Integrative Computational Approaches for Understanding Drug Resistance in HIV-1 Protease Subtype C
Abstract
:1. Introduction
2. HIV Protease
2.1. Structure and Mechanism of HIV Protease
2.2. HIV-1 Protease Subtype C
3. Mutations in the HIV-1 Protease Subtype C
3.1. Substitutions in HIV-1 Protease Subtype C
3.2. Insertions in HIV-1 Protease Subtype C
4. Computational Studies on HIV-1 Protease Subtype C
4.1. Computational Studies on First-Generation HIV Protease Inhibitors Against HIV-1 Protease Subtype C
4.2. Computational Studies on Second-Generation HIV Protease Inhibitors Against HIV-1 Protease Subtype C
4.3. Computational Studies on Other Potential Inhibitors Against HIV-1 Protease Subtype C
5. Quantitative Structure-Activity Relationship: Protease Subtype B Versus C
6. Unexplored Research Areas of HIV-1 Protease Subtype C
7. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APV | Amprenavir |
AI | Artificial Intelligence |
AIDS | Acquired immunodeficiency syndrome |
ART | Antiretroviral therapy |
ATV | Atazanavir |
CA | Capsid |
CoMFA | Comparative molecular field analysis |
CoMSIA | Comparative molecular similarity indices analysis |
DIF | Drug isolate fold |
DNA | Deoxy-ribonucleic acid |
DRV | Darunavir |
FDA | Food and Drug Administration |
FPV | Fosamprenavir |
GN | Genetic algorithm |
HIV | Human immunodeficiency virus |
IN | Integrase |
IDV | Indinavir |
LPV | Lopinavir |
MA | Matrix |
MD | Molecular dynamics |
MM/GBSA | Molecular mechanics generalized Bonn surface area |
MM/PBSA | Molecular mechanics Poisson–Boltzmann surface area |
ML | Machine Learning |
MLR | Multi linear regression |
NC | Nucleocapsid |
NFV | Nelfinavir |
NN | Neural network |
ONIOM | Own N-layered Integrated molecular orbital and molecular mechanics |
PLM | Partial least square method |
PI | Protease inhibitor |
PR | Protease |
QM | Quantum Mechanics |
QSAR | Quantitative structure–activity relationship |
RT | Reverse transcriptase |
RTV | Ritonavir |
RNA | Ribonucleic acid |
RTI | Reverse transcriptase Inhibitors |
TPV | Tipranavir |
SA | South Africa |
SWCNT | Single-wall carbon nanotube |
SNP | Single nucleotide polymorphism |
SVM | Support vector machines |
SQV | Saquinavir |
UNAIDS | United Nations Programme on AIDS |
WT | Wild-Type |
ZDV | Zidovudine |
References
- Barré-Sinoussi, F.; Chermann, J.C.; Rey, F.; Nugeyre, M.T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vézinet-Brun, F.; Rouzioux, C.; et al. Isolation of a T-Lymphotropic Retrovirus from a Patient at Risk for Acquired Immune Deficiency Syndrome (AIDS). Science 1983, 220, 868–871. [Google Scholar] [CrossRef]
- Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS Pandemic. Cold Spring Harb. Perspect. Med. 2011, 1, 006841. [Google Scholar] [CrossRef]
- UNAIDS. Global HIV & AIDS Statistics—Fact Sheet. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 20 February 2025).
