Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1
Abstract
:Abbreviations
AIV | avian influenza virus |
ChIFN-α | chicken interferon alpha |
ChIL | chicken interleukin |
ECE | embryonated chicken eggs |
HA | hemagglutinin |
HPAIV | highly pathogenic avian influenza virus |
IFN | interferon |
LPAIV | low pathogenic avian influenza virus |
Mx | myxovirus |
NA | neuraminidase |
NAIs | neuraminidase inhibitors |
rFPV | recombinant fowl pox virus |
RIG-I | retinoic acid-inducible gene I |
RNA | ribonucleic acid |
RNAi | RNA interference |
siRNA | short-interfering RNA |
SPF | specific pathogen free |
TLR | Toll-like receptors |
1. Introduction
3. Molecular Approaches for Control of AIV
3.1. Avian-Cytokines
3.2. RNA Interference (RNAi)
3.3. Host Genetic Selection
3.3.1. Natural Resistance
3.3.1.1. Myxovirus (Mx) Resistance Gene
3.3.1.2. Other Candidate Genes
3.3.2. Transgenic Chickens
4. Summary and Perspectives
Approach | Advantages | Limitations | |
---|---|---|---|
Antivirals | Chemotherapy | ||
M2 Blockers (Amantadine and Rimantadine) and Neuraminidase inhibitors (Oseltamivir and Zanamivir) |
|
| |
Natural Antivirals | |||
Herbs |
|
| |
Probiotics |
|
| |
Molecular approaches | Avian Cytokines |
|
|
RNA interference |
|
| |
Naturally resistant birds (Myxovirus Mx resistant gene and other candidate genes) |
|
| |
Transgenic birds |
|
|
Conflict of Interest
References and Notes
- Palese, P.; Shaw, M.L. Orthomyxoviridae: The viruses and their replication. In Fields Virology, 5th; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 1647–1689. [Google Scholar]
- Swayne, D.E. Avian influenza vaccines and therapies for poultry. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 351–363. [Google Scholar] [CrossRef]
- Tong, S.; Li, Y.; Rivailler, P.; Conrardy, C.; Castillo, D.A.; Chen, L.M.; Recuenco, S.; Ellison, J.A.; Davis, C.T.; York, I.A.; et al. A distinct lineage of influenza A virus from bats. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 4269–4274. [Google Scholar]
- Lupiani, B.; Reddy, S.M. The history of avian influenza. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 311–323. [Google Scholar]
- Brown, E.G. Influenza virus genetics. Biomed. Pharmacother. 2000, 54, 196–209. [Google Scholar] [CrossRef]
- Ferguson, N.M.; Galvani, A.P.; Bush, R.M. Ecological and immunological determinants of influenza evolution. Nature 2003, 422, 428–433. [Google Scholar]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar]
- Peiris, J.S.; de Jong, M.D.; Guan, Y. Avian influenza virus (H5N1): A threat to human health. Clin. Microbiol. Rev. 2007, 20, 243–267. [Google Scholar] [CrossRef]
- Mumford, E.; Bishop, J.; Hendrickx, S.; Embarek, P.B.; Perdue, M. Avian influenza H5N1: Risks at the human-animal interface. Food Nutr. Bull. 2007, 28, S357–S363. [Google Scholar]
- Chen, J.; Chen, S.C.; Stern, P.; Scott, B.B.; Lois, C. Genetic strategy to prevent influenza virus infections in animals. J. Infect. Dis. 2008, 197, S25–S28. [Google Scholar]
- Yee, K.S.; Carpenter, T.E.; Cardona, C.J. Epidemiology of H5N1 avian influenza. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 325–340. [Google Scholar] [CrossRef]
- Capua, I.; Alexander, D.J. The challenge of avian influenza to the veterinary community. Avian Pathol. 2006, 35, 189–205. [Google Scholar] [CrossRef]
- Swayne, D.E.; Pavade, G.; Hamilton, K.; Vallat, B.; Miyagishima, K. Assessment of national strategies for control of high-pathogenicity avian influenza and low-pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination. Rev. Sci. Tech. 2011, 30, 839–870. [Google Scholar]
- van den Berg, T.; Lambrecht, B.; Marche, S.; Steensels, M.; Van Borm, S.; Bublot, M. Influenza vaccines and vaccination strategies in birds. Comp. Immunol. Microbiol. Infect. Dis. 2008, 31, 121–165. [Google Scholar] [CrossRef]
- Suarez, D.L.; Schultz-Cherry, S. Immunology of avian influenza virus: A review. Dev. Comp. Immunol. 2000, 24, 269–283. [Google Scholar]
- Suarez, D.L. Overview of avian influenza DIVA test strategies. Biologicals 2005, 33, 221–226. [Google Scholar] [CrossRef]
- Savill, N.J.; St Rose, S.G.; Keeling, M.J.; Woolhouse, M.E. Silent spread of H5N1 in vaccinated poultry. Nature 2006, 442, 757. [Google Scholar]
- Capua, I.; Alexander, D.J. Ecology, epidemiology and human health implications of avian influenza viruses: Why do we need to share genetic data? Zoonoses Public Hlth. 2008, 55, 2–15. [Google Scholar] [CrossRef]
- Hafez, M.H.; Arafa, A.; Abdelwhab, E.M.; Selim, A.; Khoulosy, S.G.; Hassan, M.K.; Aly, M.M. Avian influenza H5N1 virus infections in vaccinated commercial and backyard poultry in Egypt. Poultry Sci. 2010, 89, 1609–1613. [Google Scholar]
- Lee, C.W.; Senne, D.A.; Suarez, D.L. Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. J. Virol. 2004, 78, 8372–8381. [Google Scholar] [CrossRef]
- Cattoli, G.; Fusaro, A.; Monne, I.; Coven, F.; Joannis, T.; El-Hamid, H.S.; Hussein, A.A.; Cornelius, C.; Amarin, N.M.; Mancin, M.; et al. Evidence for differing evolutionary dynamics of A/H5N1 viruses among countries applying or not applying avian influenza vaccination in poultry. Vaccine 2011, 29, 9368–9375. [Google Scholar] [CrossRef]
- Cattoli, G.; Milani, A.; Temperton, N.; Zecchin, B.; Buratin, A.; Molesti, E.; Aly, M.M.; Arafa, A.; Capua, I. Antigenic drift in H5N1 avian influenza virus in poultry is driven by mutations in major antigenic sites of the hemagglutinin molecule analogous to those for human influenza virus. J. Virol. 2011, 85, 8718–8724. [Google Scholar]
