cystitis after renal transplantation. Transplant. Proc. 2004, 36, 3025–3027. [Google Scholar] [CrossRef]
- Komiya, T.; Goto, N.; Takeda, A.; Horike, K.; Onoda, H.; Sakai, K.; Kitamura, K.; Yamamoto, K.; Oikawa, T.; Nagasaka, T.; et al. A case of acute rejection with adenovirus infection after ABO-incompatible kidney transplantation. Clin. Transplant. 2009, 23 (Suppl. S20), 27–30. [Google Scholar] [CrossRef]
- Park, U.J.; Hyun, S.K.; Kim, H.T.; Cho, W.H.; Han, S.Y. Successful treatment of disseminated adenovirus infection with ribavirin and intravenous immunoglobulin in an adult renal transplant recipient: A case report. Transplant. Proc. 2015, 47, 791–793. [Google Scholar] [CrossRef]
- Morfin, F.; Dupuis-Girod, S.; Frobert, E.; Mundweiler, S.; Carrington, D.; Sedlacek, P.; Bierings, M.; Cetkovsky, P.; Kroes, A.C.; van Tol, M.J.; et al. Differential susceptibility of adenovirus clinical isolates to cidofovir and ribavirin is not related to species alone. Antivir. Ther. 2009, 14, 55–61. [Google Scholar] [CrossRef]
- Stock, R.; Harste, G.; Madisch, I.; Heim, A. A rapid quantitative PCR-based assay for testing antiviral agents against human adenoviruses demonstrates type specific differences in ribavirin activity. Antivir. Res. 2006, 72, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.L.; Jeffries, D.J.; Taylor-Robinson, D.; Parkin, J.M.; Tyms, A.S. The susceptibillity of adenovirus infeection to the anti-cytomegalovirus drug, ganciclovir (DHPG). FEMS Microbiol. Lett. 1988, 49, 337–341. [Google Scholar] [CrossRef]
- Trousdale, M.D.; Goldschmidt, P.L.; Nóbrega, R. Activity of ganciclovir against human adenovirus type-5 infection in cell culture and cotton rat eyes. Cornea 1994, 13, 435–439. [Google Scholar] [CrossRef]
- Ying, B.; Tollefson, A.E.; Spencer, J.F.; Balakrishnan, L.; Dewhurst, S.; Capella, C.; Buller, R.M.; Toth, K.; Wold, W.S. Ganciclovir inhibits human adenovirus replication and pathogenicity in permissive immunosuppressed Syrian hamsters. Antimicrob. Agents Chemother. 2014, 58, 7171–7181. [Google Scholar] [CrossRef]
- Toth, K.; Ying, B.; Tollefson, A.E.; Spencer, J.F.; Balakrishnan, L.; Sagartz, J.E.; Buller, R.M.; Wold, W.S. Valganciclovir inhibits human adenovirus replication and pathology in permissive immunosuppressed female and male Syrian hamsters. Viruses 2015, 7, 1409–1428. [Google Scholar] [CrossRef]
- Gu, J.; Su, Q.Q.; Zuo, T.T.; Chen, Y.B. Adenovirus diseases: A systematic review and meta-analysis of 228 case reports. Infection 2021, 49, 1–13. [Google Scholar] [CrossRef]
- Blohmé, I.; Nyberg, G.; Jeansson, S.; Svalander, C. Adenovirus infection in a renal transplant patient. Transplant. Proc. 1992, 24, 295. [Google Scholar]
- Chen, F.E.; Liang, R.H.; Lo, J.Y.; Yuen, K.Y.; Chan, T.K.; Peiris, M. Treatment of adenovirus-associated haemorrhagic cystitis with ganciclovir. Bone Marrow Transplant. 1997, 20, 997–999. [Google Scholar] [CrossRef]
- Duggan, J.M.; Farrehi, J.; Duderstadt, S.; Turner, N.J.; Fekety, R. Treatment with ganciclovir of adenovirus pneumonia in a cardiac transplant patient. Am. J. Med. 1997, 103, 439–440. [Google Scholar] [CrossRef]
- Suzuki, H.I.; Asai, T.; Okada, K.; Kazuyama, Y.; Takahashi, T.; Kanda, Y.; Chiba, S.; Kurokawa, M. Disseminated adenovirus disease by multiple adenovirus serotypes following allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2008, 14, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, Y.; Suzuki, T.; Fukuyama, T.; Katsuyama, Y.; Tanaka, M.; Yanagisawa, R.; Sakashita, K.; Shiohara, M.; Koike, K. Urinary excretion of ganciclovir contributes to improvement of adenovirus-associated hemorrhagic cystitis after allogeneic bone marrow transplantation. Pediatr. Transplant. 2009, 13, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, K.; Kondo, Y.; Hosokawa, K.; Ohata, K.; Yamazaki, H.; Takami, A.; Sasaki, M.; Sato, Y.; Nakanuma, Y.; Nakao, S. Adenovirus pneumonia presenting with nodular shadows on chest X-ray in two unrelated allogeneic bone marrow transplant recipients. Intern. Med. 2014, 53, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, S.; Najima, Y.; Konishi, T.; Yamada, Y.; Takezaki, T.; Kurosawa, S.; Sakaguchi, M.; Harada, K.; Yoshioka, K.; Igarashi, A.; et al. Disseminated adenovirus infection in a patient with relapsed refractory multiple myeloma undergoing autologous stem cell transplantation and pomalidomide/dexamethasone as salvage regimens. J. Infect. Chemother. 2019, 25, 371–375. [Google Scholar] [CrossRef]
- Lim, A.K.; Parsons, S.; Ierino, F. Adenovirus tubulointerstitial nephritis presenting as a renal allograft space occupying lesion. Am. J. Transplant. 2005, 5, 2062–2066. [Google Scholar] [CrossRef]
- Kozlowski, T.; Nickeleit, V.; Andreoni, K. Donor-transmitted adenovirus infection causing kidney allograft nephritis and graft loss. Transpl. Infect. Dis. 2011, 13, 168–173. [Google Scholar] [CrossRef]
- Nanmoku, K.; Ishikawa, N.; Kurosawa, A.; Shimizu, T.; Kimura, T.; Miki, A.; Sakuma, Y.; Yagisawa, T. Clinical characteristics and outcomes of adenovirus infection of the urinary tract after renal transplantation. Transpl. Infect. Dis. 2016, 18, 234–239. [Google Scholar] [CrossRef]