- Turner, B.G.; Summers, M.F. Structural Biology of HIV. J. Mol. Biol. 1999, 285, 1–32. [Google Scholar] [CrossRef]
- Wilen, C.B.; Tilton, J.C.; Doms, R.W. HIV: Cell Binding and Entry. Cold Spring Harb. Perspect. Med. 2012, 2, 006866. [Google Scholar] [CrossRef]
- Kleinpeter, A.B.; Freed, E.O. HIV-1 Maturation: Lessons Learned from Inhibitors. Viruses 2020, 12, 940. [Google Scholar] [CrossRef]
- El Safadi, Y.; Vivet-Boudou, V.; Marquet, R. HIV-1 Reverse Transcriptase Inhibitors. Appl. Microbiol. Biotechnol. 2007, 75, 723–737. [Google Scholar] [CrossRef]
- Lv, Z.; Chu, Y.; Wang, Y. HIV Protease Inhibitors: A Review of Molecular Selectivity and Toxicity. HIVAIDS-Res. Palliat. Care 2015, 7, 95–104. [Google Scholar]
- Pommier, Y.; Johnson, A.A.; Marchand, C. Integrase Inhibitors to Treat HIV/AIDS. Nat. Rev. Drug Discov. 2005, 4, 236–248. [Google Scholar] [CrossRef]
- Crabtree-Ramírez, B.; Villasís-Keever, A.; Galindo-Fraga, A.; Río, C.; Sierra-Madero, J. Effectiveness of Highly Active Antiretroviral Therapy (HAART) among HIV-Infected Patients in Mexico. AIDS Res. Hum. Retroviruses 2010, 26, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Su, S.; Borné, Y. A Meta-Analysis of the Efficacy of HAART on HIV Transmission and Its Impact on Sexual Risk Behaviours among Men Who Have Sex with Men. Sci. Rep. 2020, 10, 1075. [Google Scholar] [CrossRef] [PubMed]
- Hemelaar, J. The Origin and Diversity of the HIV-1 Pandemic. Trends Mol. Med. 2012, 18, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.M.; Perno, C.F. HIV-1 Genetic Variability and Clinical Implications. Int. Sch. Res. Not. 2013, 2013, 481314. [Google Scholar] [CrossRef]
- Smyth, R.P.; Davenport, M.P.; Mak, J. The origin of genetic diversity in HIV-1. Virus Res. 2012, 169, 415–429. [Google Scholar] [CrossRef]
- Lessells, R.J.; Katzenstein, D.K.; Oliveira, T. Are Subtype Differences Important in HIV Drug Resistance? Curr. Opin. Virol. 2012, 2, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Visseaux, B.; Damond, F.; Matheron, S.; Descamps, D.; Charpentier, C. Hiv-2 Molecular Epidemiology. Infect. Genet. Evol. 2016, 46, 233–240. [Google Scholar] [CrossRef]
- Bbosa, N.; Kaleebu, P.; Ssemwanga, D. HIV Subtype Diversity Worldwide. Curr. Opin. HIV AIDS 2019, 14, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Lynch, R.M.; Shen, T.; Gnanakaran, S.; Derdeyn, C.A. Appreciating HIV Type 1 Diversity: Subtype Differences in Env. AIDS Res. Hum. Retroviruses 2009, 25, 237–248. [Google Scholar] [CrossRef]
- Magiorkinis, G.; Angelis, K.; Mamais, I.; Katzourakis, A.; Hatzakis, A.; Albert, J.; Lawyer, G.; Hamouda, O.; Struck, D.; Vercauteren, J.; et al. The Global Spread of HIV-1 Subtype B Epidemic. Infect. Genet. 2016, 46, 169–179. [Google Scholar] [CrossRef]
- Hemelaar, J.; Elangovan, R.; Yun, J.; Dickson-Tetteh, L.; Fleminger, I.; Kirtley, S.; Williams, B.; Gouws-Williams, E.; Ghys, P.D.; WHO-UNAIDS Network for HIV Isolation Characterisation. Global and Regional Molecular Epidemiology of HIV-1, 1990–2015: A Systematic Review, Global Survey, and Trend Analysis. Lancet Infect. Dis. 2019, 19, 143–155. [Google Scholar] [CrossRef]