- Boni, M.F. Vaccination and antigenic drift in influenza. Vaccine 2008, 26, C8–C14. [Google Scholar]
- Escorcia, M.; Vazquez, L.; Mendez, S.T.; Rodriguez-Ropon, A.; Lucio, E.; Nava, G.M. Avian influenza: Genetic evolution under vaccination pressure. Virol. J. 2008, 5, 15. [Google Scholar] [CrossRef]
- Abdelwhab, E.M.; Grund, C.; Aly, M.M.; Beer, M.; Harder, T.C.; Hafez, H.M. Multiple dose vaccination with heterologous H5N2 vaccine: Immune response and protection against variant clade 2.2.1 highly pathogenic avian influenza H5N1 in broiler breeder chickens. Vaccine 2011, 29, 6219–6225. [Google Scholar]
- Grund, C.; Abdelwhab el, S.M.; Arafa, A.S.; Ziller, M.; Hassan, M.K.; Aly, M.M.; Hafez, H.M.; Harder, T.C.; Beer, M. Highly pathogenic avian influenza virus H5N1 from Egypt escapes vaccine-induced immunity but confers clinical protection against a heterologous clade 2.2.1 Egyptian isolate. Vaccine 2011, 29, 5567–5573. [Google Scholar]
- Kilany, W.H.; Abdelwhab, E.M.; Arafa, A.S.; Selim, A.; Safwat, M.; Nawar, A.A.; Erfan, A.M.; Hassan, M.K.; Aly, M.M.; Hafez, H.M. Protective efficacy of H5 inactivated vaccines in meat turkey poults after challenge with Egyptian variant highly pathogenic avian influenza H5N1 virus. Vet. Microbiol. 2011, 150, 28–34. [Google Scholar] [CrossRef]
- Rauw, F.; Palya, V.; Van Borm, S.; Welby, S.; Tatar-Kis, T.; Gardin, Y.; Dorsey, K.M.; Aly, M.M.; Hassan, M.K.; Soliman, M.A.; et al. Further evidence of antigenic drift and protective efficacy afforded by a recombinant HVT-H5 vaccine against challenge with two antigenically divergent Egyptian clade 2.2.1 HPAI H5N1 strains. Vaccine 2011, 29, 2590–2600. [Google Scholar] [CrossRef]
- Swayne, D.E.; Kapczynski, D. Strategies and challenges for eliciting immunity against avian influenza virus in birds. Immunol. Rev. 2008, 225, 314–331. [Google Scholar] [CrossRef]
- Maas, R.; Rosema, S.; van Zoelen, D.; Venema, S. Maternal immunity against avian influenza H5N1 in chickens: Limited protection and interference with vaccine efficacy. Avian Pathol. 2011, 40, 87–92. [Google Scholar]
- Sarfati-Mizrahi, D.; Lozano-Dubernard, B.; Soto-Priante, E.; Castro-Peralta, F.; Flores-Castro, R.; Loza-Rubio, E.; Gay-Gutierrez, M. Protective dose of a recombinant Newcastle disease LaSota-avian influenza virus H5 vaccine against H5N2 highly pathogenic avian influenza virus and velogenic viscerotropic Newcastle disease virus in broilers with high maternal antibody levels. Avian Dis. 2010, 54, 239–241. [Google Scholar] [CrossRef]
- Abdelwhab, E.M.; Grund, C.; Aly, M.M.; Beer, M.; Harder, T.C.; Hafez, H.M. Influence of maternal immunity on vaccine efficacy and susceptibility of one day old chicks against Egyptian highly pathogenic avian influenza H5N1. Vet. Microbiol. 2012, 155, 13–20. [Google Scholar]
- De Vriese, J.; Steensels, M.; Palya, V.; Gardin, Y.; Dorsey, K.M.; Lambrecht, B.; Van Borm, S.; van den Berg, T. Passive protection afforded by maternally-derived antibodies in chickens and the antibodies' interference with the protection elicited by avian influenza-inactivated vaccines in progeny. Avian Dis. 2010, 54, 246–252. [Google Scholar] [CrossRef]
- Kim, J.K.; Kayali, G.; Walker, D.; Forrest, H.L.; Ellebedy, A.H.; Griffin, Y.S.; Rubrum, A.; Bahgat, M.M.; Kutkat, M.A.; Ali, M.A.; et al. Puzzling inefficiency of H5N1 influenza vaccines in Egyptian poultry. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 11044–11049. [Google Scholar]
- Oh, S.; Martelli, P.; Hock, O.S.; Luz, S.; Furley, C.; Chiek, E.J.; Wee, L.C.; Keun, N.M. Field study on the use of inactivated H5N2 vaccine in avian species. Vet. Rec. 2005, 157, 299–300. [Google Scholar]
- Philippa, J.D.; Munster, V.J.; Bolhuis, H.; Bestebroer, T.M.; Schaftenaar, W.; Beyer, W.E.; Fouchier, R.A.; Kuiken, T.; Osterhaus, A.D. Highly pathogenic avian influenza (H7N7): Vaccination of zoo birds and transmission to non-poultry species. Vaccine 2005, 23, 5743–5750. [Google Scholar]
- Cagle, C.; To, T.L.; Nguyen, T.; Wasilenko, J.; Adams, S.C.; Cardona, C.J.; Spackman, E.; Suarez, D.L.; Pantin-Jackwood, M.J. Pekin and Muscovy ducks respond differently to vaccination with a H5N1 highly pathogenic avian influenza (HPAI) commercial inactivated vaccine. Vaccine 2011, 29, 6549–6557. [Google Scholar]
- Lecu, A.; De Langhe, C.; Petit, T.; Bernard, F.; Swam, H. Serologic response and safety to vaccination against avian influenza using inactivated H5N2 vaccine in zoo birds. J. Zoo Wildl. Med. 2009, 40, 731–743. [Google Scholar] [CrossRef]
- Kapczynski, D.R.; Swayne, D.E. Influenza vaccines for avian species. Curr. Top. Microbiol. Immunol. 2009, 333, 133–152. [Google Scholar]
- Koch, G.; Steensels, M.; van den Berg, T. Vaccination of birds other than chickens and turkeys against avian influenza. Rev. Sci. Tech. 2009, 28, 307–318. [Google Scholar]
- Tian, G.; Zhang, S.; Li, Y.; Bu, Z.; Liu, P.; Zhou, J.; Li, C.; Shi, J.; Yu, K.; Chen, H. Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics. Virology 2005, 341, 153–162. [Google Scholar]
- Bertelsen, M.F.; Klausen, J.; Holm, E.; Grondahl, C.; Jorgensen, P.H. Serological response to vaccination against avian influenza in zoo-birds using an inactivated H5N9 vaccine. Vaccine 2007, 25, 4345–4349. [Google Scholar] [CrossRef]
- Robinson, J.H.; Easterday, B.C. Avian influenza virus infection of the immunosuppressed turkey. Am. J. Vet. Res. 1979, 40, 1219–1222. [Google Scholar]
- Hao, Y.X.; Yang, J.M.; He, C.; Liu, Q.; McAllister, T.A. Reduced serologic response to avian influenza vaccine in specific-pathogen-free chicks inoculated with Cryptosporidium baileyi. Avian Dis. 2008, 52, 690–693. [Google Scholar]
