Molecular Evolution and Phylogeography of the Crimean–Congo Hemorrhagic Fever Virus
Abstract
1. Introduction
Genomic Segment | Genomic Region | Location (Amino Acids) | Function | References | |
---|---|---|---|---|---|
S | Nucleoprotein (NP) | 19-502 | Virus replication | [30,33] | |
Non-structural (NSs) | Overlaps with NP and varies among strains | Apoptosis induction and mitochondrial membrane potential disruption | [30,34] | ||
M | Glycoprotein precursor (GPC) | Mucin-like domain (MLD) | 19-243 | Virus infectivity, immune evasion, and tropism | [30,35] |
Glycoprotein 38 (GP38) | 244-519 | Virus infectivity, immune evasion, viral spread, and tropism | [35,36,37,38] | ||
Glycoprotein N (Gn) | 520-842 | Receptor binding, virion assembly | [35,36,39] | ||
Non-structural (NSm) | 843-1040 | Virion assembly and budding | [30,35,40] | ||
Glycoprotein C (Gc) | 1041-1684 | Membrane fusion | [35,36] | ||
L | RNA-dependent RNA polymerase (RdRP) | 25-3970 | Viral genome, transcription, and replication | [30,32,41] |
2. The Genomic Structure and Proteins of CCHFV
2.1. The S Genome Segment
2.2. The M Genome Segment
2.3. The L Genome Segment
3. Evolutionary Mechanisms of CCHFV
3.1. Genetic Diversity and the Rapid Mutation Process of CCHFV
NP and NSs Proteins | ||
---|---|---|
Mutation: Exchanged Amino Acids and Protein Site | Influence on Protein Function | References |
R15K | Can lead to loss of external interactions | [31] |
K90A | Reduces replicon activity and can play a role in RNA binding | [42] |
K91A | Apparently without effects on protein function | [42] |
K98A | Apparently without effects on protein function | [42] |
E112A | Apparently without effects on protein function | [42] |
T124A/S | Can affect hydrophobicity and loss of external interactions | [31] |
G125N | Can produce loss of protein function, as glycine could allow protein flexibility | [31] |
K132A | Removes the replicon activity | [42] |
R140A | Apparently without effects on protein function | [42] |
S149A | Apparently without effects on protein function | [42] |
H195R | Can affect intramolecular interactions with the viral genome | [31] |
I228M | Since it is in the arm domain, it could affect protein–protein interactions. It could potentially increase virulence in mice | [63] |
K251E | Since it is in the arm domain, it could affect protein–protein interactions. It could potentially increase virulence in mice | [63] |
I246V | Can create a cavity in the protein core | [31] |
Q300A | Removes the replicon activity | [42] |
S301G | Can cause loss of external interaction and loss of hydrophobicity and create empty space in the core of the NP | [31] |
K342A | Apparently without effects on protein function | [42] |
K343A | Apparently without effects on protein function | [42] |
K411A | Contributes to DNase activity of the CCHFV N protein. Direct role in CCHFV gene expression | [42] |
V436I | New residue is bigger and does not fit in the protein core | [31] |
H453A | Apparently without effects on protein function | [42] |
H456A | Can play a role in RNA binding | [42] |
Y470A | Apparently without effects on protein function | [42] |
Signal Peptide (Located Before GPC at N-Terminal) | ||
---|---|---|
Mutation: Exchanged Amino Acids and Protein Site | Influence on Protein Function | References |
I9V | Can affect processing and subsequent maturation of viral glycoproteins | [31] |
Glycoprotein N | ||
Mutation: Exchanged amino acids and protein site | Influence on protein activity | References |
P523S/T/F | Can affect Gn intramolecular interactions | [31] |
R579K | Can affect Gn intramolecular interactions | [31] |
N592S | Can affect Gn intramolecular interactions | [31] |
V718F/A/I/L | Can affect Gn intramolecular interactions | [31] |
L725F | Can affect Gn intramolecular interactions | [31] |
I778T | Can generate loss of intramolecular interactions and affect Gn protein solubility and stability | [31] |
Glycoprotein C | ||
Mutation: Exchanged amino acids and protein site | Influence on protein activity | References |
T1045I | Generates loss of hydrogen bonds and intramolecular interactions | [31] |
A1046V | Generates loss of hydrogen bonds and intramolecular interactions | [31] |
G1158E | Affects protein folding and local protein structure | [31] |
L1331L | Synonymous mutation without phenotypic effects | [63] |
A1451T | Generates loss of hydrophobic interactions | [31] |
H1527Y | Generates loss of hydrophobic interactions | [31] |
M1597I | Generates loss of intramolecular interactions | [31] |
K1652R | Generates bumps in the protein structure | [31] |
Glycoprotein 38 | ||
Mutation: Exchanged amino acids and protein site | Influence on protein activity | References |
G250D/N/E | Can affect GP38 intramolecular interactions | [31] |
Q273H/R/D | Can affect GP38 intramolecular interactions | [31] |
V385A/D/T | Can affect GP38 intramolecular interactions | [31] |
R475R | Synonymous mutation without phenotypic effects | [63] |
D484N | Can affect GP38 intramolecular interactions | [31] |
Non-structural M | ||