- Gartner, M.J.; Roche, M.; Churchill, M.J.; Gorry, P.R.; Flynn, J.K. Understanding the Mechanisms Driving the Spread of Subtype C HIV-1. EBioMedicine 2020, 53, 102682. [Google Scholar] [CrossRef]
- Langs-Barlow, A.; Paintsil, E. Impact of Human Immunodeficiency Virus Type-1 Sequence Diversity on Antiretroviral Therapy Outcomes. Viruses 2014, 6, 3855–3872. [Google Scholar] [CrossRef] [PubMed]
- Mosebi, S.; Morris, L.; Dirr, H.W.; Sayed, Y. Active-Site Mutations in the South African Human Immunodeficiency Virus Type 1 Subtype C Protease Have a Significant Impact on Clinical Inhibitor Binding: Kinetic and Thermodynamic Study. J. Virol. 2008, 82, 11476–11479. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.M.; Kruger, H.G.; Govender, T.; Maguire, G.E.; Sayed, Y.; Ibrahim, M.A.; Naicker, P.; Soliman, M.E. Comparison of the Molecular Dynamics and Calculated Binding Free Energies for Nine FDA-Approved HIV-1 PR Drugs against Subtype B and C-SA HIV PR. Chem. Biol. Drug Des. 2013, 81, 208–218. [Google Scholar] [CrossRef]
- Kantor, R.; Katzenstein, D.A.; Efron, B.; Carvalho, A.P.; Wynhoven, B.; Cane, P.; Clarke, J.; Sirivichayakul, S.; Soares, M.A.; Snoeck, J.; et al. Impact of HIV-1 Subtype and Antiretroviral Therapy on Protease and Reverse Transcriptase Genotype: Results of a Global Collaboration. PLoS Med. 2005, 2, e112. [Google Scholar] [CrossRef]
- Parkin, N.T.; Chappey, C.; Petropoulos, C.J. Subtype-Specific Differences in the Mutation Patterns of HIV-1 Protease and Reverse Transcriptase Following Drug Pressure. AIDS 2000, 14, 117–125. [Google Scholar]
- Nijhuis, M.; Maarseveen, N.M.; Boucher, C.A. HIV Protease: Its Role in Viral Replication and the Use of Protease Inhibitors in Treating HIV-1 Infection. Curr. Opin. HIV AIDS 2009, 4, 76–84. [Google Scholar]
- Mugavero, M.J.; Amico, K.R.; Horn, T.; Thompson, M.A. The State of Engagement in HIV Care in the United States: From Cascade to Continuum to Control. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2013, 57, 1164–1171. [Google Scholar] [CrossRef]
- Wensing, A.M.; Calvez, V.; Ceccherini-Silberstein, F.; Charpentier, C.; Günthard, H.F.; Paredes, R.; Shafer, R.W.; Richman, D.D. 2022 Update of the Drug Resistance Mutations in HIV-1. Top. Antivir. Med. 2022, 30, 559–574. [Google Scholar]
- Navia, M.A.; Fitzgerald, P.M.; McKeever, B.M.; Leu, C.T.; Heimbach, J.C.; Herber, W.K.; Sigal, I.S.; Darke, P.L.; Springer, J.P. Three-Dimensional Structure of Aspartyl Protease from Human Immunodeficiency Virus HIV-1. Nature 1989, 337, 615–620. [Google Scholar] [CrossRef]
- Wlodawer, A.; Miller, M.; Jaskólski, M.; Sathyanarayana, B.K.; Baldwin, E.; Weber, I.T.; Selk, L.M.; Clawson, L.; Schneider, J.; Kent, S.B. Conserved Folding in Retroviral Proteases: Crystal Structure of a Synthetic HIV-1 Protease. Science 1989, 245, 616–621. [Google Scholar] [CrossRef]
- Weber, I.T.; Agniswamy, J. HIV-1 Protease: Structural Perspectives on Drug Resistance. Viruses 2009, 1, 1110–1136. [Google Scholar] [CrossRef] [PubMed]
- Heaslet, H.; Rosenfeld, R.; Giffin, M.; Lin, Y.C.; Tam, K.; Torbett, B.E.; Elder, J.H.; McRee, D.E.; Stout, C.D. Conformational Flexibility in the Flap Domains of Ligand-Free HIV Protease. Acta Crystallogr. D Biol. Crystallogr. 2007, 63, 866–875. [Google Scholar] [CrossRef]