- Sun, S.; Cui, Z.; Wang, J.; Wang, Z. Protective efficacy of vaccination against highly pathogenic avian influenza is dramatically suppressed by early infection of chickens with reticuloendotheliosis virus. Avian Pathol. 2009, 38, 31–34. [Google Scholar] [CrossRef]
- Hegazy, A.M.; Abdallah, F.M.; Abd-El Samie, L.K.; Nazim, A.A. The relation between some immunosuppressive agents and widespread nature of highly pathogenic avian influenza (HPAI) post vaccination. Am. J. Sci. 2011, 7, 66–72. [Google Scholar]
- Tolba, M.K.; Eskarous, J.K. Response of some strains of Newcastle disease and fowl-plague viruses to two quinones. Arch. Mikrobiol. 1959, 34, 325–332. [Google Scholar]
- Moses, H.E.; Brandly, C.A.; Jones, E.E.; Jungherr, E.L. The Isolation and Identification of Fowl Plague Virus. Am. J. Vet. Res. 1948, 9, 314–328. [Google Scholar]
- Sugrue, R.J.; Tan, B.H.; Yeo, D.S.; Sutejo, R. Antiviral drugs for the control of pandemic influenza virus. Ann. Acad. Med. Singapore 2008, 37, 518–524. [Google Scholar]
- Kamps, B.S.; Hoffman, C. Drug profiles. In Influenza Report 2006; Kamps, B.S., Hoffman, C., Preiser, W., Eds.; Flying Publisher: Paris, France, 2006; pp. 188–221. [Google Scholar]
- Kato, N.; Eggers, H.J. Inhibition of uncoating of fowl plague virus by l-adamantanamine hydrochloride. Virology 1969, 37, 632–641. [Google Scholar] [CrossRef]
- Lang, G.; Narayan, O.; Rouse, B.T. Prevention of malignant avian influenza by 1-adamantanamine hydrochloride. Arch. Gesamte Virusforsch. 1970, 32, 171–184. [Google Scholar]
- Beard, C.W.; Brugh, M.; Webster, R.G. Emergence of amantadine-resistant H5N2 avian influenza virus during a simulated layer flock treatment program. Avian Dis. 1987, 31, 533–537. [Google Scholar] [CrossRef]
- Webster, R.G.; Kawaoka, Y.; Bean, W.J. Vaccination as a strategy to reduce the emergence of amantadine- and rimantadine-resistant strains of A/Chick/Pennsylvania/83 (H5N2) influenza virus. J. Antimicrob. Chemother. 1986, 18, 157–164. [Google Scholar]
- Bean, W.J.; Threlkeld, S.C.; Webster, R.G. Biologic potential of amantadine-resistant influenza-a virus in an avian model. J. Infect. Dis. 1989, 159, 1050–1056. [Google Scholar]
- Bean, W.J.; Webster, R.G. Biological properties of amantadine-resistant influenza-virus mutants. Antivir. Res. 1988, 9, 128–128. [Google Scholar]
- Scholtissek, C.; Faulkner, G.P. Amantadine-resistant and -sensitive influenza A strains and recombinants. J. Gen. Virol. 1979, 44, 807–815. [Google Scholar] [CrossRef]
- Bright, R.A.; Shay, D.K.; Shu, B.; Cox, N.J.; Klimov, A.I. Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States. JAMA 2006, 295, 891–894. [Google Scholar] [CrossRef]
- Bright, R.A.; Medina, M.J.; Xu, X.; Perez-Oronoz, G.; Wallis, T.R.; Davis, X.M.; Povinelli, L.; Cox, N.J.; Klimov, A.I. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: A cause for concern. Lancet 2005, 366, 1175–1181. [Google Scholar]
- Ilyushina, N.A.; Govorkova, E.A.; Webster, R.G. Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. Virology 2005, 341, 102–106. [Google Scholar]
- Cheung, C.L.; Rayner, J.M.; Smith, G.J.; Wang, P.; Naipospos, T.S.; Zhang, J.; Yuen, K.Y.; Webster, R.G.; Peiris, J.S.; Guan, Y.; et al. Distribution of amantadine-resistant H5N1 avian influenza variants in Asia. J. Infect. Dis. 2006, 193, 1626–1629. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Qiao, J.; Dong, C.; He, C.; Zhao, L.; Tian, Y. Amantadine-resistance among H5N1 avian influenza viruses isolated in Northern China. Antivir. Res. 2008, 77, 72–76. [Google Scholar]
- Lan, Y.; Zhang, Y.; Dong, L.; Wang, D.; Huang, W.; Xin, L.; Yang, L.; Zhao, X.; Li, Z.; Wang, W.; et al. A comprehensive surveillance of adamantane resistance among human influenza A virus isolated from mainland China between 1956 and 2009. Antivir. Ther. 2010, 15, 853–859. [Google Scholar] [CrossRef]
- Tosh, C.; Murugkar, H.V.; Nagarajan, S.; Tripathi, S.; Katare, M.; Jain, R.; Khandia, R.; Syed, Z.; Behera, P.; Patil, S.; et al. Emergence of amantadine-resistant avian influenza H5N1 virus in India. Virus Gene. 2011, 42, 10–15. [Google Scholar] [CrossRef]
- Hurt, A.C.; Selleck, P.; Komadina, N.; Shaw, R.; Brown, L.; Barr, I.G. Susceptibility of highly pathogenic A(H5N1) avian influenza viruses to the neuraminidase inhibitors and adamantanes. Antivir. Res. 2007, 73, 228–231. [Google Scholar]
- Cyranoski, D. China's chicken farmers under fire for antiviral abuse. Nature 2005, 435, 1009. [Google Scholar]
- Parry, J. Use of antiviral drug in poultry is blamed for drug resistant strains of avian flu. BMJ 2005, 331, 10. [Google Scholar] [CrossRef]
- Sipress, A. Bird flu drug rendered useless. The Washington Post 2005, A01. [Google Scholar]
- Huang, Y.; Hu, B.; Wen, X.; Cao, S.; Xu, D.; Zhang, X.; Khan, M.I. Evolution analysis of the matrix (M) protein genes of 17 H9N2 chicken influenza viruses isolated in northern China during 1998–2008. Virus Gene. 2009, 38, 398–403. [Google Scholar] [CrossRef]
- Wainright, P.O.; Perdue, M.L.; Brugh, M.; Beard, C.W. Amantadine resistance among hemagglutinin subtype 5 strains of avian influenza virus. Avian Dis. 1991, 35, 31–39. [Google Scholar]
- WHO. World Health Organisation: Use of antiviral drugs in poultry, a threat to their effectiveness for the treatment of human avian influenza. Available online: http://www.who.int/foodsafety/micro/avian_antiviral/en/print.html (accessed on 30 June 2012).