Mutation: Exchanged amino acids and protein site | Influence on protein activity | References |
Q844H | Can affect NSm intramolecular interactions | [31] |
C865Y | Located in the NSm protein but without a precisely described function | [63] |
K944T/A | Can affect NSm intramolecular interactions | [31] |
T927A/V | Can affect NSm intramolecular interactions | [31] |
L955R | Can affect NSm intramolecular interactions | [31] |
K1038R | Can affect NSm intramolecular interactions | [31] |
RNA-Dependent RNA Polymerase | ||
---|---|---|
Mutation: Exchanged Amino Acids and Protein Site | Influence on Protein Function | References |
S2007N | Located in a region of the L protein without a precisely described function | [63] |
V2074I | Can increase protein solubility and disrupt protein function, as they are located close to a highly conserved region | [71] |
I2134T | Can increase protein solubility | [71] |
V2148 | Can increase protein solubility and disrupt protein function, as they are located close to a highly conserved region | [71] |
V2686V | Synonymous mutation without phenotypic effects | [63] |
Q2695H | Can decrease protein stability | [71] |
P3281L | Located in a region of the L protein without a precisely described function | [63] |
E3847E | Synonymous mutation without phenotypic effects | [63] |
3.2. Recombination Is Frequent and Essential in CCHFV
3.3. The Temporal and Spatial Heterogeneous Rate of Molecular Evolution in CCHFV
Genomic Segment | Rate of Evolution (Substitutions/Site/Year) | 95% HPDI | References |
---|---|---|---|
S | 1.09 × 10−4 | 0.17 × 10−4–2.09 × 10−4 | [22] |
0.34 × 10−4 | 0–1.22 × 10−4 | [61] | |
0.60 × 10−4 | NA | [39] | |
1.30 × 10−4 | 0.62 × 10−4–2.00 × 10−4 | [59] | |
M | 1.52 × 10−4 | 0.62 × 10−4–2.40 × 10−4 | [22] |
1.22 × 10−4 | 0−1.97 × 10−4 | [61] | |
0.92 × 10−4 | NA | [39] | |
1.00 × 10−4 | 0.65 × 10−4–1.40 × 10−4 | [59] | |
L | 0.58 × 10−4 | 0.15 × 10−4–1.03 × 10−4 | [22] |
1.01 × 10−4 | 0.01 × 10−4–1.54 × 10−4 | [61] | |
0.64 × 10−4 | NA | [39] | |
0.80 × 10−4 | 0.60 × 10−4–1.10 × 10−4 | [59] |
3.4. The Importance of Molecular Adaptation and Selection Along the CCHFV Genome
4. The Phylogeography of CCHFV and Its Rapid Geographic Expansion
5. The Development of Effective Therapies Against CCHFV Is Influenced by the Virus’s Molecular Evolution
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nasirian, H. Ticks Infected with Crimean-Congo Hemorrhagic Fever Virus (CCHFV): A Decision Approach Systematic Review and Meta-Analysis Regarding Their Role as Vectors. Travel. Med. Infect. Dis. 2022, 47, 102309. [Google Scholar] [CrossRef]
- Ergonul, O.; Whitehouse, C.A. Crimean-Congo Hemorrhagic Fever: A Global Perspective; Springer: Dordrecht, The Netherlands, 2007; ISBN 978-1-4020-6105-9. [Google Scholar]
- Oraby, A.K.; Marchant, D.J. CCHFV Entry via LDLR Keeps It ‘Ticking’? Cell Res. 2024, 34, 271–272. [Google Scholar] [CrossRef]
- Blair, P.W.; Kuhn, J.H.; Pecor, D.B.; Apanaskevich, D.A.; Kortepeter, M.G.; Cardile, A.P.; Ramos, A.P.; Keshtkar-Jahromi, M. An Emerging Biothreat: Crimean-Congo Hemorrhagic Fever Virus in Southern and Western Asia. Am. J. Trop. Med. Hyg. 2019, 100, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Juanes, H.M.L.; Carbonell, C.; Sendra, B.F.; López-Bernus, A.; Bahamonde, A.; Orfao, A.; Lista, C.V.; Ledesma, M.S.; Negredo, A.I.; Rodríguez-Alonso, B.; et al. Crimean-Congo Hemorrhagic Fever, Spain, 2013–2021. Emerg. Infect. Dis. 2023, 29, 252–259. [Google Scholar] [CrossRef]
- Bente, D.A.; Forrester, N.L.; Watts, D.M.; McAuley, A.J.; Whitehouse, C.A.; Bray, M. Crimean-Congo Hemorrhagic Fever: History, Epidemiology, Pathogenesis, Clinical Syndrome and Genetic Diversity. Antiviral Res. 2013, 100, 159–189. [Google Scholar] [CrossRef]
- Whitehouse, C.A. Crimean–Congo Hemorrhagic Fever. Antiviral Res. 2004, 64, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.M.; Ksiazek, T.G.; Linthicum, K.J.; Hoogstrall, H. Crimean-Congo Hemorrhagic Fever. In The Arboviruses; CRC Press: Boca Raton, FL, USA, 2019; pp. 177–222. [Google Scholar]
- Omoga, D.C.A.; Tchouassi, D.P.; Venter, M.; Ogola, E.O.; Osalla, J.; Kopp, A.; Slothouwer, I.; Torto, B.; Junglen, S.; Sang, R. Transmission Dynamics of Crimean–Congo Haemorrhagic Fever Virus (CCHFV): Evidence of Circulation in Humans, Livestock, and Rodents in Diverse Ecologies in Kenya. Viruses 2023, 15, 1891. [Google Scholar] [CrossRef]
- Estrada-Peña, A. The Climate Niche of the Invasive Tick Species Hyalomma Marginatum and Hyalomma Rufipes (Ixodidae) with Recommendations for Modeling Exercises. Exp. Appl. Acarol. 2023, 89, 231–250. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Beck, A.S.; Gargili, A.; Forrester, N.; Barrett, A.D.T.; Bente, D.A. Transstadial Transmission and Long-Term Association of Crimean-Congo Hemorrhagic Fever Virus in Ticks Shapes Genome Plasticity. Sci. Rep. 2016, 6, 35819. [Google Scholar] [CrossRef]
- WHO. World Health Organization. Crimean-Congo Hemorrhagic Fever. Available online: https://www.who.int/multi-media/details/geographic-distribution-of-crimean-congo-haemorrhagic-fever (accessed on 15 February 2025).