- Hornak, V.; Okur, A.; Rizzo, R.C.; Simmerling, C. HIV-1 Protease Flaps Spontaneously Open and Reclose in Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. USA 2006, 103, 915–920. [Google Scholar] [CrossRef]
- Torbeev, V.Y.; Raghuraman, H.; Hamelberg, D.; Tonelli, M.; Westler, W.M.; Perozo, E.; Kent, S.B. Protein Conformational Dynamics in the Mechanism of HIV-1 Protease Catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 20982–20987. [Google Scholar] [CrossRef]
- Weber, I.T.; Wang, Y.F.; Harrison, R.W. HIV Protease: Historical Perspective and Current Research. Viruses 2021, 13, 839. [Google Scholar] [CrossRef]
- Sankaran, S.V.; Krishnan, S.R.; Sayed, Y.; Gromiha, M.M. Mechanism of Drug Resistance in HIV-1 Protease Subtype C in the Presence of Atazanavir. Curr. Res. Struct. Biol. 2024, 7, 100132. [Google Scholar] [CrossRef]
- Clemente, J.C.; Coman, R.M.; Thiaville, M.M.; Janka, L.K.; Jeung, J.A.; Nukoolkarn, S.; Govindasamy, L.; Agbandje-McKenna, M.; McKenna, R.; Leelamanit, W.; et al. Analysis of HIV-1 CRF_01 A/E Protease Inhibitor Resistance: Structural Determinants for Maintaining Sensitivity and Developing Resistance to Atazanavir. Biochemistry 2006, 45, 5468–5477. [Google Scholar] [CrossRef] [PubMed]
- Bessong, P.O.; Mphahlele, J.; Choge, I.A.; Obi, L.C.; Morris, L.; Hammarskjold, M.L.; Rekosh, D.M. Resistance Mutational Analysis of HIV Type 1 Subtype C among Rural South African Drug-Naive Patients Prior to Large-Scale Availability of Antiretrovirals. AIDS Res. Hum. Retroviruses 2006, 22, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Ledwaba, J.; Sayed, Y.; Pillay, V.; Morris, L.; Hunt, G. Low Frequency of Protease Inhibitor Resistance Mutations and Insertions in HIV-1 Subtype C Protease Inhibitor-Naïve Sequences. AIDS Res. Hum. Retroviruses 2019, 35, 673–678. [Google Scholar] [CrossRef]
- Coman, R.M.; Robbins, A.H.; Fernandez, M.A.; Gilliland, C.T.; Sochet, A.A.; Goodenow, M.M.; McKenna, R.; Dunn, B.M. The Contribution of Naturally Occurring Polymorphisms in Altering the Biochemical and Structural Characteristics of HIV-1 Subtype C Protease. Biochemistry 2008, 47, 731–743. [Google Scholar] [CrossRef]
- Ali, A.; Bandaranayake, R.M.; Cai, Y.; King, N.M.; Kolli, M.; Mittal, S.; Murzycki, J.F.; Nalam, M.N.L.; Nalivaika, E.A.; Özen, A.; et al. Molecular Basis for Drug Resistance in HIV-1 Protease. Viruses 2010, 2, 2509–2535. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, S.; Phogat, A.; Gromiha, M.M. Computational Resources for Understanding Disease-Causing Mutations in Proteins: Applications to HIV. In PROTEIN MUTATIONS: Consequences on Structure, Functions, and Diseases; Gromiha, E.M.M., Ed.; World Scientific Publishing: Singapore, 2025; pp. 211–228. [Google Scholar]
- Venkatachalam, S.; Krishnan, S.R.; Sayed, Y.; Gromiha, M.M. Structural and Functional Studies on HIV Protease: Mechanism of Action, Subtypes, Inhibitors, and Drug Resistance. Methods Mol. Biol. 2025, 2867, 185–200. [Google Scholar] [PubMed]
- Misbah, M.; Gupta, P.; Roy, G.; Kumar, S.; Husain, M. Drug Resistance Mutations in Protease Gene of HIV-1 Subtype C Infected Patient Population. Virusdisease 2021, 32, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Laco, G.S. HIV-1 Protease Substrate-Groove: Role in Substrate Recognition and Inhibitor Resistance. Biochimie 2015, 118, 90–103. [Google Scholar] [CrossRef]