- CDC. Centers for Disease Control and Prevention: High levels of adamantane resistance among influenza A (H3N2) viruses and interim guidelines for use of antiviral agents—United States, 2005–06 influenza season. MMWR Morb. Mortal. Wkly. Rep. 2006, 55, 44–46.
- Webster, R.G.; Kawaoka, Y.; Bean, W.J.; Beard, C.W.; Brugh, M. Chemotherapy and vaccination: A possible strategy for the control of highly virulent influenza virus. J. Virol. 1985, 55, 173–176. [Google Scholar]
- Allen, U.D.; Aoki, F.Y.; Stiver, H.G. The use of antiviral drugs for influenza: Recommended guidelines for practitioners. Can. J. Infect. Dis. Med. Microbiol. 2006, 17, 273–284. [Google Scholar]
- McNicholl, I.R.; McNicholl, J.J. Neuraminidase inhibitors: Zanamivir and oseltamivir. Ann. Pharmacother. 2001, 35, 57–70. [Google Scholar]
- Dreitlein, W.B.; Maratos, J.; Brocavich, J. Zanamivir and oseltamivir: Two new options for the treatment and prevention of influenza. Clin. Therapeut. 2001, 23, 327–355. [Google Scholar] [CrossRef]
- Ward, P.; Small, I.; Smith, J.; Suter, P.; Dutkowski, R. Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. J. Antimicrob. Chemother. 2005, 55, i5–i21. [Google Scholar]
- Leneva, I.A.; Roberts, N.; Govorkova, E.A.; Goloubeva, O.G.; Webster, R.G. The neuraminidase inhibitor GS4104 (oseltamivir phosphate) is efficacious against A/Hong Kong/156/97 (H5N1) and A/Hong Kong/1074/99 (H9N2) influenza viruses. Antivir. Res. 2000, 48, 101–115. [Google Scholar]
- de Jong, M.D.; Tran, T.T.; Truong, H.K.; Vo, M.H.; Smith, G.J.; Nguyen, V.C.; Bach, V.C.; Phan, T.Q.; Do, Q.H.; Guan, Y.; et al. Oseltamivir resistance during treatment of influenza A (H5N1) infection. New Engl. J. Med. 2005, 353, 2667–2672. [Google Scholar] [CrossRef]
- McKimm-Breschkin, J.L.; Selleck, P.W.; Usman, T.B.; Johnson, M.A. Reduced sensitivity of influenza A (H5N1) to oseltamivir. Emerg. Infect. Dis. 2007, 13, 1354–1357. [Google Scholar]
- Hill, A.W.; Guralnick, R.P.; Wilson, M.J.; Habib, F.; Janies, D. Evolution of drug resistance in multiple distinct lineages of H5N1 avian influenza. Infect. Genet. Evol. 2009, 9, 169–178. [Google Scholar] [CrossRef]
- Earhart, K.C.; Elsayed, N.M.; Saad, M.D.; Gubareva, L.V.; Nayel, A.; Deyde, V.M.; Abdelsattar, A.; Abdelghani, A.S.; Boynton, B.R.; Mansour, M.M.; et al. Oseltamivir resistance mutation N294S in human influenza A(H5N1) virus in Egypt. J. Infect. Publ. Health 2009, 2, 74–80. [Google Scholar] [CrossRef]
- Smith, J.R. Oseltamivir in human avian influenza infection. J. Antimicrob. Chemother. 2010, 65, ii25–ii33. [Google Scholar]
- Kayali, G.; Webby, R.J.; Ducatez, M.F.; El Shesheny, R.A.; Kandeil, A.M.; Govorkova, E.A.; Mostafa, A.; Ali, M.A. The epidemiological and molecular aspects of influenza H5N1 viruses at the human-animal interface in Egypt. PLoS One 2011, 6, e17730. [Google Scholar]
- Meijer, A.; van der Goot, A.J.; Koch, G.; van Bovenc, M.; Kimman, T.G. Oseltamivir reduces transmission, morbidity, and mortality of highly pathogenic avian influenza in chickens. Int. Congr. 2004, 1263, 495–498. [Google Scholar] [CrossRef]
- Kaleta, E.F.; Blanco Pena, K.M.; Yilmaz, A.; Redmann, T.; Hofheinz, S. Avian influenza A viruses in birds of the order Psittaciformes: Reports on virus isolations, transmission experiments and vaccinations and initial studies on innocuity and efficacy of oseltamivir in ovo. DTW 2007, 114, 260–267. [Google Scholar]
- Lee, D.H.; Lee, Y.N.; Park, J.K.; Yuk, S.S.; Lee, J.W.; Kim, J.I.; Han, J.S.; Lee, J.B.; Park, S.Y.; Choi, I.S.; et al. Antiviral efficacy of oseltamivir against avian influenza virus in avian species. Avian Dis. 2011, 55, 677–679. [Google Scholar] [CrossRef]
- Yen, H.L.; Ilyushina, N.A.; Salomon, R.; Hoffmann, E.; Webster, R.G.; Govorkova, E.A. Neuraminidase inhibitor-resistant recombinant A/Vietnam/1203/04 (H5N1) influenza viruses retain their replication efficiency and pathogenicity in vitro and in vivo. J. Virol. 2007, 81, 12418–12426. [Google Scholar] [CrossRef]
- Orozovic, G.; Orozovic, K.; Lennerstrand, J.; Olsen, B. Detection of resistance mutations to antivirals oseltamivir and zanamivir in avian influenza A viruses isolated from wild birds. PLoS One 2011, 6, e16028. [Google Scholar]
- Moscona, A. Global transmission of oseltamivir-resistant influenza. New Engl. J. Med. 2009, 360, 953–956. [Google Scholar]
- McKimm-Breschkin, J.; Trivedi, T.; Hampson, A.; Hay, A.; Klimov, A.; Tashiro, M.; Hayden, F.; Zambon, M. Neuraminidase sequence analysis and susceptibilities of influenza virus clinical isolates to zanamivir and oseltamivir. Antimicrob. Agents Chemother. 2003, 47, 2264–2272. [Google Scholar] [CrossRef]
- Guralnik, M.; Rosenbloom, R.A.; Petteruti, M.P.; Lefante, C. Limitations of current prophylaxis against influenza virus infection. Am. J. Therapeut. 2007, 14, 449–454. [Google Scholar]
- Kitazato, K.; Wang, Y.; Kobayashi, N. Viral infectious disease and natural products with antiviral activity. Drug Discov. Ther. 2007, 1, 14–22. [Google Scholar]