- Paula, F.J.; Neves, P.D.; Lazari, C.S.; Ramos, R.G.; Frediani, M.M.; Silva, M.V.; Mfinda, N.; Pierrotti, L.C.; David, D.S.; Testagrossa, L.A.; et al. The Case|Unexplained fever and acute kidney injury in a kidney transplant patient. Kidney Int. 2016, 90, 1391–1392. [Google Scholar] [CrossRef]
- Barros Silva, G.E.; Muglia, V.F.; Filho, N.S.; Medeiros de Araújo, E.; Lages, J.S.; Alves Ferreira, T.C.; Costa, R.S.; Dantas, M. Adenovirus pyelonephritis in the late posttransplant period. Kidney Int. 2017, 92, 520. [Google Scholar] [CrossRef]
- Moreira, C.L.; Rocha, J.; Silva, M.; Silva, J.; Almeida, M.; Pedroso, S.; Vizcaíno, R.; Martins, S.; Dias, L.; Henriques, A.C.; et al. Adenovirus infection-A rare cause of interstitial nephritis in kidney transplant. Nefrologia (Engl. Ed.) 2019, 39, 106–107. [Google Scholar] [CrossRef]
- Shepp, D.H.; Dandliker, P.S.; de Miranda, P.; Burnette, T.C.; Cederberg, D.M.; Kirk, L.E.; Meyers, J.D. Activity of 9-[2-hydroxy-1-(hydroxymethyl)ethoxymethyl]guanine in the treatment of cytomegalovirus pneumonia. Ann. Intern. Med. 1985, 103, 368–373. [Google Scholar] [CrossRef]
- Avivi, I.; Chakrabarti, S.; Milligan, D.W.; Waldmann, H.; Hale, G.; Osman, H.; Ward, K.N.; Fegan, C.D.; Yong, K.; Goldstone, A.H.; et al. Incidence and outcome of adenovirus disease in transplant recipients after reduced-intensity conditioning with alemtuzumab. Biol. Blood Marrow Transplant. 2004, 10, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Bruno, B.; Gooley, T.; Hackman, R.C.; Davis, C.; Corey, L.; Boeckh, M. Adenovirus infection in hematopoietic stem cell transplantation: Effect of ganciclovir and impact on survival. Biol. Blood Marrow Transplant. 2003, 9, 341–352. [Google Scholar] [CrossRef]
- Venton, G.; Crocchiolo, R.; Fürst, S.; Granata, A.; Oudin, C.; Faucher, C.; Coso, D.; Bouabdallah, R.; Berger, P.; Vey, N.; et al. Risk factors of ganciclovir-related neutropenia after allogeneic stem cell transplantation: A retrospective monocentre study on 547 patients. Clin. Microbiol. Infect. 2014, 20, 160–166. [Google Scholar] [CrossRef]
- Tomblyn, M.; Chiller, T.; Einsele, H.; Gress, R.; Sepkowitz, K.; Storek, J.; Wingard, J.R.; Young, J.-A.H.; Boeckh, M.A. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: A global perspective. Biol. Blood Marrow Transplant. 2009, 15, 1143–1238. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, M.; Ueda, S.; Maeda, T.; Karasuno, T.; Teshima, H.; Hiraoka, A.; Nakamura, H.; Tanaka, K.; Masaoka, T. Vidarabine therapy for virus-associated cystitis after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1997, 20, 485–490. [Google Scholar] [CrossRef]
- Kitabayashi, A.; Hirokawa, M.; Kuroki, J.; Nishinari, T.; Niitsu, H.; Miura, A.B. Successful vidarabine therapy for adenovirus type 11-associated acute hemorrhagic cystitis after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1994, 14, 853–854. [Google Scholar]
- Vianelli, N.; Renga, M.; Azzi, A.; De Santis, R.D.; Bandini, G.; Tosi, P.; Tura, S. Sequential vidarabine infusion in the treatment of polyoma virus-associated acute haemorrhagic cystitis late after allogeneic bone marrow transplantation. Bone Marrow Transplant. 2000, 25, 319–320. [Google Scholar] [CrossRef]
- Kurosaki, K.; Miwa, N.; Yoshida, Y.; Kurokawa, M.; Kurimoto, M.; Endo, S.; Shiraki, K. Therapeutic basis of vidarabine on adenovirus-induced haemorrhagic cystitis. Antivir. Chem. Chemother. 2004, 15, 281–285. [Google Scholar] [CrossRef]
- Saha, B.; Parks, R.J. Recent Advances in Novel Antiviral Therapies against Human Adenovirus. Microorganisms 2020, 8, 1284. [Google Scholar] [CrossRef]
- Dodge, M.J.; MacNeil, K.M.; Tessier, T.M.; Weinberg, J.B.; Mymryk, J.S. Emerging antiviral therapeutics for human adenovirus infection: Recent developments and novel strategies. Antivir. Res. 2021, 188, 105034. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, L.; Zhao, S.; Liu, Q.; Guan, W.; Wu, J.; Zhang, Q.; Wen, H.; Huang, W. High-Throughput Screening and Identification of Human Adenovirus Type 5 Inhibitors. Front. Cell. Infect. Microbiol. 2021, 11, 767578. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Jiang, L.; Cao, W.; Wu, J.; Chen, X. Identification of Inhibitors and Drug Targets for Human Adenovirus Infections. Viruses 2022, 14, 959. [Google Scholar] [CrossRef] [PubMed]
- Tollefson, A.E.; Hussein, I.T.M.; Toth, K.; Bowlin, T.L. Filociclovir is a potent inhibitor of human adenovirus F41. Antivir. Res. 2022, 208, 105431. [Google Scholar] [CrossRef]
- Bruminhent, J.; Apiwattanakul, N.; Hongeng, S.; Kantachuvesiri, S.; Watcharananan, S.P. Absolute lymphocyte count and human adenovirus-specific T-cell immune restoration of human adenovirus infection after kidney transplantation. J. Med. Virol. 2019, 91, 1432–1439. [Google Scholar] [CrossRef]
- Hromas, R.; Cornetta, K.; Srour, E.; Blanke, C.; Broun, E.R. Donor leukocyte infusion as therapy of life-threatening adenoviral infections after T-cell-depleted bone marrow transplantation. Blood 1994, 84, 1689–1690. [Google Scholar] [CrossRef]
- Rooney, C.M.; Smith, C.A.; Ng, C.Y.; Loftin, S.; Li, C.; Krance, R.A.; Brenner, M.K.; Heslop, H.E. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 1995, 345, 9–13. [Google Scholar] [CrossRef]
- Motta, C.M.; Keller, M.D.; Bollard, C.M. Applications of virus-specific T cell therapies post-BMT. Semin. Hematol. 2023, 60, 10–19. [Google Scholar] [CrossRef]