- Kiwan, P.; Masse, S.; Piorkowski, G.; Ayhan, N.; Gasparine, M.; Vial, L.; Charrel, R.; de Lamballerie, X.; Falchi, A. Crimean-Congo Hemorrhagic Fever Virus in Ticks Collected from Cattle, Corsica, France, 2023. Emerg. Infect. Dis. 2024, 30, 1036. [Google Scholar] [CrossRef]
- Negredo, A.; Habela, M.Á.; de Arellano, E.R.; Diez, F.; Lasala, F.; López, P.; Sarriá, A.; Labiod, N.; Calero-Bernal, R.; Arenas, M.; et al. Survey of Crimean-Congo Hemorrhagic Fever Enzootic Focus, Spain, 2011–2015. Emerg. Infect. Dis. 2019, 25, 1177–1184. [Google Scholar] [CrossRef]
- Nasirian, H. New Aspects about Crimean-Congo Hemorrhagic Fever (CCHF) Cases and Associated Fatality Trends: A Global Systematic Review and Meta-Analysis. Comp. Immunol. Microbiol. Infect. Dis. 2020, 69, 101429. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, A.; Buonavoglia, D.; Lanave, G.; Monaco, F.; Quaranta, V.; Catanzariti, R.; Ruiz-Fons, F.; Buonavoglia, C. First Serological Evidence of Crimean–Congo Haemorrhagic Fever Virus in Transhumant Bovines in Italy. Transbound. Emerg. Dis. 2022, 69, 4022–4027. [Google Scholar] [CrossRef]
- Lukashev, A.N. Evidence for Recombination in Crimean-Congo Hemorrhagic Fever Virus. J. Gen. Virol. 2005, 86, 2333–2338. [Google Scholar] [CrossRef]
- Varsani, A.; Lefeuvre, P.; Roumagnac, P.; Martin, D. Notes on Recombination and Reassortment in Multipartite/Segmented Viruses. Curr. Opin. Virol. 2018, 33, 156–166. [Google Scholar] [CrossRef]
- Wang, J.; Shah, T.; Zhou, J.; Long, X.; Wang, Y.; Chen, J.; Shi, M.; Shah, Z.; Wang, B.; Xia, X. Identification, Characterization, and Homology Analysis of a Novel Strain of the Crimean–Congo Hemorrhagic Fever Virus from Yunnan, China. Microorganisms 2024, 12, 1466. [Google Scholar] [CrossRef]
- Pérez-Losada, M.; Arenas, M.; Galán, J.C.; Palero, F.; González-Candelas, F. Recombination in Viruses: Mechanisms, Methods of Study, and Evolutionary Consequences. Infect. Genet. Evol. 2015, 30, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Gruber, C.E.M.; Bartolini, B.; Castilletti, C.; Mirazimi, A.; Hewson, R.; Christova, I.; Avšič, T.; Grunow, R.; Papa, A.; Sánchez-Seco, M.P.; et al. Geographical Variability Affects CCHFV Detection by RT-PCR: A Tool for in-Silico Evaluation of Molecular Assays. Viruses 2019, 11, 953. [Google Scholar] [CrossRef]
- Carroll, S.A.; Bird, B.H.; Rollin, P.E.; Nichol, S.T. Ancient Common Ancestry of Crimean-Congo Hemorrhagic Fever Virus. Mol. Phylogenet. Evol. 2010, 55, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Zehender, G.; Ebranati, E.; Shkjezi, R.; Papa, A.; Luzzago, C.; Gabanelli, E.; Lo Presti, A.; Lai, A.; Rezza, G.; Galli, M.; et al. Bayesian Phylogeography of Crimean-Congo Hemorrhagic Fever Virus in Europe. PLoS ONE 2013, 8, e79663. [Google Scholar] [CrossRef]
- Ramírez de Arellano, E.; Hernández, L.; Goyanes, M.J.; Arsuaga, M.; Fernández Cruz, A.; Negredo, A.; Paz Sánchez-Seco, M. Phylogenetic Characterization of Crimean-Congo Hemorrhagic Fever Virus, Spain. Emerg. Infect. Dis. 2017, 23, 2078–2080. [Google Scholar] [CrossRef]
- Papa, A.; Papadopoulou, E.; Tsioka, K.; Kontana, A.; Pappa, S.; Melidou, A.; Giadinis, N.D. Isolation and Whole-Genome Sequencing of a Crimean-Congo Hemorrhagic Fever Virus Strain, Greece. Ticks Tick. Borne Dis. 2018, 9, 788–791. [Google Scholar] [CrossRef]
- Hua, B.L.; Scholte, F.E.M.; Ohlendorf, V.; Kopp, A.; Marklewitz, M.; Drosten, C.; Nichol, S.T.; Spiropoulou, C.F.; Junglen, S.; Bergeron, É. A Single Mutation in Crimean-Congo Hemorrhagic Fever Virus Discovered in Ticks Impairs Infectivity in Human Cells. Elife 2020, 9, 1–27. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Zatansever, Z.; Gargili, A.; Aktas, M.; Uzun, R.; Ergonul, O.; Jongejan, F. Modeling the Spatial Distribution of Crimean-Congo Hemorrhagic Fever Outbreaks in Turkey. Vector Borne Zoonotic Dis. 2007, 7, 667–678. [Google Scholar] [CrossRef]
- Sana, M.; Javed, A.; Babar Jamal, S.; Junaid, M.; Faheem, M. Development of Multivalent Vaccine Targeting M Segment of Crimean Congo Hemorrhagic Fever Virus (CCHFV) Using Immunoinformatic Approaches. Saudi J. Biol. Sci. 2022, 29, 2372–2388. [Google Scholar] [CrossRef]
- Spengler, J.R.; Bergeron, É.; Spiropoulou, C.F. Crimean-Congo Hemorrhagic Fever and Expansion from Endemic Regions. Curr. Opin. Virol. 2019, 34, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Zivcec, M.; Scholte, F.E.M.; Spiropoulou, C.F.; Spengler, J.R.; Bergeron, É. Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus. Viruses 2016, 8, 106. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, N.; Baranwal, M. Analysis of Highly Frequent Point Mutations in Glycoprotein C, Glycoprotein N, and Nucleoprotein of CCHFV. Biotechnol. Appl. Biochem. 2024, 71, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Özdarendeli, A.; Çanakoǧlu, N.; Berber, E.; Aydin, K.; Tonbak, Ş.; Ertek, M.; Buzgan, T.; Bolat, Y.; Aktaş, M.; Kalkan, A. The Complete Genome Analysis of Crimean-Congo Hemorrhagic Fever Virus Isolated in Turkey. Virus Res. 2010, 147, 288–293. [Google Scholar] [CrossRef]