- Wang, X.; Jia, W.; Zhao, A. Anti-influenza agents from plants and traditional Chinese medicine. Phytother. Res. 2006, 20, 335–341. [Google Scholar] [CrossRef]
- Guo, R.; Pittler, M.H.; Ernst, E. Complementary medicine for treating or preventing influenza or influenza-like illness. Am. J. Med. 2007, 120, 923–929. [Google Scholar] [CrossRef]
- Chen, W.; Lim, C.E.; Kang, H.J.; Liu, J. Chinese herbal medicines for the treatment of type A H1N1 influenza: A systematic review of randomized controlled trials. PLoS One 2011, 6, e28093. [Google Scholar]
- Nakayama, M.; Suzuki, K.; Toda, M.; Okubo, S.; Hara, Y.; Shimamura, T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antivir. Res. 1993, 21, 289–299. [Google Scholar]
- Kurokawa, M.; Kumeda, C.A.; Yamamura, J.; Kamiyama, T.; Shiraki, K. Antipyretic activity of cinnamyl derivatives and related compounds in influenza virus-infected mice. Eur. J. Pharmacol. 1998, 348, 45–51. [Google Scholar] [CrossRef]
- Mantani, N.; Andoh, T.; Kawamata, H.; Terasawa, K.; Ochiai, H. Inhibitory effect of Ephedrae herba, an oriental traditional medicine, on the growth of influenza A/PR/8 virus in MDCK cells. Antivir. Res. 1999, 44, 193–200. [Google Scholar]
- Mantani, N.; Imanishi, N.; Kawamata, H.; Terasawa, K.; Ochiai, H. Inhibitory effect of (+)-catechin on the growth of influenza A/PR/8 virus in MDCK cells. Planta Med. 2001, 67, 240–243. [Google Scholar]
- Imanishi, N.; Tuji, Y.; Katada, Y.; Maruhashi, M.; Konosu, S.; Mantani, N.; Terasawa, K.; Ochiai, H. Additional inhibitory effect of tea extract on the growth of influenza A and B viruses in MDCK cells. Microbiol. Immunol. 2002, 46, 491–494. [Google Scholar]
- Jung, K.; Ha, Y.; Ha, S.K.; Han, D.U.; Kim, D.W.; Moon, W.K.; Chae, C. Antiviral effect of Saccharomyces cerevisiae beta-glucan to swine influenza virus by increased production of interferon-gamma and nitric oxide. J. Vet. Med. B 2004, 51, 72–76. [Google Scholar]
- Mak, N.K.; Leung, C.Y.; Wei, X.Y.; Shen, X.L.; Wong, R.N.; Leung, K.N.; Fung, M.C. Inhibition of RANTES expression by indirubin in influenza virus-infected human bronchial epithelial cells. Biochem. Pharmacol. 2004, 67, 167–174. [Google Scholar]
- Kubo, T.; Nishimura, H. Antipyretic effect of Mao-to, a Japanese herbal medicine, for treatment of type A influenza infection in children. Phytomedicine 2007, 14, 96–101. [Google Scholar] [CrossRef]
- Miki, K.; Nagai, T.; Suzuki, K.; Tsujimura, R.; Koyama, K.; Kinoshita, K.; Furuhata, K.; Yamada, H.; Takahashi, K. Anti-influenza virus activity of biflavonoids. Bioorg. Med. Chem. Lett. 2007, 17, 772–775. [Google Scholar]
- Nagai, T.; Miyaichi, Y.; Tomimori, T.; Suzuki, Y.; Yamada, H. In vivo anti-influenza virus activity of plant flavonoids possessing inhibitory activity for influenza virus sialidase. Antivir. Res. 1992, 19, 207–217. [Google Scholar] [CrossRef]
- Kernan, M.R.; Sendl, A.; Chen, J.L.; Jolad, S.D.; Blanc, P.; Murphy, J.T.; Stoddart, C.A.; Nanakorn, W.; Balick, M.J.; Rozhon, E.J. Two new lignans with activity against influenza virus from the medicinal plant Rhinacanthus nasutus. J. Nat. Prod. 1997, 60, 635–637. [Google Scholar]
- Quan, F.S.; Compans, R.W.; Cho, Y.K.; Kang, S.M. Ginseng and Salviae herbs play a role as immune activators and modulate immune responses during influenza virus infection. Vaccine 2007, 25, 272–282. [Google Scholar] [CrossRef]
- Deryabin, P.G.; Lvov, D.K.; Botikov, A.G.; Ivanov, V.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Effects of a nutrient mixture on infectious properties of the highly pathogenic strain of avian influenza virus A/H5N1. Biofactors 2008, 33, 85–97. [Google Scholar]
- Geng, L.; Shaozhong, P.; Shaohua, Y.; Ziren, S.; Xiaoping, L. Experimental study on the antivirus effect of Zhongsheng pills on influenza virus H5N1. World Sci. Tech. 2009, 11, 365–370. [Google Scholar]
- Pleschka, S.; Stein, M.; Schoop, R.; Hudson, J.B. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol. J. 2009, 6, 197. [Google Scholar] [CrossRef]
- Shin, W.J.; Lee, K.H.; Park, M.H.; Seong, B.L. Broad-spectrum antiviral effect of Agrimonia pilosa extract on influenza viruses. Microbiol. Immunol. 2010, 54, 11–19. [Google Scholar]
- Sundararajan, A.; Ganapathy, R.; Huan, L.; Dunlap, J.R.; Webby, R.J.; Kotwal, G.J.; Sangster, M.Y. Influenza virus variation in susceptibility to inactivation by pomegranate polyphenols is determined by envelope glycoproteins. Antivir. Res. 2010, 88, 1–9. [Google Scholar] [CrossRef]
- He, W.; Han, H.; Wang, W.; Gao, B. Anti-influenza virus effect of aqueous extracts from dandelion. Virol. J. 2011, 8, 538. [Google Scholar]
- Garozzo, A.; Timpanaro, R.; Stivala, A.; Bisignano, G.; Castro, A. Activity of Melaleuca alternifolia (tea tree) oil on Influenza virus A/PR/8: Study on the mechanism of action. Antivir. Res. 2011, 89, 83–88. [Google Scholar]