- Leen, A.M.; Christin, A.; Myers, G.D.; Liu, H.; Cruz, C.R.; Hanley, P.J.; Kennedy-Nasser, A.A.; Leung, K.S.; Gee, A.P.; Krance, R.A.; et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood 2009, 114, 4283–4292. [Google Scholar] [CrossRef]
- Gerdemann, U.; Katari, U.L.; Papadopoulou, A.; Keirnan, J.M.; Craddock, J.A.; Liu, H.; Martinez, C.A.; Kennedy-Nasser, A.; Leung, K.S.; Gottschalk, S.M.; et al. Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Mol. Ther. 2013, 21, 2113–2121. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Gerdemann, U.; Katari, U.L.; Tzannou, I.; Liu, H.; Martinez, C.; Leung, K.; Carrum, G.; Gee, A.P.; Vera, J.F.; et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci. Transl. Med. 2014, 6, 242ra83. [Google Scholar] [CrossRef]
- Feucht, J.; Opherk, K.; Lang, P.; Kayser, S.; Hartl, L.; Bethge, W.; Matthes-Martin, S.; Bader, P.; Albert, M.H.; Maecker-Kolhoff, B.; et al. Adoptive T-cell therapy with hexon-specific Th1 cells as a treatment of refractory adenovirus infection after HSCT. Blood 2015, 125, 1986–1994. [Google Scholar] [CrossRef] [PubMed]
- Creidy, R.; Moshous, D.; Touzot, F.; Elie, C.; Neven, B.; Gabrion, A.; Leruez-Ville, M.; Maury, S.; Ternaux, B.; Nisoy, J.; et al. Specific T cells for the treatment of cytomegalovirus and/or adenovirus in the context of hematopoietic stem cell transplantation. J. Allergy Clin. Immunol. 2016, 138, 920–924.e923. [Google Scholar] [CrossRef] [PubMed]
- Ip, W.; Silva, J.M.F.; Gaspar, H.; Mitra, A.; Patel, S.; Rao, K.; Chiesa, R.; Amrolia, P.; Gilmour, K.; Ahsan, G.; et al. Multicenter phase 1/2 application of adenovirus-specific T cells in high-risk pediatric patients after allogeneic stem cell transplantation. Cytotherapy 2018, 20, 830–838. [Google Scholar] [CrossRef]
- Abraham, A.A.; John, T.D.; Keller, M.D.; Cruz, C.R.N.; Salem, B.; Roesch, L.; Liu, H.; Hoq, F.; Grilley, B.J.; Gee, A.P.; et al. Safety and feasibility of virus-specific T cells derived from umbilical cord blood in cord blood transplant recipients. Blood Adv. 2019, 3, 2057–2068. [Google Scholar] [CrossRef]
- Rubinstein, J.D.; Lutzko, C.; Leemhuis, T.; Zhu, X.; Pham, G.; Ray, L.; Thomas, S.; Dourson, C.; Wilhelm, J.; Lane, A.; et al. Scheduled administration of virus-specific T cells for viral prophylaxis after pediatric allogeneic stem cell transplant. Blood Adv. 2022, 6, 2897–2907. [Google Scholar] [CrossRef]
- Leen, A.M.; Bollard, C.M.; Mendizabal, A.M.; Shpall, E.J.; Szabolcs, P.; Antin, J.H.; Kapoor, N.; Pai, S.Y.; Rowley, S.D.; Kebriaei, P.; et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 2013, 121, 5113–5123. [Google Scholar] [CrossRef]
- Tzannou, I.; Papadopoulou, A.; Naik, S.; Leung, K.; Martinez, C.A.; Ramos, C.A.; Carrum, G.; Sasa, G.; Lulla, P.; Watanabe, A.; et al. Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation. J. Clin. Oncol. 2017, 35, 3547–3557. [Google Scholar] [CrossRef]
- Pfeiffer, T.; Tzannou, I.; Wu, M.; Ramos, C.; Sasa, G.; Martinez, C.; Lulla, P.; Krance, R.A.; Scherer, L.; Ruderfer, D.; et al. Posoleucel, an Allogeneic, Off-the-Shelf Multivirus-Specific T-Cell Therapy, for the Treatment of Refractory Viral Infections in the Post-HCT Setting. Clin. Cancer Res. 2023, 29, 324–330. [Google Scholar] [CrossRef]
- Keller, M.D.; Hanley, P.J.; Chi, Y.Y.; Aguayo-Hiraldo, P.; Dvorak, C.C.; Verneris, M.R.; Kohn, D.B.; Pai, S.Y.; Dávila Saldaña, B.J.; Hanisch, B.; et al. Antiviral cellular therapy for enhancing T-cell reconstitution before or after hematopoietic stem cell transplantation (ACES): A two-arm, open label phase II interventional trial of pediatric patients with risk factor assessment. Nat. Commun. 2024, 15, 3258. [Google Scholar] [CrossRef]
- Qian, C.; Campidelli, A.; Wang, Y.; Cai, H.; Venard, V.; Jeulin, H.; Dalle, J.H.; Pochon, C.; D’Aveni, M.; Bruno, B.; et al. Curative or pre-emptive adenovirus-specific T cell transfer from matched unrelated or third party haploidentical donors after HSCT, including UCB transplantations: A successful phase I/II multicenter clinical trial. J. Hematol. Oncol. 2017, 10, 102. [Google Scholar] [CrossRef]
- Galletta, T.J.; Lane, A.; Lutzko, C.; Leemhuis, T.; Cancelas, J.A.; Khoury, R.; Wang, Y.M.; Hanley, P.J.; Keller, M.D.; Bollard, C.M.; et al. Third-Party and Patient-Specific Donor-Derived Virus-Specific T Cells Demonstrate Similar Efficacy and Safety for Management of Viral Infections after Hematopoietic Stem Cell Transplantation in Children and Young Adults. Transpl. Cell Ther. 2023, 29, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, L.; Muranski, P. Virus-specific T cell therapy to treat refractory viral infections in solid organ transplant recipients. Am. J. Transplant. 2024, 24, 1558–1566. [Google Scholar] [CrossRef]
- Leen, A.M.; Myers, G.D.; Sili, U.; Huls, M.H.; Weiss, H.; Leung, K.S.; Carrum, G.; Krance, R.A.; Chang, C.C.; Molldrem, J.J.; et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat. Med. 2006, 12, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, R.J.; Prockop, S.; Hasan, A.N.; Koehne, G.; Doubrovina, E. Virus-specific T-cell banks for ‘off the shelf’ adoptive therapy of refractory infections. Bone Marrow Transplant. 2016, 51, 1163–1172. [Google Scholar] [CrossRef]