- Hawman, D.W.; Feldmann, H. Crimean–Congo Haemorrhagic Fever Virus. Nat. Rev. Microbiol. 2023, 21, 463–477. [Google Scholar] [CrossRef]
- Barnwal, B.; Karlberg, H.; Mirazimi, A.; Tan, Y.J. The Non-Structural Protein of Crimean-Congo Hemorrhagic Fever Virus Disrupts the Mitochondrial Membrane Potential and Induces Apoptosis. J. Biol. Chem. 2016, 291, 582–592. [Google Scholar] [CrossRef]
- Dai, S.; Min, Y.Q.; Li, Q.; Feng, K.; Jiang, Z.; Wang, Z.; Zhang, C.; Ren, F.; Fang, Y.; Zhang, J.; et al. Interactome Profiling of Crimean-Congo Hemorrhagic Fever Virus Glycoproteins. Nat. Commun. 2023, 14, 7365. [Google Scholar] [CrossRef]
- Xu, Z.S.; Du, W.T.; Wang, S.Y.; Wang, M.Y.; Yang, Y.N.; Li, Y.H.; Li, Z.Q.; Zhao, L.X.; Yang, Y.; Luo, W.W.; et al. LDLR Is an Entry Receptor for Crimean-Congo Hemorrhagic Fever Virus. Cell. Res. 2024, 34, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Yan, C.; Liu, D.; Jiang, L.; Zhang, G.; He, B.; Li, Y. Phylogenetic Analysis of Crimean-Congo Hemorrhagic Fever Virus in Inner Mongolia, China. Ticks Tick. Borne Dis. 2022, 13, 101856. [Google Scholar] [CrossRef] [PubMed]
- Golden, J.W.; Shoemaker, C.J.; Lindquist, M.E.; Zeng, X.; Daye, S.P.; Williams, J.A.; Liu, J.; Coffin, K.M.; Olschner, S.; Flusin, O.; et al. GP38-Targeting Monoclonal Antibodies Protect Adult Mice against Lethal Crimean-Congo Hemorrhagic Fever Virus Infection. Sci. Adv. 2019, 5, eaaw9535. [Google Scholar] [CrossRef] [PubMed]
- Lukashev, A.N.; Deviatkin, A.A. Phylodynamics of Crimean Congo Hemorrhagic Fever Virus in South Russia. Infect. Genet. Evol. 2018, 59, 23–27. [Google Scholar] [CrossRef]
- Freitas, N.; Enguehard, M.; Denolly, S.; Levy, C.; Neveu, G.; Lerolle, S.; Devignot, S.; Weber, F.; Bergeron, E.; Legros, V.; et al. The Interplays between Crimean-Congo Hemorrhagic Fever Virus (Cchfv) m Segment-Encoded Accessory Proteins and Structural Proteins Promote Virus Assembly and Infectivity. PLoS Pathog. 2020, 16, e1008850. [Google Scholar] [CrossRef]
- Edache, E.I.; Uzairu, A.; Mamza, P.A.; Shallangwa, G.A. Molecular Docking, Molecular Dynamics Simulations and ADME Study to Identify Inhibitors of Crimean-Congo Hemorrhagic Fever (CCHF) Viral Ovarian Tumor Domain Protease (VOTU). Chem. Res. J. 2020, 5, 16–30. [Google Scholar]
- Carter, S.D.; Surtees, R.; Walter, C.T.; Ariza, A.; Bergeron, É.; Nichol, S.T.; Hiscox, J.A.; Edwards, T.A.; Barr, J.N. Structure, Function, and Evolution of the Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein. J. Virol. 2012, 86, 10914–10923. [Google Scholar] [CrossRef]
- Wang, Y.; Dutta, S.; Karlberg, H.; Devignot, S.; Weber, F.; Hao, Q.; Tan, Y.J.; Mirazimi, A.; Kotaka, M. Structure of Crimean-Congo Hemorrhagic Fever Virus Nucleoprotein: Superhelical Homo-Oligomers and the Role of Caspase-3 Cleavage. J. Virol. 2012, 86, 12294–12303. [Google Scholar] [CrossRef]
- Lerolle, S.; Freitas, N.; Cosset, F.L.; Legros, V. Host Cell Restriction Factors of Bunyaviruses and Viral Countermeasures. Viruses 2021, 13, 784. [Google Scholar] [CrossRef]
- Wei, P.F.; Luo, Y.J.; Li, T.X.; Wang, H.L.; Hu, Z.H.; Zhang, F.C.; Zhang, Y.J.; Deng, F.; Sun, S.R. Serial Expression of the Truncated Fragments of the Nucleocapsid Protein of CCHFV and Identification of the Epitope Region. Virol. Sin. 2010, 25, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Masayuki, S.; Tang, Q.; Masahiro, N.; Akihiko, M.; Tetsuro, I.; Christophe, P.; Ichiro, K.; Shigeru, M. Recombinant Nucleoprotein-Based Enzyme-Linked Immunosorbent Assay for Detection of Immunoglobulin G Antibodies to Crimean-Congo Hemorrhagic Fever Virus. J. Clin. Microbiol. 2002, 40, 1587–1591. [Google Scholar]
- Zhou, Z.R.; Wang, M.L.; Deng, F.; Li, T.X.; Hu, Z.H.; Wang, H.L. Production of CCHF Virus-like Particle by a Baculovirus-Insect Cell Expression System. Virol. Sin. 2011, 26, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Jeeva, S.; Cheng, E.; Ganaie, S.S.; Mir, M.A. Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein Augments MRNA Translation. J. Virol. 2017, 91, e00636-17. [Google Scholar] [CrossRef]
- Andersson, I.; Bladh, L.; Mousavi-Jazi, M.; Magnusson, K.-E.; Lundkvist, Å.; Haller, O.; Mirazimi, A. Human MxA Protein Inhibits the Replication of Crimean-Congo Hemorrhagic Fever Virus. J. Virol. 2004, 78, 4323–4329. [Google Scholar] [CrossRef]
- Karlberg, H.; Tan, Y.J.; Mirazimi, A. Induction of Caspase Activation and Cleavage of the Viral Nucleocapsid Protein in Different Cell Types during Crimean-Congo Hemorrhagic Fever Virus Infection. J. Biol. Chem. 2011, 286, 3227–3234. [Google Scholar] [CrossRef]
- Bergeron, É.; Vincent, M.J.; Nichol, S.T. Crimean-Congo Hemorrhagic Fever Virus Glycoprotein Processing by the Endoprotease SKI-1/S1P Is Critical for Virus Infectivity. J. Virol. 2007, 81, 13271–13276. [Google Scholar] [CrossRef]
- Bergeron, É.; Zivcec, M.; Chakrabarti, A.K.; Nichol, S.T.; Albariño, C.G.; Spiropoulou, C.F. Recovery of Recombinant Crimean Congo Hemorrhagic Fever Virus Reveals a Function for Non-Structural Glycoproteins Cleavage by Furin. PLoS Pathog. 2015, 11, e1004879. [Google Scholar] [CrossRef]