- Glatthaar-Saalmuller, B.; Rauchhaus, U.; Rode, S.; Haunschild, J.; Saalmuller, A. Antiviral activity in vitro of two preparations of the herbal medicinal product Sinupret(R) against viruses causing respiratory infections. Phytomedicine 2011, 19, 1–7. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Y.X.; Liu, A.L.; Wang, H.D.; Wang, Y.L.; Du, G.H. Antioxidant, anti-inflammatory and anti-influenza properties of components from Chaenomeles speciosa. Molecules 2010, 15, 8507–8517. [Google Scholar]
- Kwon, H.J.; Kim, H.H.; Yoon, S.Y.; Ryu, Y.B.; Chang, J.S.; Cho, K.O.; Rho, M.C.; Park, S.J.; Lee, W.S. In vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination. Virol. J. 2010, 7, 307. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.Q.; Kim, Y.J.; Wu, J.; Wang, Q.; Hao, Y. In vivo and in vitro antiviral effects of berberine on influenza virus. Chin. J. Integr. Med. 2011, 17, 444–452. [Google Scholar] [CrossRef]
- Shaukat, T.M.; Ashraf, M.; Omer, M.O.; Rasheed, M.A.; Muhammad, K.; Shaukat, T.M.; Younus, M.; Shahzad, M.K. Comparative efficacy of various antiviral agents against avian influenza virus (Type H7N3/Pakistan/2003). Pakistan J. Zool. 2011, 43, 849–854. [Google Scholar]
- Mehrbod, P.; Ideris, A.; Omar, A.R.; Hair-Bejo, M.; Tan, S.W.; Kheiri, M.T.; Tabatabaian, M. Attenuation of influenza virus infectivity with herbal-marine compound (HESA-A): An in vitro study in MDCK cells. Virol. J. 2012, 9, 44. [Google Scholar] [CrossRef]
- Sriwilaijaroen, N.; Fukumoto, S.; Kumagai, K.; Hiramatsu, H.; Odagiri, T.; Tashiro, M.; Suzuki, Y. Antiviral effects of Psidium guajava Linn. (guava) tea on the growth of clinical isolated H1N1 viruses: Its role in viral hemagglutination and neuraminidase inhibition. Antivir. Res. 2012, 94, 139–146. [Google Scholar]
- Zu, M.; Yang, F.; Zhou, W.; Liu, A.; Du, G.; Zheng, L. In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives. Antivir. Res. 2012, 94, 217–224. [Google Scholar]
- Garozzo, A.; Timpanaro, R.; Bisignano, B.; Furneri, P.M.; Bisignano, G.; Castro, A. In vitro antiviral activity of Melaleuca alternifolia essential oil. Lett. Appl. Microbiol. 2009, 49, 806–808. [Google Scholar] [CrossRef]
- Hudson, J.B. The use of herbal extracts in the control of influenza. J. Med. Plants Res. 2009, 3, 1189–1195. [Google Scholar]
- Krawitz, C.; Mraheil, M.A.; Stein, M.; Imirzalioglu, C.; Domann, E.; Pleschka, S.; Hain, T. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Compl. Alternative Med. 2011, 11, 16. [Google Scholar] [CrossRef]
- Sood, R.; Swarup, D.; Bhatia, S.; Kulkarni, D.D.; Dey, S.; Saini, M.; Dubey, S.C. Antiviral activity of crude extracts of Eugenia jambolana Lam. against highly pathogenic avian influenza (H5N1) virus. Indian J. Exp. Biol. 2012, 50, 179–186. [Google Scholar]
- Gangopadhyay, A.; Ganguli, S.; Datta, A. Inhibiting H5N1 hemagglutinin with samll molecule ligands. Int. J. Bioinformatics Res. 2011, 3, 185–189. [Google Scholar]
- Shang, R.-F.; Liang, J.-P.; Na, Z.-Y.; Yang, H.-J.; Lu, Y.; Hua, L.-Y.; Guo, W.-Z.; Cui, Y.; Wang, L. In vivo inhibition of NAS preparation on H9N2 subtype AIV. Virol. Sin. 2010, 25, 145–150. [Google Scholar] [CrossRef]
- Barbour, E.K.; Saadé, M.F.; Abdel Nour, A.M.; Kayali, G.; Kidess, S.; Bou Ghannam, R.; Harakeh, S.; Shaib, H. Evaluation of essential oils in the treatment of broilers co-infected with multiple respiratory etiologic agents. Int. J. Appl. Res. Vet. Med. 2011, 9, 317–323. [Google Scholar]
- Barbour, E.K.; El-Hakim, R.G.; Kaadi, M.S.; Shaib, H.A.; Gerges, D.D.; Nehme, P.A. Evaluation of the histopathology of the respiratory system in essential oil-treated broilers following a challenge with Mycoplasma gallisepticum and/or H9N2 influenza virus. Int. J. Appl. Res. Vet. Med. 2006, 4, 293–300. [Google Scholar]
- Lee, H.J.; Lee, Y.N.; Youn, H.N.; Lee, D.H.; Kwak, J.H.; Seong, B.L.; Lee, J.B.; Park, S.Y.; Choi, I.S.; Song, C.S. Anti-influenza virus activity of green tea by-products in vitro and efficacy against influenza virus infection in chickens. Poultry Sci. 2012, 91, 66–73. [Google Scholar] [CrossRef]
- Song, J.M.; Lee, K.H.; Seong, B.L. Antiviral effect of catechins in green tea on influenza virus. Antivir. Res. 2005, 68, 66–74. [Google Scholar]
- Liu, Z.; Guo, Z.; Wang, G.; Zhang, D.; He, H.; Li, G.; Liu, Y.; Higgins, D.; Walsh, A.; Shanahan-Prendergast, L.; et al. Evaluation of the efficacy and safety of a statin/caffeine combination against H5N1, H3N2 and H1N1 virus infection in BALB/c mice. Eur. J. Pharmaceut. Sci. 2009, 38, 215–223. [Google Scholar] [CrossRef]
- Zhai, L.; Li, Y.; Wang, W.; Hu, S. Enhancement of humoral immune responses to inactivated Newcastle disease and avian influenza vaccines by oral administration of ginseng stem-and-leaf saponins in chickens. Poultry Sci. 2011, 90, 1955–1959. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, Y.; Zheng, H.; Zheng, Y.; Xu, H.; Lu, H. Immune regulation of avian influenza vaccine in hens using Hypericum perforatum L. methanol extraction. Plant Omics 2012, 5, 40–45. [Google Scholar]