- Li Pira, G.; Ivaldi, F.; Starc, N.; Landi, F.; Rutella, S.; Locatelli, F.; Sacchi, N.; Tripodi, G.; Manca, F. A registry of HLA-typed donors for production of virus-specific CD4 and CD8 T lymphocytes for adoptive reconstitution of immune-compromised patients. Transfusion 2014, 54, 3145–3154. [Google Scholar] [CrossRef]
- Dadwal, S.S.; Bansal, R.; Schuster, M.W.; Yared, J.A.; Myers, G.D.; Matzko, M.; Adnan, S.; McNeel, D.; Ma, J.; Gilmore, S.A.; et al. Final outcomes from a phase 2 trial of posoleucel in allogeneic hematopoietic cell transplant recipients. Blood Adv. 2024, 8, 4740–4750. [Google Scholar] [CrossRef] [PubMed]
- Kaeuferle, T.; Deisenberger, L.; Jablonowski, L.; Stief, T.A.; Blaeschke, F.; Willier, S.; Feuchtinger, T. CRISPR-Cas9-Mediated Glucocorticoid Resistance in Virus-Specific T Cells for Adoptive T Cell Therapy Posttransplantation. Mol. Ther. 2020, 28, 1965–1973. [Google Scholar] [CrossRef]
Species | Human Serotypes and Genotypes | |
---|---|---|
hAdV-A | Mastadenovirus adami | 12, 18, 31, 61 |
hAdV-B | Mastadenovirus blackbeardi | Subspecies B1: 3, 7, 16, 21, 50, 64, 66, 68, 76, 114 B1/B2 recombinants: 77, 78 Subspecies B2: 11, 14, 34, 35, 55, 79, 106 |
hAdV-C | Mastadenovirus caesari | 1, 2, 5, 6, 57, 89, 104, 108 |
hAdV-D | Mastadenovirus dominans | 8, 9, 10, 13, 15, 17, 19, 20, 22–30, 32, 33, 36–39, 42, 49, 51, 53, 54, 56–60, 62, 63, 65, 67, 69, 70, 71–73, 74, 75, 80–88, 90–103, 105, 107, 109, 110, 111, 112, 113, 115, 116 |
hAdV-E | Mastadenovirus exoticum | 4 |
hAdV-F | Mastadenovirus faecale | 40, 41 |
hAdV-G | Mastadenovirus russelli | 52 |
- (Adapted from Kajon, A. E., 2024 [7], and personal communication.) Classification of hAdV serotypes and genotypes described to the present.
- -- Types originally described as “serotypes” based on their distinct antigenic reactivities in neutralization assays. Currently also designated as genotypes 1–51.
- -- and --Intertypic recombinant genotypes.
- -- Intertypic recombinant genotypes with novel hexon genes.
- 52: Genotype of probable simian origin.
Clinical Disease | Populations at Risk | Causal Adenovirus types |
---|---|---|
Pharyngitis | Infants, children | 1–7 |
Pharyngoconjunctival fever | Children | 3, 7 |
Pertussis-like syndrome | Children | 5 |
Pneumonia | Infants, children Military recruits | 1–3, 21, 56 4, 7, 14 |
Acute respiratory disease | Military recruits | 3, 4, 7, 14, 21, 55 |
Conjunctivitis | Children | 1–4, 7 |
Epidemic keratoconjunctivitis | Adults, children | 8, 11, 19, 37, 53, 54 |
Gastroenteritis | Infants Children | 31, 40, 41 2, 3, 5 |
Intussusception | Children | 1, 2, 4, 5 |
Hemorrhagic cystitis | Children HSCT, renal transplant recipients | 7, 11, 21 34, 35 |
Meningoencephalitis | Children, immunocompromised hosts | 2, 6, 7, 12, 32 |
Hepatitis | Pediatric liver transplant recipients | 1–3, 5, 7 |
Nephritis | Renal transplant recipients | 11, 34, 35 |
Myocarditis | Children | 7, 21 |
Urethritis | Adults | 2, 19, 37 |
Disseminated disease | Neonates, immunocompromised hosts | 1, 2, 5, 11, 31, 34, 35, 40 |
Allograft Type | Reported Adenovirus Incidence |
---|---|
Pediatric Transplantation | |
Liver | 3.5–38% |
Heart, heart–lung, lung | 7–50% |
Kidney | 11% |
Intestinal, multivisceral | 4.3–57.1% |
Adult Transplantation | |
Liver | 5.8% |
Heart, heart–lung, lung | 6–22.5% |
Kidney | 4.1–6.5% |
Intestinal, multivisceral | NA |
First Author [Reference] | Year of Publication | Number of Patients | Age/Sex | Underlying Condition | Onset of AdV from Tx | AdV Infection | Species/Serotype | Other Treatment | Adjunctive Measure | Outcome | Comments |
---|---|---|---|---|---|---|---|---|---|---|---|
HCT Cases: | |||||||||||
Paolino [71] | 2011 | 1 | 12 Y/F | Allo-HCT for aplastic anemia | D + 89 | GI, liver, Lung | NA | CDV prior | IVIG, Failed CDV prior, Reduction in IS | Recovery | |
Voigt [72] | 2016 | 1 | 5 Y/F | Allo-HCT X 2 (MUD) for MDS | D + 237 | Viremia | C | CDV prior | Failed CDV prior | Recovery | Also had resistant HSV-1 infection that resolved |
Ramsay [73] | 2017 | 3 | 59/F | MUD Allo for AML | D + 22 | Lung, GI | NA | CDV prior | Reduction in IS | Recovery | |
57/F | MRD Allo for MM | D + 51 | Lung, GI | Died, had viremia at time of death | |||||||
34/M | Mismatched Allo for ALL | D + 21 | GI, hepatic, urine | Reduction in IS | Recovery | ||||||
Meena [74] | 2019 | 5 | 2.2 Y/M | MUD for MDS | D + 17 | GI | NA | CDV prior | Recovery | Concomitant CMV and PIV infection | |
11 Y/F | MUD for ALL | D + 18 | GI, Lung | CDV prior | Died of sepsis | Concomitant CMV and rhinovirus infection | |||||
10 Y/F | MRD for osteopetrosis | D + 38 | GI, Lung | CDV prior | Recovery | Concomitant PIV, rhinovirus and RSV | |||||
15 Y/F | Cord Blood transplant for AML | D + 303 | GI | CDV prior | IVIG | Died of sepsis | Concomitant rhinovirus, sapovirus and EBV | ||||
2.9 Y/M | MUD for CDA type 2 | / | GI | Died of EBV pneumonitis | |||||||
SOT Cases: | |||||||||||
Sulejmani [75] | 2018 | 2 | 44 F | Intestinal Tx | D + 30 | GI | NA | Ribavirin and CDV prior | Reduction in IS | Recovery, 2 episodes of rejection | |
28 M | Intestinal Tx | 6 years from Tx | GI | CDV prior | Reduction in IS | Recovery | |||||
Londeree [76] | 2020 | 4 | 17 M | Kidney Tx | D + 12 | Bladder | NA | NA | Reduction in IS | Recovery | |