- Miczi, M.; Diós, Á.; Bozóki, B.; Tőzsér, J.; Mótyán, J.A. Development of a Bio-Layer Interferometry-Based Protease Assay Using HIV-1 Protease as a Model. Viruses 2021, 13, 1183. [Google Scholar] [CrossRef]
- Lockhat, H.A.; Silva, J.R.; Alves, C.N.; Govender, T.; Lameira, J.; Maguire, G.E.; Sayed, Y.; Kruger, H.G. Binding Free Energy Calculations of Nine FDA-Approved Protease Inhibitors Against HIV-1 Subtype C I36T↑T Containing 100 Amino Acids Per Monomer. Chem. Biol. Drug Des. 2016, 87, 487–498. [Google Scholar] [CrossRef]
- Maseko, S.; Padayachee, E.; Maphumulo, S.; Govender, T.; Sayed, Y.; Maguire, G.; Lin, J.; Naicker, T.; Baijnath, S.; Gerhardus, K.H. Kinetic and Thermodynamic Characterisation of HIV-Protease Inhibitors against E35D↑G↑S Mutant in the South African HIV-1 Subtype C Protease. J. Enzym. Inhib. Med. Chem. 2019, 34, 1451–1456. [Google Scholar] [CrossRef]
- Dakshinamoorthy, A.; Asmita, A.; Senapati, S. Comprehending the Structure, Dynamics, and Mechanism of Action of Drug-Resistant HIV Protease. ACS Omega 2023, 8, 9748–9763. [Google Scholar] [CrossRef]
- Galiano, L.; Ding, F.; Veloro, A.M.; Blackburn, M.E.; Simmerling, C.; Fanucci, G.E. Drug Pressure Selected Mutations in HIV-1 Protease Alter Flap Conformations. J. Am. Chem. Soc. 2009, 131, 430–431. [Google Scholar] [CrossRef]
- Sherry, D.; Worth, R.; Ismail, Z.S.; Sayed, Y. Cantilever-Centric Mechanism of Cooperative Non-Active Site Mutations in HIV Protease: Implications for Flap Dynamics. J. Mol. Graph. Model. 2021, 106, 107931. [Google Scholar] [CrossRef]
- Fulbabu, S.K.M.; Jonniya, N.A.; Kar, P. Exploring the Energetic Basis of Binding of Currently Used Drugs against HIV-1 Subtype CRF01_AE Protease via Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2021, 39, 5892–5909. [Google Scholar]
- Collier, T.A.; Piggot, T.J.; Allison, J.R. Molecular Dynamics Simulation of Proteins. In Protein Nanotechnology: Protocols, Instrumentation, and Applications; Humana Press: Totowa, NJ, USA, 2020; pp. 311–327. [Google Scholar]
- Naicker, P.; Achilonu, I.; Fanucchi, S.; Fernandes, M.; Ibrahim, M.A.; Dirr, H.W.; Soliman, M.E.; Sayed, Y. Structural Insights into the South African HIV-1 Subtype C Protease: Impact of Hinge Region Dynamics and Flap Flexibility in Drug Resistance. J. Biomol. Struct. Dyn. 2013, 31, 1370–1380. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Kumar, N.; Tóth, Z.; Jardan, Y.A.B.; Akash, S.; Georrge, J.J. Unveiling the Molecular Activity of HIV towards the CD4: A Study Based on Subtype C via Docking and Dynamics Approach. J. Genet. Eng. Biotechnol. 2025, 23, 100457. [Google Scholar] [CrossRef] [PubMed]
- Dalgleish, A.G.; Beverley, P.C.; Clapham, P.R.; Crawford, D.H.; Greaves, M.F.; Weiss, R.A. The CD4 (T4) Antigen Is an Essential Component of the Receptor for the AIDS Retrovirus. Nature 1984, 312, 763–767. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Maguire, G.E.; Kruger, H.G.; Govender, T. The Impact of Active Site Mutations of South African HIV PR on Drug Resistance: Insight from Molecular Dynamics Simulations, Binding Free Energy and Per-residue Footprints. Chem. Biol. Drug Des. 2014, 83, 472–481. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Murlidharan, N.; Krishnan, S.R.; Ramakrishnan, C.; Setshedi, M.; Pandian, R.; Barh, D.; Tiwari, S.; Azevedo, V.; Sayed, Y.; et al. Understanding Drug Resistance of Wild-Type and L38HL Insertion Mutant of HIV-1 C Protease to Saquinavir. Genes 2023, 14, 533. [Google Scholar] [CrossRef]