- Sanchez, A.J.; Vincent, M.J.; Erickson, B.R.; Nichol, S.T. Crimean-Congo Hemorrhagic Fever Virus Glycoprotein Precursor Is Cleaved by Furin-Like and SKI-1 Proteases To Generate a Novel 38-Kilodalton Glycoprotein. J. Virol. 2006, 80, 514–525. [Google Scholar] [CrossRef]
- Bergeron, É.; Albariño, C.G.; Khristova, M.L.; Nichol, S.T. Crimean-Congo Hemorrhagic Fever Virus-Encoded Ovarian Tumor Protease Activity Is Dispensable for Virus RNA Polymerase Function. J. Virol. 2010, 84, 216–226. [Google Scholar] [CrossRef]
- Jenkins, G.M.; Rambaut, A.; Pybus, O.G.; Holmes, E.C. Rates of Molecular Evolution in RNA Viruses: A Quantitative Phylogenetic Analysis. J. Mol. Evol. 2002, 54, 156–165. [Google Scholar] [CrossRef]
- Shayan, S.; Bokaean, M.; Shahrivar, M.R.; Chinikar, S. Crimean-Congo Hemorrhagic Fever. Lab. Medicine 2015, 46, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Chinikar, S.; Shah-Hosseini, N.; Bouzari, S.; Shokrgozar, M.A.; Mostafavi, E.; Jalali, T.; Khakifirouz, S.; Groschup, M.H.; Niedrig, M. Assessment of Recombination in the S-Segment Genome of Crimean-Congo Hemorrhagic Fever Virus in Iran. J. Arthropod. Borne Dis. 2016, 10, 12–23. [Google Scholar] [PubMed]
- Hewson, R.; Gmyl, A.; Gmyl, L.; Smirnova, S.E.; Karganova, G.; Jamil, B.; Hasan, R.; Chamberlain, J.; Clegg, C. Evidence of Segment Reassortment in Crimean-Congo Haemorrhagic Fever Virus. J. Gen. Virol. 2004, 85, 3059–3070. [Google Scholar] [CrossRef] [PubMed]
- Lukashev, A.N.; Klimentov, A.S.; Smirnova, S.E.; Dzagurova, T.K.; Drexler, J.F.; Gmyl, A.P. Phylogeography of Crimean Congo Hemorrhagic Fever Virus. PLoS ONE 2016, 11, e0166744. [Google Scholar] [CrossRef]
- D’Addiego, J.; Shah, S.; Pektaş, A.N.; Bağci, B.K.; Öz, M.; Sebastianelli, S.; Elaldı, N.; Allen, D.J.; Hewson, R. Development of Targeted Whole Genome Sequencing Approaches for Crimean-Congo Haemorrhagic Fever Virus (CCHFV). Virus Res. 2024, 350, 199464. [Google Scholar] [CrossRef]
- Anagnostou, V.; Papa, A. Evolution of Crimean-Congo Hemorrhagic Fever Virus. Infect. Genet. Evol. 2009, 9, 948–954. [Google Scholar] [CrossRef]
- Ghafari, M.; Simmonds, P.; Pybus, O.G.; Katzourakis, A. A Mechanistic Evolutionary Model Explains the Time-Dependent Pattern of Substitution Rates in Viruses. Curr. Biol. 2021, 31, 4689–4696.e5. [Google Scholar] [CrossRef]
- Hawman, D.W.; Meade-White, K.; Leventhal, S.; Feldmann, F.; Okumura, A.; Smith, B.; Scott, D.; Feldmann, H. Immunocompetent Mouse Model for Crimean-Congo Hemorrhagic Fever Virus. Elife 2021, 10, 63906. [Google Scholar] [CrossRef]
- Furió, V.; Moya, A.S.; Sanjuán, R. The cost of replication fidelity in an RNA virus. Proc. Natl. Acad. Sci. USA 2005, 102, 10233–10237. [Google Scholar] [CrossRef]
- Zhao, J.; Xia, H.; Zhang, Y.; Yin, S.; Zhang, Z.; Tang, S.; Kou, Z.; Yu, J.; Fan, Z.; Li, T. Mini-Genome Rescue of Crimean-Congo Hemorrhagic Fever Virus and Research into the Evolutionary Patterns of Its Untranslated Regions. Virus Res. 2013, 177, 22–34. [Google Scholar] [CrossRef]
- Deyde, V.M.; Khristova, M.L.; Rollin, P.E.; Ksiazek, T.G.; Nichol, S.T. Crimean-Congo Hemorrhagic Fever Virus Genomics and Global Diversity. J. Virol. 2006, 80, 8834–8842. [Google Scholar] [CrossRef]
- Goedhals, D.; Bester, P.A.; Paweska, J.T.; Swanepoel, R.; Burt, F.J. Comparative Analysis of the L, M, and S RNA Segments of Crimean-Congo Haemorrhagic Fever Virus Isolates from Southern Africa. J. Med. Virol. 2015, 87, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.J.; Vincent, M.J.; Nichol, S.T. Characterization of the Glycoproteins of Crimean-Congo Hemorrhagic Fever Virus. J. Virol. 2002, 76, 7263–7275. [Google Scholar] [CrossRef]
- Wampande, E.M.; Waiswa, P.; Allen, D.J.; Hewson, R.; Frost, S.D.W.; Stubbs, S.C.B. Phylogenetic Characterization of Crimean-Congo Hemorrhagic Fever Virus Detected in African Blue Ticks Feeding on Cattle in a Ugandan Abattoir. Microorganisms 2021, 9, 438. [Google Scholar] [CrossRef]
- Morikawa, S.; Qing, T.; Xinqin, Z.; Saijo, M.; Kurane, I. Genetic Diversity of the M RNA Segment among Crimean-Congo Hemorrhagic Fever Virus Isolates in China. Virology 2002, 296, 159–164. [Google Scholar] [CrossRef]
- Kaushal, N.; Baranwal, M. Mutational Analysis of Catalytic Site Domain of CCHFV L RNA Segment. J. Mol. Model. 2023, 29, 88. [Google Scholar] [CrossRef] [PubMed]
- Simon-Loriere, E.; Holmes, E.C. Why Do RNA Viruses Recombine? Nat. Rev. Microbiol. 2011, 9, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Schierup, M.H.; Hein, J. Consequences of Recombination on Traditional Phylogenetic Analysis. Genetics 2000, 156, 879–891. [Google Scholar] [CrossRef]
- Arenas, M.; Posada, D. The Effect of Recombination on the Reconstruction of Ancestral Sequences. Genetics 2010, 184, 1133–1139. [Google Scholar] [CrossRef]
- Arenas, M.; Posada, D. The Influence of Recombination on the Estimation of Selection from Coding Sequence Alignments. In Natural Selection: Methods and Applications; Fares, M.A., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 112–125. [Google Scholar]