19 M | Kidney Tx | D + 912 | Lung | CDV prior | Reduction in IS | Recovery | |||||
13 M | Liver-kidney Tx | D + 487 | Bladder, kidney | CDV prior | IVIG, Reduction in IS | Recovery | |||||
9 mo F | Liver Tx | D + 33 | Viremia, Liver | CDV prior | Recovery | ||||||
Clinical Studies (>10 patients) | |||||||||||
Author [Reference] | Year | Type of study | No. of Patients | Median age (range) | Onset of AdV from Tx | Underlying condition | Treatment agents | Virologic response | Outcome | Adverse events/side effects | Comments |
Florescu [70] | 2012 | Retrospective Multi-center | 13 | 6 (0.92–66) | D + 75 (15–720) | 11 Allo HSCT, 1 SCID, 1 Intestinal Tx | All patients = CDV + BCV | A total of 9/13 patients (69.2%) achieved a VR * at week 8 | The 8-week survival rate was 76.9% | None attributed to BCV | Compared with non-responders, complete responders had longer survival (median, 196 days versus 54.5 days; p = 0.04) |
Ramsay [73] | 2017 | Retrospective Single-center | 10 | 40 (17–66) | D + 65 (20–1140) | HSCT | 2 = BCV 5 = CDV 1 = BCV + CDV | Complete VR in 2/3 who received BCV, 4/6 in CDV | Two patients survived and one died in BCV group. Four patients survived and two died in CDV group. | NR | |
Hiwarkar [77] | 2017 | Retrospective Multi-center | 41 | 5 (2 months to 18 years) | HSCT | 18 = BCV 23 = CDV | Complete VR in 15/18 (83%) who received BCV and 2/23 9% in CDV | Thirty-nine patients survived and two patients who received CDV died from AdV infection | Severe abdominal cramps and diarrhea in 1 patient who received BCV | BCV led to major responses in 9 of 11 CDV-unresponsive patients | |
Thomas [78] | 2021 | Retrospective Single-center | 93 | 4.07 (2.12, 10.5) | D + 60 (IQR 25–75%: 16–123 days) | HSCT | 5 = BCV 13 = CDV 6= Both BCV + CDV 66= no Tx | A total of 4/5 in BCV and 5/6 in BCV + CDV had resolution of disease | A total of 47/93 (51%) patients died in the total cohort, no data reported separately about BCV or CDV | No statistically significant difference in the hazard of rise in creatinine, elevated LFTs or diarrhea between groups | |
Perrucio [79] | 2021 | Retrospective Multi-center | 30 patients with 44 episodes of AdV infection | 10 (9 months–19 years) | D + 90 (20 days–14 months) | HSCT | 23 = CDV 21 = BCV | In BCV group: CR 48% PR ** 9.5% Stable 9.5% Progressive 24% In CDV group: CR 36% PR 4% Stable 8% Progressive 54% | Overall survival was 30%, 13% mortality due to AdV | 1 patient with GI toxicity related to BCV (5%) | The response rate was higher with BCV compared to CDV (67% vs. 47%, p = 0.05) |
Clinical trial | |||||||||||
Author [Reference] | Year | Type of study | No. of Patients | Median age (range) | Onset of AdV from Tx | Underlying condition | Treatment agents | Virologic response | Outcome | Adverse events/side effects | Comments |
Grimley [80] | 2017 | Randomized placebo controlled phase 2 trial for prevention of adenovirus disease in patients with adenoviremia | 48 | 8 (0–55) in BCV 2 mg/kg BIW group 9 (2–70) in BCV 4 mg/kg QW group 11 (1–53) in placebo group | NA | HSCT | 14 = BCV BIW 16 = BCV QW 18 = Placebo | 67% in BCV BIW group 29% in BCV QW group 33% in placebo group | Treatment failure: 21% in BCV BIW group 38% in BCV QW group 33% in placebo group All-cause mortality: 14% in BCV BIW group 31% in BCV QW group 39% in placebo group | Diarrhea 57% in BCV BIW group 38% in BCV QW group 28% in placebo group GI GVHD 50% in BCV BIW group 25% in BCV QW group 17% in placebo group | No myelotoxicity or nephrotoxicity |
First Author [Reference] | Year of Publication | Number of Patients | Age/Sex | Underlying Condition | Onset of AdV from Tx | AdV Infection * | Species/Serotype | RBV Route/Dose/Duration (If Available) | Adjunctive Measure | Outcome ** | Comments |
---|---|---|---|---|---|---|---|---|---|---|---|
HCT Cases: | |||||||||||
Cassano [97] | 1991 | 1 | 9 Y/M | Allo-HCT (MRD) for AML | D + 36 | Hemorrhagic cystitis | NA | IV; 33 mg/kg/d × 1 d, followed by 16.6 mg/kg/d × 8 d; daily dose divided into three doses given q8 h | Recovery | ||
Liles [106] | 1993 | 1 | 25 Y/M | Allo-HCT (MMRD) for T-cell ALL | D + 75 | Nephritis | B11 | IV; 35 mg/kg/d × 1 d, followed by 25 mg/kg/d × 9 d; daily dose divided into three doses given q8 h | IVIG | Recovery | |
Murphy [107] | 1993 | 1 | 8 Y/M | Allo-HCT (Haploid) for acute nonlymphocytic leukemia | D + 103 | Hemorrhagic cystitis | NA | IV; 35 mg/kg/d × 1 d, followed by 25 mg/kg/d × 8 d; daily dose divided into three doses given q8 h | / | Recovery | |
Hromas [102] | 1994 | 4 | 7 Y–45 Y | Allo-HCT (MUD) for NHL (1), MDS (1), ALL (2) | D + 20 to D + 147 | GI; GU; GI + GU; disseminated | B11 (3 cases); A12 (1 case) | “Based on that recommended by Cassano [90]”.—see above | IVIG (all) | Failure (all four pts), two died from AdV | |
Jurado [108] | 1995 | 1 | 27 Y/M | Allo-HCT (MRD) for aplastic anemia | D + 9 | Hemorrhagic cystitis | B11 | IV; 35 mg/kg/d × 1 d, followed by 25 mg/kg/d × 8 d; daily dose divided into three doses given q8 h | / | Recovery | |
Kapelushnik [109] | 1995 | 1 | 3 Y/M | Allo-HCT (MUD) for Wiscott-Aldrich syndrome | D + 45 | Gastroenteritis | NA | IV; 30 mg/kg/d × 10 d; daily dose divided into three doses | IVIG | Recovery | |