- Sanusi, Z.K.; Govender, T.; Maguire, G.E.; Maseko, S.B.; Lin, J.; Kruger, H.G.; Honarparvar, B. An Insight to the Molecular Interactions of the FDA Approved HIV PR Drugs against L38L↑N↑L PR Mutant. J. Comput. Aided Mol. Des. 2018, 32, 459–471. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Krishnan, S.R.; Pandian, R.; Sayed, Y.; Gromiha, M.M. Structural Implications of HIV-1 Protease Subtype C Bound to Darunavir: A Molecular Dynamics Study. Proteins 2025. [Google Scholar] [CrossRef]
- Halder, A.K.; Honarparvar, B. Molecular Alteration in Drug Susceptibility against Subtype B and C-SA HIV-1 Proteases: MD Study. Struct. Chem. 2019, 30, 1715–1727. [Google Scholar] [CrossRef]
- Mittal, S.; Cai, Y.; Nalam, M.N.; Bolon, D.N.; Schiffer, C.A. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease. J. Am. Chem. Soc. 2012, 134, 4163–4168. [Google Scholar] [CrossRef]
- Williams, A.; Basson, A.; Achilonu, I.; Dirr, H.W.; Morris, L.; Sayed, Y. Double Trouble? Gag in Conjunction with Double Insert in HIV Protease Contributes to Reduced DRV Susceptibility. Biochem. J. 2019, 476, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Sanusi, Z.K.; Govender, T.; Maguire, G.E.M.; Maseko, S.B.; Lin, J.; Kruger, H.G.; Honarparvar, B. Investigation of the Binding Free Energies of FDA Approved Drugs against Subtype B and C-SA HIV PR. ONIOM Approach J. Mol. Graph. Model. 2017, 76, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Shode, F.O.; Uhomoibhi, J.O.O.; Idowu, K.A.; Sabiu, S.; Govender, K.K. Molecular Dynamics Study on Selected Bioactive Phytochemicals as Potential Inhibitors of HIV-1 Subtype C Protease. Metabolites 2022, 12, 1155. [Google Scholar] [CrossRef]
- Anoosha, P.; Sakthivel, R.; Gromiha, M.M. Investigating Mutation-Specific Biological Activities of Small Molecules Using Quantitative Structure-Activity Relationship for Epidermal Growth Factor Receptor in Cancer. Mutat. Res. 2017, 806, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug Design by Machine Learning: Support Vector Machines for Pharmaceutical Data Analysis. Comput. Chem. 2001, 26, 5–14. [Google Scholar] [CrossRef]
- Tong, J.B.; Bai, M.; Zhao, X. 3D-QSAR and Docking Studies of HIV-1 Protease Inhibitors Using R-Group Search and Surflex-Dock. Med. Chem. Res. 2016, 25, 2619–2630. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Chen, L.; Xu, J.; Jiang, H.F.; Zhu, Y.R.; Wang, Z.H.; Xiong, F. Evaluation of Novel HIV-1 Protease Inhibitors with DRV-Resistance by Utilizing 3D-QSAR Molecular Docking and Molecular Dynamics Simulation. New J. Chem. 2022, 46, 21885–21897. [Google Scholar] [CrossRef]
- Khedkar, V.M.; Ambre, P.K.; Verma, J.; Shaikh, M.S.; Pissurlenkar, R.R.; Coutinho, E.C. Molecular Docking and 3D-QSAR Studies of HIV-1 Protease Inhibitors. J. Mol. Model. 2010, 16, 1251–1268. [Google Scholar] [CrossRef]