- Landy, N.; Ghalamkari, G.H.; Toghyani, M. Evaluation of St John's Wort (Hypericum perforatum L.) as an antibiotic growth promoter substitution on performance, carcass characteristics, some of the immune responses, and serum biochemical parameters of broiler chicks. J. Med. Plants Res. 2012, 6, 510–515. [Google Scholar]
- Rajput, Z.I.; Xiao, C.W.; Hu, S.H.; Arijo, A.G.; Soomro, N.M. Improvement of the efficacy of influenza vaccination (H5N1) in chicken by using extract of Cochinchina momordica seed (ECMS). J. Zhejiang Univ. Sci. B. 2007, 8, 331–337. [Google Scholar]
- Liu, F.X.; Sun, S.; Cui, Z.Z. Analysis of immunological enhancement of immunosuppressed chickens by Chinese herbal extracts. J. Ethnopharmacol. 2010, 127, 251–256. [Google Scholar] [CrossRef]
- Jafari, R.A.; Ghorbanpoor, M.; Hoshmand Diarjan, S. Study on immunomodulatory activity of dietary garlic in chickens vaccinated against avian influenza virus (subtype H9N2). Int. J. Poultry Sci. 2009, 8, 401–403. [Google Scholar] [CrossRef]
- Kurokawa, M.; Watanabe, W.; Shimizu, T.; Sawamura, R.; Shiraki, K. Modulation of cytokine production by 7-hydroxycoumarin in vitro and its efficacy against influenza infection in mice. Antivir. Res. 2010, 85, 373–380. [Google Scholar]
- Fusco, D.; Liu, X.Y.; Savage, C.; Taur, Y.; Xiao, W.L.; Kennelly, E.; Yuan, J.D.; Cassileth, B.; Salvatore, M.; Papanicolaou, G.A. Echinacea purpurea aerial extract alters course of influenza infection in mice. Vaccine 2010, 28, 3956–3962. [Google Scholar]
- Hori, T.; Kiyoshima, J.; Shida, K.; Yasui, H. Effect of intranasal administration of Lactobacillus casei Shirota on influenza virus infection of upper respiratory tract in mice. Clin. Diagn. Lab. Immunol. 2001, 8, 593–597. [Google Scholar]
- Yasui, H.; Kiyoshima, J.; Hori, T. Reduction of influenza virus titer and protection against influenza virus infection in infant mice fed Lactobacillus casei Shirota. Clin. Diagn. Lab. Immunol. 2004, 11, 675–679. [Google Scholar]
- Olivares, M.; Diaz-Ropero, M.P.; Sierra, S.; Lara-Villoslada, F.; Fonolla, J.; Navas, M.; Rodriguez, J.M.; Xaus, J. Oral intake of Lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. Nutrition 2007, 23, 254–260. [Google Scholar] [CrossRef]
- Boge, T.; Remigy, M.; Vaudaine, S.; Tanguy, J.; Bourdet-Sicard, R.; van der Werf, S. A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomised controlled trials. Vaccine 2009, 27, 5677–5684. [Google Scholar]
- Harata, G.; He, F.; Hiruta, N.; Kawase, M.; Kubota, A.; Hiramatsu, M.; Yausi, H. Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Lett. Appl. Microbiol. 2010, 50, 597–602. [Google Scholar] [CrossRef]
- Davidson, L.E.; Fiorino, A.M.; Snydman, D.R.; Hibberd, P.L. Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: A randomized double-blind placebo-controlled trial. Eur. J. Clin. Nutr. 2011, 65, 501–507. [Google Scholar]
- Rizzardini, G.; Eskesen, D.; Calder, P.C.; Capetti, A.; Jespersen, L.; Clerici, M. Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12(R) and Lactobacillus paracasei ssp. paracasei, L. casei 431(R) in an influenza vaccination model: A randomised, double-blind, placebo-controlled study. Br. J. Nutr. 2012, 107, 876–884. [Google Scholar] [CrossRef]
- Iwabuchi, N.; Xiao, J.Z.; Yaeshima, T.; Iwatsuki, K. Oral administration of Bifidobacterium longum ameliorates influenza virus infection in mice. Biol. Pharmaceut. Bull. 2011, 34, 1352–1355. [Google Scholar]
- Kawase, M.; He, F.; Kubota, A.; Yoda, K.; Miyazawa, K.; Hiramatsu, M. Heat-killed Lactobacillus gasseri TMC0356 protects mice against influenza virus infection by stimulating gut and respiratory immune responses. FEMS Immunol. Med. Microbiol. 2012, 64, 280–288. [Google Scholar] [CrossRef]
- Takeda, S.; Takeshita, M.; Kikuchi, Y.; Dashnyam, B.; Kawahara, S.; Yoshida, H.; Watanabe, W.; Muguruma, M.; Kurokawa, M. Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: Alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. Int. Immunopharm. 2011, 11, 1976–1983. [Google Scholar]
- Patterson, J.A.; Burkholder, K.M. Application of prebiotics and probiotics in poultry production. Poultry Sci. 2003, 82, 627–631. [Google Scholar]
- Nava, G.M.; Bielke, L.R.; Callaway, T.R.; Castaneda, M.P. Probiotic alternatives to reduce gastrointestinal infections: The poultry experience. Anim. Health Res. Rev. 2005, 6, 105–118. [Google Scholar] [CrossRef]
- Lutful Kabir, S.M. The role of probiotics in the poultry industry. Int. J. Mol. Sci. 2009, 10, 3531–3546. [Google Scholar]
- Chon, H.; Choi, B.; Jeong, G.; Mo, I. Evaluation system for an experimental study of low-pathogenic avian influenza virus (H9N2) infection in specific pathogen free chickens using lactic acid bacteria, Lactobacillus plantarum KFCC11389P. Avian Pathol. 2008, 37, 593–597. [Google Scholar] [CrossRef]
- Seo, B.J.; Rather, I.A.; Kumar, V.J.; Choi, U.H.; Moon, M.R.; Lim, J.H.; Park, Y.H. Evaluation of Leuconostoc mesenteroides YML003 as a probiotic against low-pathogenic avian influenza (H9N2) virus in chickens. J. Appl. Microbiol. 2012, 113, 163–171. [Google Scholar]