Wulffraat [110] | 1995 | 1 | 8 M/M | Allo-HCT (Haploid) for SCID | D + 6 | PNA, GI | NA | IV; loading dose 30 mg/kg; maintenance 15 mg/kg q6 h × 14 days | / | Recovery | |
Mann [111] | 1998 | 1 | 37 Y/F | Allo-HCT (MMRD) for AML | D + 33 | Disseminated | NA | IV; 33 mg/kg q6 h × 5 d, followed by 16 mg/kg q6 h × 4 d, then 8 mg/kg q8 h × 1 d | / | Failure, died from AdV | |
Chakrabarti [112] | 1999 | 1 | 44 Y/M | Allo-HCT (MUD) for CML | D + 210 | Hepatitis | NA | IV; loading dose of 35 mg/kg, followed by 25 mg/kg q8 h | / | Failure, died from AdV | |
Hale [113] | 1999 | 2 | Pediatric | HCT | NA | PNA; hemorrhagic cystitis | NA | IV | / | Failure, both died from AdV | |
Howard [114] | 1999 | 6 | NA | Allo-HCT (partially matched) | NA | Hemorrhagic cystitis, nephritis | NA | IV | Some also received IVIG, but no detailed information available. | Failure | Thirteen pts were treated with RBV in this cohort, but results are available only for six pts. |
Allo-HCT (MUD) | GI, GU | Failure, died from AdV | |||||||||
HCT | URT, GI | Recovery | |||||||||
Allo-HCT (MRD) | Sputum, blood | Recovery | |||||||||
Adult | Auto-HCT | Hemorrhagic cystitis | Recovery | ||||||||
Pediatric | Allo-HCT (partially matched) | Hemorrhagic cystitis | Recovery | ||||||||
Lakhani [115] | 1999 | 1 | 26 Y/F | Allo-HCT (MUD) for CML | D + 38 | Hemorrhagic cystitis | NA | PO; 1 g bid × 8 d | / | Recovery | AdV viruria resolved with RBV, but pt received E-aminocaproic acid to treat intractable hematuria. |
Miyamura [116] | 2000 | 8 | 11 Y–34 Y | HCT | NA | All with hemorrhagic cystitis except one also had PNA | NA | IV; For adults, 16 mg/kg q6 h × 4 d, followed by 8 mg/kg q8 h × 3 d. For children, 15 mg/kg/d × 10 d | / | Recovery (3); Failure (5), two died from ADV. | A total of nine pts in this cohort but one pt had early death from progression of underlying disease. |
Bordigoni [103] *** | 2001 | 13 | Pediatric and adult | Allo-HCT [MUD (10); MRD (2); MMRD (1)] | D + 0 to D + 184 | Definite (3); Probable (5); Asymptomatic (5) | NA | IV; loading dosage of 35 mg/kg followed by 25 mg/kg q8 h × 10 d. | / | Recovery (3), among one probable and two asymptomatic cases; Failure (10) | |
La Rosa [104] | 2001 | 12 | 18 Y–59 Y | NA | NA | PNA (2); hemorrhagic cystitis (1), enteritis (1), disseminated (8) | NA | IV | / | Recovery (2). But both with disseminated disease | |
Ikegame [117] | 2001 | 1 | 50 Y/M | Allo-HCT (MMRD) for CML | D + 13 | Disseminated | NA | PO; 1200 mg/d in divided doses × 4 d | IV vidarabine prior to RBV | Failure, died from AdV | |
Gavin [118] | 2002 | 1 | 18 Y/M | Allo-HCT (MUD) for AML | D + 15 | Disseminated | B34 | IV; 33 mg/kg on day 1, followed by 16 mg/kg q6 h × 3 d, then 8 mg/kg q8 h × 3 d | / | Failure, died from AdV | |
Aebi [119] * | 2003 | 1 | 41 Y/M | Allo-HCT (MUD) for ALL | D + 50 | Hemorrhagic cystitis | B11 | PO; 1st course: 16 mg/kg q6 h × 4 d, followed by 8 mg/kgq6 h × 3 d. 2nd course: 20 mg/kg q6 h × 5 d, followed by 10 mg/kg q6 h × 4 d. | / | Recovery | The pt had clinical improvement and reduction in AdV titer in urine after the 1st RBV course. When AdV titer increased and symptoms recurred 2–4 weeks later, the pt received a 2nd course of RBV, and responded well with resolution of AdV infection. |
Omar [120] | 2010 | 2 | 31 Y/F | Allo-HCT | D + 150 | GI; viremia | C5 | IV | / | Failure (2), both died from AdV | |
48 Y/M | D + 28 | Disseminated | B35 | ||||||||
Sahu [121] | 2016 | 1 | 36 Y/M | Allo-HCT for AML | D + 380 | Hemorrhagic cystitis | NA | PO; 20 mg/kg in two divided doses × 4 weeks | Reduction in immunosuppression for GVHD | Recovery | |
Takada [122] | 2024 | 1 | 31 Y/M | HCT (cord-blood) for MPAL | D + 15 | Hemorrhagic cystitis | NA | PO; 1200 mg/d × 44 d | Recovery | Received 5 days of GCV + vidarabine without effect before switching to RBV | |
SOT Cases: | |||||||||||
Arav-Boger | 2000 | 1 | 13 M/F | Liever Tx ×2, 5 days apart | 6 days from 2nd Tx | Hepatitis | C5 | IV; Loading dose of 33 mg/kg, then 16 mg/kg q6 h × 4 d, followed by 8 mg/kg q8 h × 6 d | Reduction in immunosuppression | Recovery | Also received GCV and CMV IgG prior to RBV |
Gavin [118] | 2002 | 2 | 5 Y/F | Heart Tx | 2 months post Tx | Cystitis, neprhitis | NA | IV; 25 mg/kg in three divided doses on day 1, then 15 mg/kg/d divided q8 h × 9 d | Failure (2), both died from AdV | ||
2 M/M | 5 weeks post Tx | PNA | |||||||||
Emovon [123] | 2003 | 1 | 46 Y/F | Kidney and Pancreas Tx | 22 months post tx | Hemorrhagic cystitis | NA | IV | Reduction in immunosuppression; IVIG | Recovery | |
Hofland [124] | 2004 | 1 | 60 Y/M | Liver Tx (1995), kidney Tx (2002) | 2 moths post kidney tx | Nephritis, hemorrhagic cystitis | NA | NA; 400 mg bid × 3 weeks | High-dose prednisone | Recovery | |
Komiya [125] | 2009 | 1 | 63 Y/F | Kidney Tx | D + 7 | Nephritis, hemorrhagic cystitis | B11 | NA | IVIG; reduction in immunosuppression | Failure | |
Park [126] | 2015 | 1 | 32 Y/F | Kidney Tx | 10 months post Tx | Nephritis, hemorrhagic cystitis, viremia | NA | NA; 400 mg bid × 3 weeks | IVIG; reduction in immunosuppression | Recovery |
First Author [Reference] | Year of Publication | Number of Patients | Age/Sex | Underlying Condition | Onset of AdV from Tx | AdV Infection * | Species/Serotype | (V)GCV Route (If Available) ** | Adjunctive Measure | Outcome *** | Comments |