- Anisimova, M.; Nielsen, R.; Yang, Z. Effect of Recombination on the Accuracy of the Likelihood Method for Detecting Positive Selection at Amino Acid Sites. Genetics 2003, 164, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Arenas, M.; Araujo, N.M.; Branco, C.; Castelhano, N.; Castro-Nallar, E.; Pérez-Losada, M. Mutation and Recombination in Pathogen Evolution: Relevance, Methods and Controversies. Infect. Genet. Evol. 2018, 63, 295–306. [Google Scholar] [CrossRef]
- Chare, E.R.; Gould, E.A.; Holmes, E.C. Phylogenetic Analysis Reveals a Low Rate of Homologous Recombination in Negative-Sense RNA Viruses. J. Gen. Virol. 2003, 84, 2691–2703. [Google Scholar] [CrossRef]
- Umair, M.; Rehman, Z.; Whitmer, S.; Mobley, M.; Fahim, A.; Ikram, A.; Salman, M.; Montgomery, J.M.; Klena, J.D. Crimean-Congo Hemorrhagic Fever Virus Diversity and Reassortment, Pakistan, 2017–2020. Emerg. Infect. Dis. 2024, 30, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.D.; Cherian, S.S.; Zawar, D.; Kokate, P.; Gunjikar, R.; Jadhav, S.; Mishra, A.C.; Mourya, D.T. Genetic Characterization and Molecular Clock Analyses of the Crimean-Congo Hemorrhagic Fever Virus from Human and Ticks in India, 2010–2011. Infect. Genet. Evol. 2013, 14, 223–231. [Google Scholar] [CrossRef]
- Vijaykrishna, D.; Mukerji, R.; Smith, G.J.D. RNA Virus Reassortment: An Evolutionary Mechanism for Host Jumps and Immune Evasion. PLoS Pathog. 2015, 11, e1004902. [Google Scholar] [CrossRef]
- Suzuki, Y. A Phylogenetic Approach to Detecting Reassortments in Viruses with Segmented Genomes. Gene 2010, 464, 11–16. [Google Scholar] [CrossRef]
- Goedhals, D.; Bester, P.A.; Paweska, J.T.; Swanepoel, R.; Burt, F.J. Next-Generation Sequencing of Southern African Crimean-Congo Haemorrhagic Fever Virus Isolates Reveals a High Frequency of M Segment Reassortment. Epidemiol. Infect. 2014, 142, 1952–1962. [Google Scholar] [CrossRef]
- Oany, A.R.; Ahmad, S.A.I.; Hossain, M.U.; Jyoti, T.P. Identification of Highly Conserved Regions in L-Segment of Crimean-Congo Hemorrhagic Fever Virus and Immunoinformatic Prediction about Potential Novel Vaccine. Adv. Appl. Bioinform. Chem. 2015, 8, 1–10. [Google Scholar] [CrossRef] [PubMed][Green Version]
- ter Horst, S.; Conceição-Neto, N.; Neyts, J.; Rocha-Pereira, J. Structural and Functional Similarities in Bunyaviruses: Perspectives for Pan-Bunya Antivirals. Rev. Med. Virol. 2019, 29, e2039. [Google Scholar] [CrossRef]
- Walter, C.T.; Barr, J.N. Recent Advances in the Molecular and Cellular Biology of Bunyaviruses. J. Gen. Virol. 2011, 92, 2467–2484. [Google Scholar] [CrossRef]
- Frank, M.G.; Weaver, G.; Raabe, V. Crimean Congo-Hemorrhagic Fever Virus for Clinicians—Virology, Pathogenesis, and Pathology. Emerg. Infect. Dis. 2024, 30, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.C. Molecular Clocks and the Puzzle of RNA Virus Origins. J. Virol. 2003, 77, 3893–3897. [Google Scholar] [CrossRef]
- Del Amparo, R.; Branco, C.; Arenas, J.; Vicens, A.; Arenas, M. Analysis of Selection in Protein-Coding Sequences Accounting for Common Biases. Brief. Bioinform. 2021, 22, bbaa431. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Nielsen, R. Estimating Synonymous and Nonsynonymous Substitution Rates Under Realistic Evolutionary Models. Mol. Biol. Evol. 2000, 17, 32–43. [Google Scholar] [CrossRef]
- Chen, S. Molecular Evolution of Crimean-Congo Hemorrhagic Fever Virus Based on Complete Genomes. J. Gen. Virol. 2013, 94, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Celina, S.S.; Černý, J. Genetic Background of Adaptation of Crimean-Congo Haemorrhagic Fever Virus to the Different Tick Hosts. PLoS ONE 2024, 19, e0302224. [Google Scholar] [CrossRef]
- Zhou, Z.; Deng, F.; Han, N.; Wang, H.; Sun, S.; Zhang, Y.; Hu, Z.; Rayner, S. Reassortment and Migration Analysis of Crimean–Congo Haemorrhagic Fever Virus. J. Gen. Virol. 2013, 94, 2536–2548. [Google Scholar] [CrossRef]
- Negredo, A.; Sánchez-Arroyo, R.; Díez-Fuertes, F.; de Ory, F.; Budiño, M.A.; Vázquez, A.; Garcinuño, Á.; Hernández, L.; la Hoz González, C.; Gutiérrez-Arroyo, A.; et al. Fatal Case of Crimean-Congo Hemorrhagic Fever Caused by Reassortant Virus, Spain, 2018. Emerg. Infect. Dis. 2021, 27, 1211–1215. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Papa, A.; Marklewitz, M.; Paraskevopoulou, S.; Garrison, A.R.; Alkhovsky, S.V.; Avšič-Županc, T.; Bente, D.A.; Bergeron, É.; Burt, F.; Di Paola, N.; et al. History and Classification of Aigai Virus (Formerly Crimean–Congo Haemorrhagic Fever Virus Genotype VI). J. Gen. Virol. 2022, 103, 001734. [Google Scholar] [CrossRef]
- Ergunay, K.; Bourke, B.P.; Reinbold-Wasson, D.D.; Nikolich, M.P.; Nelson, S.P.; Caicedo-Quiroga, L.; Vaydayko, N.; Kirkitadze, G.; Chunashvili, T.; Long, L.S.; et al. The Expanding Range of Emerging Tick-Borne Viruses in Eastern Europe and the Black Sea Region. Sci. Rep. 2023, 13, 19824. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; De La Fuente, J.; Latapia, T.; Ortega, C. The Impact of Climate Trends on a Tick Affecting Public Health: A Retrospective Modeling Approach for Hyalomma Marginatum (Ixodidae). PLoS ONE 2015, 10, e0125760. [Google Scholar] [CrossRef]