- Bhargava, S.; Adhikari, N.; Amin, S.A.; Das, K.; Gayen, S.; Jha, T. Hydroxyethylamine Derivatives as HIV-1 Protease Inhibitors: A Predictive QSAR Modelling Study Based on Monte Carlo Optimization. SAR QSAR Environ. Res. 2017, 28, 973–990. [Google Scholar] [CrossRef]
- Fatemi, M.H.; Heidari, A.; Gharaghani, S. QSAR Prediction of HIV-1 Protease Inhibitory Activities Using Docking Derived Molecular Descriptors. J. Theor. Biol. 2015, 369, 13–22. [Google Scholar] [CrossRef]
- Panda, M.; Purohit, P.; Wang, Y.; Meher, B.R. Functionalized Carbon Nanotubes as an Alternative to Traditional Anti-HIV-1 Protease Inhibitors: An Understanding towards Nano-Medicine Development through MD Simulations. J. Mol. Graph. Model. 2022, 117, 108280. [Google Scholar] [CrossRef] [PubMed]
- Badaya, A.; Sasidhar, Y.U. Inhibition of the Activity of HIV-1 Protease through Antibody Binding and Mutations Probed by Molecular Dynamics Simulations. Sci. Rep. 2020, 10, 5501. [Google Scholar] [CrossRef] [PubMed]
- Su, C.T.-T.; Koh, D.W.-S.; Gan, S.K.-E. Reviewing HIV-1 Gag Mutations in Protease Inhibitors Resistance: Insights for Possible Novel Gag Inhibitor Designs. Mol. Basel Switz. 2019, 24, 3243. [Google Scholar] [CrossRef] [PubMed]
- Parry, C.M.; Kohli, A.; Boinett, C.J.; Towers, G.J.; McCormick, A.L.; Pillay, D. Gag Determinants of Fitness and Drug Susceptibility in Protease Inhibitor-Resistant Human Immunodeficiency Virus Type 1. J. Virol. 2009, 83, 9094–9101. [Google Scholar] [CrossRef]
- Laco, G.S. HIV-1 Gag Non-Cleavage Site PI Resistance Mutations Stabilize Protease/Gag Substrate Complexes In Silico via a Substrate-Clamp. BioChem 2021, 1, 190–209. [Google Scholar] [CrossRef]
- Pettit, S.C.; Moody, M.D.; Wehbie, R.S.; Kaplan, A.H.; Nantermet, P.V.; Klein, C.A.; Swanstrom, R. The P2 Domain of Human Immunodeficiency Virus Type 1 Gag Regulates Sequential Proteolytic Processing and Is Required to Produce Fully Infectious Virions. J. Virol. 1994, 68, 8017–8027. [Google Scholar] [CrossRef]
- Deshmukh, L.; Louis, J.M.; Ghirlando, R.; Clore, G.M. Transient HIV-1 Gag-Protease Interactions Revealed by Paramagnetic NMR Suggest Origins of Compensatory Drug Resistance Mutations. Proc. Natl. Acad. Sci. USA 2016, 113, 12456–12461. [Google Scholar] [CrossRef]
- Fun, A.; Wensing, A.M.J.; Verheyen, J.; Nijhuis, M. Human Immunodeficiency Virus Gag and Protease: Partners in Resistance. Retrovirology 2012, 9, 63. [Google Scholar] [CrossRef]
- Tunc, H.; Dogan, B.; Kiraz, B.N.D.; Sari, M.; Durdagi, S.; Kotil, S. Prediction of HIV-1 Protease Resistance Using Genotypic, Phenotypic, and Molecular Information with Artificial Neural Networks. PeerJ 2023, 11, 14987. [Google Scholar] [CrossRef]
- Shafer, R.W. Rationale and Uses of a Public HIV Drug-Resistance Database. J. Infect. Dis. 2006, 194 (Suppl. S1), S51–S58. [Google Scholar] [CrossRef]
- Tunc, H.; Yilmaz, S.; Darendeli Kiraz, B.N.; Sari, M.; Kotil, S.E.; Sensoy, O.; Durdagi, S. Improving Predictive Efficacy for Drug Resistance in Novel HIV-1 Protease Inhibitors through Transfer Learning Mechanisms. J. Chem. Inf. Model. 2024, 64, 7844–7863. [Google Scholar] [CrossRef] [PubMed]