---|---|---|---|---|---|---|---|---|---|---|---|
HCT Cases: | |||||||||||
Chen [135] | 1997 | 1 | 47 Y/M | Allo-HCT (MRD) for AML | D + 52 | Hemorrhagic cystitis | NA | IV GCV | / | Recovery | |
Suzuki [137] | 2008 | 1 | 35 Y/F | Allo-HCT (mismatched) for MDS | D + 24 | Disseminated | B3 and B34 | GCV | Recovery | ||
Nakazawa [138] | 2009 | 1 | 8 Y/F | Allo-HCT (haploid) for AML | D + 24 | Hemorrhagic cystitis | B11 | IV GCV | / | Recovery | |
Mochizuki [139] | 2014 | 2 | 50 Y/M; 41 Y/F | Allo-HCT (MUD) for MM; Allo-HCT for AML | D + 20; D + 427 | Disseminated (2) | NA | GCV | Failure, both died from AdV | ||
Yasuda [140] | 2019 | 1 | 66 Y/F | Auto-HCT for MM | D + 46 | Disseminated | NA | GCV | Discontinued of pomalidomide and dexamethasone | Recovery | GCV was started for CMV viremia, not intended for AdV |
Takada [122] | 2024 | 1 | 31 Y/M | HCT (cord-blood) for MPAL | D + 15 | Hemorrhagic cystitis | NA | PO; 1200 mg/d × 44 d | Vidarabine | Failure | Received 5 days of GCV + vidarabine without effect, then switched to RBV |
SOT Cases: | |||||||||||
Blohmé [134] | 1992 | 1 | 28 Y/M | Kidney Tx | D + 25 | Hemorrhagic cystitis | B7 | IV GCV | Reduction in immunosuppression | Recovery | |
Duggan [136] | 1997 | 1 | 58 Y/F | Heart Tx | 5 years from Tx | Pneumonia | NA | IV GCV | IVIG | Recovery | |
Lim [141] | 2005 | 1 | 51 Y/M | Kidney Tx | D + 36 | Nephritis | NA | IV GCV followed by PO VGCV | Reduction in immunosuppression | Recovery | |
Kozlowski [142] | 2011 | 2 | 44 Y/M; 56 Y/M | Kidney Tx | A few days before D + 24; D + 19 | Nephritis; one pt also had PNA | B34 | PO VGCV | Reduction in immunosuppression | Recovery | Donor-derived from the same donor |
Nanmoku [143] | 2016 | 6 | 33–45 Y/ 2 F and 4 M | Kidney Tx | D + 7 to D + 1763 | All with hemorrhagic cystitis; three pts also with nephritis and two of these with viremia | NA | IV GCV | Reduction in immunosuppression in three pts | Recovery (all 6) | Two pts also had BK viruria |
Paula [144] | 2016 | 1 | 32 Y/M | Kidney Tx | 1 month post Tx | Nephritis + viremia | NA | IV GCV | Reduction in immunosuppression | Recovery | |
Barros Silva [145] | 2017 | 1 | 38 Y/M | Kidney Tx | 18 months post Tx | Nephritis + viremia | NA | GCV | IVIG; Reduction in immunosuppression | Recovery | |
Moreira [146] | 2019 | 1 | 40 Y/M | Kidney Tx | D + 17 | Nephritis | NA | Iv GCV followed by PO VGCV | IVIG; Reduction in immunosuppression | Recovery |
Author [Reference] | Year | PMID/Clinical Trial No. | Study Description | No. of Patients (Total/with AdV) | Method of CTL Isolation/ Production | Results: Virological and /or Clinical Response | Results: Survival/Mortality Impact | Adverse Events |
---|---|---|---|---|---|---|---|---|
Studies using donor-derived VST’s | ||||||||
Leen [165] | 2009 | 19700662/ NCR00590083 | Clinical trial to assess the safety of cytotoxic T lymphocytes for prevention and treatment of EBV and AdV | 12 received for prophylaxis and 1 for AdV Disease | Produced from donor PBMC’s using AdV vector | Two patients with AdV disease cleared the infection; 11 patients who received ppx did not develop disease | / | None |
Gerdemann [166] | 2013 | 23783429/ NCT01070797 | Phase 1/2 trial to study the safety and efficacy of VST’s for AdV, CMV and EBV | 10/5 AdV (n = 1) EBV + AdV (n = 2) CMV + AdV (n = 2) | DNA plasmids to generate donor-derived virus-directed T-cell lines with specificity for AdV, EBV, and CMV | Complete response in all five patients | / | None |
Papadopoulou [167] | 2014 | 24964991/ NCT01570283 | Clinical trial assessing the feasibility and clinical utility of VSTs against EBV, AdV, CMV, BKV, HHV-6 | 11 /1 | Rapidly-generated single-culture VSTs that recognize 12 immunogenic antigens from five viruses using allogeneic stem cell donor | 94% with complete virological response; one AdV infection resolved | Two died due to non-infectious causes | Skin GVHD in one patient |
Feucht [168] | 2015 | 25617426/ 2005-001092-35 EU Clinical trial register | Clinical trial to analyze the safety and efficacy of ex vivo adoptive T-cell transfer for AdV | 30/30 | PBMCs were isolated from stem cell donors, after being stimulated by hexon protein | 86% with complete clearance of viremia (Responders) | 71% (15) of responders survived; 100% (eight out of eight) non-responders died. Attributable mortality due to AdV is 100% in non-responders and 9.5% responders. | Mild GVHD grade 1 in two patients within 2 weeks after ACT and GVHD grade 2–3 in four patients > 7 weeks after ACT |
Creidy [169] | 2016 | 27246524/ NCT01325636 | French multicenter pilot trial to treat peds/adult patients post-HSCT with CMV/AdV infection with VST’s | 15/8 5 AdV 3 AdV + CMV | Donor cells were stimulated with hexon AdV antigen followed by magnetic enrichment of IFN-γ–secreting cells using the Cytokine secretion system and the CliniMACS device | Of the five patients alive, four showed a complete virological response and one was a no response | Two died prior to 21 day evaluation and one death was attributable to AdV | Four patients with respiratory failure (unclear if it was related to AdV or ACT) and one patient developed GVHD but unclear if associated with ACT |
IP, [170] | 2018 |