- Mona, S.; Ray, N.; Arenas, M.; Excoffier, L. Genetic Consequences of Habitat Fragmentation during a Range Expansion. Heredity 2014, 112, 291–299. [Google Scholar] [CrossRef]
- Portillo, A.; Palomar, A.M.; Santibáñez, P.; Oteo, J.A. Epidemiological Aspects of Crimean-Congo Hemorrhagic Fever in Western Europe: What about the Future? Microorganisms 2021, 9, 649. [Google Scholar] [CrossRef]
- Saleem, J.; Usman, M.; Nadeem, A.; Sethi, S.A.; Salman, M. Crimean–Congo Hemorrhagic Fever: A First Case from Abbottabad, Pakistan. Int. J. Infect. Dis. 2009, 13, e121–e123. [Google Scholar] [CrossRef]
- Little, T.J.; Allen, J.E.; Babayan, S.A.; Matthews, K.R.; Colegrave, N. Harnessing Evolutionary Biology to Combat Infectious Disease. Nat. Med. 2012, 18, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Preciado, M.V.; Valva, P.; Escobar-Gutierrez, A.; Rahal, P.; Ruiz-Tovar, K.; Yamasaki, L.; Vazquez-Chacon, C.; Martinez-Guarneros, A.; Carpio-Pedroza, J.C.; Fonseca-Coronado, S.; et al. Hepatitis C Virus Molecular Evolution: Transmission, Disease Progression and Antiviral Therapy. World J. Gastroenterol. 2014, 20, 15992–16013. [Google Scholar] [CrossRef] [PubMed]
- Leyssen, P.; De Clercq, E.; Neyts, J. Molecular Strategies to Inhibit the Replication of RNA Viruses. Antiviral Res. 2008, 78, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Henschke, N.; Maayan, N.; Mills, I.; Buckley, B.S.; Kakourou, A.; Marshall, R. Ribavirin for Treating Crimean Congo Haemorrhagic Fever. Cochrane Database Syst. Rev. 2018, 2018, CD012713. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Deng, F.; Wang, H.; Ning, Y. Crimean-Congo Hemorrhagic Fever Virus: Current Advances and Future Prospects of Antiviral Strategies. Viruses 2021, 13, 1195. [Google Scholar] [CrossRef] [PubMed]
- Ahata, B.; Akçapınar, G.B. CCHFV Vaccine Development, Current Challenges, Limitations, and Future Directions. Front. Immunol. 2023, 14, 1238882. [Google Scholar] [CrossRef]
- Zivcec, M.; Safronetz, D.; Scott, D.P.; Robertson, S.; Feldmann, H. Nucleocapsid Protein-Based Vaccine Provides Protection in Mice against Lethal Crimean-Congo Hemorrhagic Fever Virus Challenge. PLoS Negl. Trop. Dis. 2018, 12, e0006628. [Google Scholar] [CrossRef]
- Bertolotti-Ciarlet, A.; Smith, J.; Strecker, K.; Paragas, J.; Altamura, L.A.; McFalls, J.M.; Frias-Stäheli, N.; García-Sastre, A.; Schmaljohn, C.S.; Doms, R.W. Cellular Localization and Antigenic Characterization of Crimean-Congo Hemorrhagic Fever Virus Glycoproteins. J. Virol. 2005, 79, 6152–6161. [Google Scholar] [CrossRef]
- Buttigieg, K.R.; Dowall, S.D.; Findlay-Wilson, S.; Miloszewska, A.; Rayner, E.; Hewson, R.; Carroll, M.W. A Novel Vaccine against Crimean-Congo Haemorrhagic Fever Protects 100% of Animals against Lethal Challenge in a Mouse Model. PLoS ONE 2014, 9, e91516. [Google Scholar] [CrossRef]
- Tipih, T.; Leventhal, S.S.; Meade-White, K.; Lewis, M.; Bushmaker, T.; Shaia, C.; Marzi, A.; Feldmann, H.; Hawman, D.W. Single Dose VSV-Based Vaccine Protects Mice against Lethal Heterologous Crimean-Congo Hemorrhagic Fever Virus Challenge. NPJ Vaccines 2025, 10, 109. [Google Scholar] [CrossRef]
- Chen, T.; Ding, Z.; Li, X.; Li, Y.; Lan, J.; Wong, G. A MRNA Vaccine for Crimean–Congo Hemorrhagic Fever Virus Expressing Non-Fusion GnGc Using NSm Linker Elicits Unexpected Immune Responses in Mice. Viruses 2024, 16, 378. [Google Scholar] [CrossRef]
- Ghiasi, S.M.; Salmanian, A.H.; Chinikar, S.; Zakeri, S. Mice Orally Immunized with a Transgenic Plant Expressing the Glycoprotein of Crimean-Congo Hemorrhagic Fever Virus. Clin. Vaccine Immunol. 2011, 18, 2031–2037. [Google Scholar] [CrossRef] [PubMed]
- Ghiasi, S.M.; Salmanian, A.-H.; Sharafi, A.; Kazemi, R.; Jafari, M.; Chinikar, S.; Zakeri, S. Molecular Farming, an Effective System for the Production of Immunogenic Crimean-Congo Hemorrhagic Fever Virus Glycoprotein. Progress. Biol. Sci. 2012, 2, 12–29. [Google Scholar]
- Hawman, D.W.; Meade-White, K.; Leventhal, S.; Appelberg, S.; Ahlén, G.; Nikouyan, N.; Clancy, C.; Smith, B.; Hanley, P.; Lovaglio, J.; et al. Accelerated DNA Vaccine Regimen Provides Protection against Crimean-Congo Hemorrhagic Fever Virus Challenge in a Macaque Model. Mol. Ther. 2023, 31, 387–397. [Google Scholar] [CrossRef]
- Dowall, S.D.; Buttigieg, K.R.; Findlay-Wilson, S.J.D.; Rayner, E.; Pearson, G.; Miloszewska, A.; Graham, V.A.; Carroll, M.W.; Hewson, R. A Crimean-Congo Hemorrhagic Fever (CCHF) Viral Vaccine Expressing Nucleoprotein Is Immunogenic but Fails to Confer Protection against Lethal Disease. Hum. Vaccin. Immunother. 2016, 12, 519–527. [Google Scholar] [CrossRef]
- Farzani, T.A.; Földes, K.; Hanifehnezhad, A.; Ilce, B.Y.; Dagalp, S.B.; Khiabani, N.A.; Ergünay, K.; Alkan, F.; Karaoglu, T.; Bodur, H.; et al. Bovine Herpesvirus Type 4 (BoHV-4) Vector Delivering Nucleocapsid Protein of Crimean-Congo Hemorrhagic Fever Virus Induces Comparable Protective Immunity against Lethal Challenge in IFNα/ΒγγR-/-/Mice Models. Viruses 2019, 11, 237. [Google Scholar] [CrossRef] [PubMed]