- Mokhantso, T.; Sherry, D.; Worth, R.; Pandian, R.; Achilonu, I.; Sayed, Y. Contrasting the Effect of Hinge Region Insertions and Non-Active Site Mutations on HIV Protease-Inhibitor Interactions: Insights from Altered Flap Dynamics. J. Mol. Graph. Model. 2024, 133, 108850. [Google Scholar] [CrossRef] [PubMed]
- Meiselbach, H.; Horn, A.H.; Harrer, T.; Sticht, H. Insights into Amprenavir Resistance in E35D HIV-1 Protease Mutation from Molecular Dynamics and Binding Free-Energy Calculations. J. Mol. Model. 2007, 13, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Maseko, S.B.; Padayachee, E.; Govender, T.; Sayed, Y.; Kruger, G.; Maguire, G.E.M.; Lin, J. I36T↑T Mutation in South African Subtype C (C-SA) HIV-1 Protease Significantly Alters Protease-Drug Interactions. Biol. Chem. 2017, 398, 1109–1117. [Google Scholar] [CrossRef]
- Muralidharan, N.; Sakthivel, R.; Velmurugan, D.; Gromiha, M.M. Computational Studies of Drug Repurposing and Synergism of Lopinavir, Oseltamivir and Ritonavir Binding with SARS-CoV-2 Protease against COVID-19. J. Biomol. Struct. Dyn. 2021, 39, 2673–2678. [Google Scholar] [CrossRef]
Mutation | Drug | Amino Acid Substitutions | References |
---|---|---|---|
Primary substitutions | NFV | D30N, M46I | [45] |
ATV | V82I | [41] | |
Secondary substitutions | ATV | L10I, G16E, K20R, M36I/V/L, D60E, I64V/L, L63P/T, T74S/A, I93L | [45] |
IDV | L10I, G16E, K20R, M36I, I62V, T74S, V77I | ||
LPV | L10I, K20R, L63P, I64V | ||
NFV | L10I, K20R, M36I, I62V, I64V, T74S/A, V77I | ||
SQV | L10I, k20R, I62V, T74S/A, V77I | ||
FPV | K20R | ||
TPV | M36I/V/L, H69K, L89M |
Substitution | Amino Acid Change | References |
---|---|---|
Primary | V28A, I50L | [39,40] |
Secondary | I13V, L33F, E35D, F53L, I54V, R57K, L63P/V/S/A/T, I64M, A71V, L76V, L90M |
Insertions | Amino acid Change | Associated Mutations | Reference |
---|---|---|---|
Single insertions | E35↑E/Q, N37T↑V/N | None | [40] |
E35↑T | K20T | ||
Double insertions | D35↑G↑S | M46L | |
L38↑N↑L, L38↑H↑L | None | ||
E35D↑G↑S | E35D, D60E | [49] | |
I36↑T↑T | P39S, D60E and Q61E | [25] |
Drug | Binding Free Energy (ΔG) kcal/mol | |
---|---|---|
WT Subtype B | WT Subtype C | |
SQV | −12.80 | −12.40 |
RTV | −14.40 | −13.40 |
IDV | −12.70 | −12.30 |
NFV | −13.10 | −13.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkatachalam, S.; Muralidharan, N.; Pandian, R.; Sayed, Y.; Gromiha, M.M. Integrative Computational Approaches for Understanding Drug Resistance in HIV-1 Protease Subtype C. Viruses 2025, 17, 850. https://doi.org/10.3390/v17060850
Venkatachalam S, Muralidharan N, Pandian R, Sayed Y, Gromiha MM. Integrative Computational Approaches for Understanding Drug Resistance in HIV-1 Protease Subtype C. Viruses. 2025; 17(6):850. https://doi.org/10.3390/v17060850
Chicago/Turabian StyleVenkatachalam, Sankaran, Nisha Muralidharan, Ramesh Pandian, Yasien Sayed, and M. Michael Gromiha. 2025. "Integrative Computational Approaches for Understanding Drug Resistance in HIV-1 Protease Subtype C" Viruses 17, no. 6: 850. https://doi.org/10.3390/v17060850
APA StyleVenkatachalam, S., Muralidharan, N., Pandian, R., Sayed, Y., & Gromiha, M. M. (2025). Integrative Computational Approaches for Understanding Drug Resistance in HIV-1 Protease Subtype C. Viruses, 17(6), 850. https://doi.org/10.3390/v17060850