29753677/ NCT01822093 | Open-label phase 1/2 study to assess the safety of pre-emptive administration of AdV-specific T-cells to treatment AdV viremia in high-risk pediatric patients after HSCT. | 8/8 | AdV-specific T-cells were expanded from donors using peptides and cytokines | All eight patients with complete virological response | Two deaths (one due to AdV infection despite clearance of viremia) | Grade 4 GVHD in one patient |
Abraham [171] | 2019 |
31292125/ NCT0880789 NCT01923766 | Clinical trial to evaluate the feasibility and safety of CB-derived multivirus-specific T-cells in pediatric patients | 14/1 | PBMCs from cord blood donors were used to generate LCLs and dendritic cells, then transduced with AdV vector or with peptide mix | All who received CB-VSTs as ppx did not develop any end-organ disease from CMV, EBV, or AdV; one patient with AdV disease resolved | Two died; not attributable to viral infection | Grade 3 GI GVHD in one patient |
Rubinstein [172] | 2022 | 35108727/ NCT03883906 | Single-arm, phase 2 study to assess the efficacy of donor-derived VST’s in prevention of viral infection due to CMV, AdV, BKV and EBV | 23/NA | PBMC’s were stimulated with peptide mixes | 21% (five) with treatment failures; three developed significant viremia/viral disease requiring additional antiviral therapy, one due to AdV. | Four deaths; not attributable to viral infection | GVHD in two patients |
Studies using 3rd-party VST’s | ||||||||
Leen [173] | 2013 | 23610374/ NCT00711035 | Multicenter study of 3rd-party VSTs to treat CMV, EBV and AdV post-HSCT | 50/18 | PBMCs were transduced with Ad5f35pp65 vector | 6-week cumulative response rate of 77.8% (95% CI, 53.7–100%) for AdV | Five deaths; all attributable to AdV | Two patients with grade 1 GVHD de novo |
Tzannou [174] | 2017 | 28783452/ NCT02108522 | Phase 2 clinical trial using off the shelf T-cells for treatment of multiple viruses ( CMV, AdV, EBV, BKV, HHV6) post-HSCT | 38/7 | Posoleucel—3rd-party VSTs generated using peptide multimers | four CR; one PR; two non-response (Cumulative response rate of 71.4%) | Recurrent grade 3 GI GVHD in one patient and grade 1–2 skin GVHD in five patients | |
Pfieffer [175] | 2023 | 36628536/ NCT02108522 | Open-label, phase 2 trial to determine the feasibility and safety of posoleucel in HSCT recipients with AdV, BK virus, CMV, EBV, HHV-6, and JC virus. | 58/12 | Posoleucel—3rd-party VSTs generated using peptide multimers | 6-week response was observed in 10 of 12 patients (83%; 95% CI, 51.6–97.9%), | / | 13/58 (22%) patients developed GVHD |
Keller [176] | 2024 | 38637498/ NCT03475212 | Phase 2 multicenter study using partially-HLA matched VSTs targeting CMV, EBV or AdV | 51/30 24 AdV 6 CMV + AdV | / | Virological response in 74% (17/23) | Overall survival 57.1% (95% CI: 42.00–70.00%) at 1 year | Grade III cytokine release syndrome occurred in one patient requiring treatment with tocilizumab and steroids. Graft rejection in one patient associated with infusion |
Studies using both donor- derived and 3rd-party VST’s | ||||||||
Qian [177] | 2017 |
2848908/ NCT0285157 | Phase 1/2 multicenter pilot study involving the infusion of AdV-VST after HSCT in the event of refractory ADV infection or disease. | 11/11 | AdV-VST generated by interferon (IFN)-γ-based immunomagnetic isolation from their original donor (42.9%) or a third-party haploidentical donor (57.1%) | Virological response in 91% patients | four deaths; one attributable to AdV | GVHD in three patients |
Rubenstein [55] | 2021 | 34473237/ NCT02048332 NCT02532452 | Single-center phase 1/2 clinical trial to assess safety and efficacy of VSTs for treatment of adenoviremia | 29/29 7 DD 21 TP 2 both | PBMCs were stimulated with pools of viral peptides (Pepmix) encompassing antigen epitopes. | Clinical response in 81%, with a CR in 58%; CR and overall response rates were higher in patients treated with DD VSTs compared with TP (86% vs. 42% CR; 74% vs. 100% overall response) | / | GVHD in one patient who received 3rd-party VSTs |
Galletta [178] | 2023 | 36736781/ NCT02532452 NCT02048332 | Retrospective cohort study of patients who received VSTs for treatment of AdV, BKV, CMV and EBV | 145/37 77 DD 68 TP | PBMCs were stimulated with pools of viral peptides (Pepmix) encompassing antigen epitopes. | Clinical response rate for AdV was 64.9% . No difference in outcomes between DD and TP | 81% survived in DD and 66% in TP group after 1 year | Eight and five patients from DD and TP donors developed GVHD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narsana, N.; Ha, D.; Ho, D.Y. Treating Adenovirus Infection in Transplant Populations: Therapeutic Options Beyond Cidofovir? Viruses 2025, 17, 599. https://doi.org/10.3390/v17050599
Narsana N, Ha D, Ho DY. Treating Adenovirus Infection in Transplant Populations: Therapeutic Options Beyond Cidofovir? Viruses. 2025; 17(5):599. https://doi.org/10.3390/v17050599
Chicago/Turabian StyleNarsana, Niyati, David Ha, and Dora Y. Ho. 2025. "Treating Adenovirus Infection in Transplant Populations: Therapeutic Options Beyond Cidofovir?" Viruses 17, no. 5: 599. https://doi.org/10.3390/v17050599
APA StyleNarsana, N., Ha, D., & Ho, D. Y. (2025). Treating Adenovirus Infection in Transplant Populations: Therapeutic Options Beyond Cidofovir? Viruses, 17(5), 599. https://doi.org/10.3390/v17050599