- Hawman, D.W.; Leventhal, S.; Meade-White, K.; Graham, W.; Gaffney, K.; Khandhar, A.; Murray, J.; Prado-Smith, J.; Shaia, C.; Saturday, G.; et al. A Replicating RNA Vaccine Confers Protection against Crimean-Congo Hemorrhagic Fever in Cynomolgus Macaques. eBioMedicine 2025, 115, 105698. [Google Scholar] [CrossRef] [PubMed]
- Leventhal, S.S.; Meade-White, K.; Rao, D.; Haddock, E.; Leung, J.; Scott, D.; Archer, J.; Randall, S.; Erasmus, J.H.; Feldmann, H.; et al. Replicating RNA Vaccination Elicits an Unexpected Immune Response That Efficiently Protects Mice against Lethal Crimean-Congo Hemorrhagic Fever Virus Challenge. eBioMedicine 2022, 82, 104188. [Google Scholar] [CrossRef]
- Rodriguez, S.E.; Cross, R.W.; Fenton, K.A.; Bente, D.A.; Mire, C.E.; Geisbert, T.W. Vesicular Stomatitis Virus-Based Vaccine Protects Mice against Crimean-Congo Hemorrhagic Fever. Sci. Rep. 2019, 9, 7755. [Google Scholar] [CrossRef]
- Travieso, T.; Li, J.; Mahesh, S.; Mello, J.D.F.R.E.; Blasi, M. The Use of Viral Vectors in Vaccine Development. NPJ Vaccines 2022, 7, 75. [Google Scholar] [CrossRef]
- Golden, J.; Fitzpatrick, C.; Suschak, D.J.; Clements, T.; Ricks, K.; Sanchez-Lockhart, M.; Garrison, D.A. The CD8+T Cells Response Is Sufficient for Protection with a CCHFV M-Segment Based DNA Vaccine and GP38 Enhances Vaccine Immunogenicity. Int. J. Infect. Dis. 2025, 152, 107734. [Google Scholar] [CrossRef]
- Suschak, J.J.; Golden, J.W.; Fitzpatrick, C.J.; Shoemaker, C.J.; Badger, C.V.; Schmaljohn, C.S.; Garrison, A.R. A CCHFV DNA Vaccine Protects against Heterologous Challenge and Establishes GP38 as Immunorelevant in Mice. NPJ Vaccines 2021, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Volz, A.; Sutter, G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv. Virus Res. 2017, 97, 187–243. [Google Scholar]
- Hinkula, J.; Devignot, S.; Åkerström, S.; Karlberg, H.; Wattrang, E.; Bereczky, S.; Mousavi-Jazi, M.; Risinger, C.; Lindegren, G.; Vernersson, C.; et al. Immunization with DNA Plasmids Coding for Crimean-Congo Hemorrhagic Fever Virus Capsid and Envelope Proteins and/or Virus-Like Particles Induces Protection and Survival in Challenged Mice. J. Virol. 2017, 91, e02076-16. [Google Scholar] [CrossRef]
- Appelberg, S.; John, L.; Pardi, N.; Végvári, Á.; Bereczky, S.; Ahlén, G.; Monteil, V.; Abdurahman, S.; Mikaeloff, F.; Beattie, M.; et al. Nucleoside-Modified MRNA Vaccines Protect IFNAR-/-Mice against Crimean-Congo Hemorrhagic Fever Virus Infection. J. Virol. 2022, 96, e0156821. [Google Scholar] [CrossRef]
- Spengler, J.R.; Welch, S.R.; Scholte, F.E.M.; Coleman-McCray, J.A.D.; Harmon, J.R.; Nichol, S.T.; Bergeron, É.; Spiropoulou, C.F. Heterologous Protection against Crimean-Congo Hemorrhagic Fever in Mice after a Single Dose of Replicon Particle Vaccine. Antiviral Res. 2019, 170, 104573. [Google Scholar] [CrossRef]
- Saunders, J.E.; Gilbride, C.; Dowall, S.; Morris, S.; Ulaszewska, M.; Spencer, A.J.; Rayner, E.; Graham, V.A.; Kennedy, E.; Thomas, K.; et al. Adenoviral Vectored Vaccination Protects against Crimean-Congo Haemorrhagic Fever Disease in a Lethal Challenge Model. EBioMedicine 2023, 90, 104523. [Google Scholar] [CrossRef] [PubMed]
- Mallapaty, S. What Will Viruses Do next? AI Is Helping Scientists Predict Their Evolution. Nature 2025, 637, 527–528. [Google Scholar] [CrossRef] [PubMed]
- Zwart, M.P.; Kupczok, A.; Iranzo, J. Editorial: Predicting Virus Evolution: From Genome Evolution to Epidemiological Trends. Front. Virol. 2023, 3, 1215709. [Google Scholar] [CrossRef]
- Ferreiro, D.; González-Vázquez, L.D.; Prado-Comesaña, A.; Arenas, M. Forecasting Protein Evolution by Integrating Birth-Death Population Models with Structurally Constrained Substitution Models. ELife 2025, 14, RP106365. [Google Scholar]
- Hamelin, D.J.; Scicluna, M.; Saadie, I.; Mostefai, F.; Grenier, J.C.; Baron, C.; Caron, E.; Hussin, J.G. Predicting Pathogen Evolution and Immune Evasion in the Age of Artificial Intelligence. Comput. Struct. Biotechnol. J. 2025, 27, 1370–1382. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias-Rivas, P.; González-Vázquez, L.D.; Arenas, M. Molecular Evolution and Phylogeography of the Crimean–Congo Hemorrhagic Fever Virus. Viruses 2025, 17, 1054. https://doi.org/10.3390/v17081054
Iglesias-Rivas P, González-Vázquez LD, Arenas M. Molecular Evolution and Phylogeography of the Crimean–Congo Hemorrhagic Fever Virus. Viruses. 2025; 17(8):1054. https://doi.org/10.3390/v17081054
Chicago/Turabian StyleIglesias-Rivas, Paula, Luis Daniel González-Vázquez, and Miguel Arenas. 2025. "Molecular Evolution and Phylogeography of the Crimean–Congo Hemorrhagic Fever Virus" Viruses 17, no. 8: 1054. https://doi.org/10.3390/v17081054
APA StyleIglesias-Rivas, P., González-Vázquez, L. D., & Arenas, M. (2025). Molecular Evolution and Phylogeography of the Crimean–Congo Hemorrhagic Fever Virus. Viruses, 17(8), 1054. https://doi.org/10.3390/v17081054