- Ghafoor, A.; Naseem, S.; Younus, M.; Nazir, J. Immunomodulatory effects of multistrain probiotics (Protexin™) on broiler chicken vaccinated against avian influenza virus (H9). Int. J. Poultry Sci. 2005, 4, 777–780. [Google Scholar] [CrossRef]
- Lei, H.; Xu, Y.; Chen, J.; Wei, X.; Lam, D.M. Immunoprotection against influenza H5N1 virus by oral administration of enteric-coated recombinant Lactococcus lactis mini-capsules. Virology 2010, 407, 319–324. [Google Scholar]
- Wang, Z.; Yu, Q.; Gao, J.; Yang, Q. Mucosal and systemic immune responses induced by recombinant Lactobacillus spp. expressing the hemagglutinin of the avian influenza virus H5N1. Clin. Vaccine Immunol. 2012, 19, 174–179. [Google Scholar] [CrossRef]
- Novak, R.; Ester, K.; Savic, V.; Sekellick, M.J.; Marcus, P.I.; Lowenthal, J.W.; Vainio, O.; Ragland, W.L. Immune status assessment by abundance of IFN-alpha and IFN-gamma mRNA in chicken blood. J. Interferon Cytokine Res. 2001, 21, 643–651. [Google Scholar]
- Sekellick, M.J.; Ferrandino, A.F.; Hopkins, D.A.; Marcus, P.I. Chicken interferon gene: Cloning, expression, and analysis. J. Interferon Res. 1994, 14, 71–79. [Google Scholar] [CrossRef]
- Lukacsi, K.; Molnar, M.; Siroki, O.; Rosztoczy, I. Combined effects of amantadine and interferon on influenza virus replication in chicken and human embryo trachea organ culture. Acta Microbiol. Hung. 1985, 32, 357–362. [Google Scholar]
- Marcus, P.I.; Girshick, T.; van der Heide, L.; Sekellick, M.J. Super-sentinel chickens and detection of low-pathogenicity influenza virus. Emerg. Infect. Dis. 2007, 13, 1608–1610. [Google Scholar] [CrossRef]
- Song, L.; Zhao, D.G.; Wu, Y.J.; Li, Y. Transient expression of chicken alpha interferon gene in lettuce. J. Zhejiang Univ. Sci. B. 2008, 9, 351–355. [Google Scholar]
- Meng, S.; Yang, L.; Xu, C.; Qin, Z.; Xu, H.; Wang, Y.; Sun, L.; Liu, W. Recombinant chicken interferon-alpha inhibits H9N2 avian influenza virus replication in vivo by oral administration. J. Interferon Cytokine Res. 2011, 31, 533–538. [Google Scholar] [CrossRef]
- Wei, Q.; Peng, G.Q.; Jin, M.L.; Zhu, Y.D.; Zhou, H.B.; Guo, H.Y.; Chen, H.C. Cloning, prokaryotic expression of chicken interferon-alpha gene and study on antiviral effect of recombinant chicken interferon-alpha. Chin. J. Biotechnol. 2006, 22, 737–743. [Google Scholar]
- Reemers, S.S.; van Haarlem, D.A.; Groot Koerkamp, M.J.; Vervelde, L. Differential gene-expression and host-response profiles against avian influenza virus within the chicken lung due to anatomy and airflow. J. Gen. Virol. 2009, 90, 2134–2146. [Google Scholar] [CrossRef]
- Sekellick, M.J.; Carra, S.A.; Bowman, A.; Hopkins, D.A.; Marcus, P.I. Transient resistance of influenza virus to interferon action attributed to random multiple packaging and activity of NS genes. J. Interferon Cytokine Res. 2000, 20, 963–970. [Google Scholar]
- Xia, C.; Liu, J.; Wu, Z.G.; Lin, C.Y.; Wang, M. The interferon-alpha genes from three chicken lines and its effects on H9N2 influenza viruses. Anim. Biotechnol. 2004, 15, 77–88. [Google Scholar] [CrossRef]
- Rahman, M.M.; Uyangaa, E.; Han, Y.W.; Kim, S.B.; Kim, J.H.; Choi, J.Y.; Eo, S.K. Oral co-administration of live attenuated Salmonella enterica serovar Typhimurium expressing chicken interferon-alpha and interleukin-18 enhances the alleviation of clinical signs caused by respiratory infection with avian influenza virus H9N2. Vet. Microbiol. 2012, 157, 448–455. [Google Scholar]
- Rahman, M.M.; Uyangaa, E.; Han, Y.W.; Kim, S.B.; Kim, J.H.; Choi, J.Y.; Yoo, D.J.; Hong, J.T.; Han, S.B.; Kim, B.; et al. Oral administration of live attenuated Salmonella enterica serovar Typhimurium expressing chicken interferon-alpha alleviates clinical signs caused by respiratory infection with avian influenza virus H9N2. Vet. Microbiol. 2011, 154, 140–151. [Google Scholar] [CrossRef]
- Chen, H.Y.; Shang, Y.H.; Yao, H.X.; Cui, B.A.; Zhang, H.Y.; Wang, Z.X.; Wang, Y.D.; Chao, A.J.; Duan, T.Y. Immune responses of chickens inoculated with a recombinant fowlpox vaccine coexpressing HA of H9N2 avain influenza virus and chicken IL-18. Antivir. Res. 2011, 91, 50–56. [Google Scholar]
- Mingxiao, M.; Ningyi, J.; Zhenguo, W.; Ruilin, W.; Dongliang, F.; Min, Z.; Gefen, Y.; Chang, L.; Leili, J.; Kuoshi, J.; et al. Construction and immunogenicity of recombinant fowlpox vaccines coexpressing HA of AIV H5N1 and chicken IL18. Vaccine 2006, 24, 4304–4311. [Google Scholar]
- Chen, H.Y.; Cui, B.A.; Xia, P.A.; Li, X.S.; Hu, G.Z.; Yang, M.F.; Zhang, H.Y.; Wang, X.B.; Cao, S.F.; Zhang, L.X.; et al. Cloning, in vitro expression and bioactivity of duck interleukin-18. Vet. Immunol. Immunopathol. 2008, 123, 205–214. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Wang, J.Y.; Chen, J.G.; Wu, J.X.; Gong, H.; Teng, Q.Y.; Guo, J.Q.; Shen, H.G. Cloning, in vitro expression and bioactivity of duck interleukin-2. Mol. Immunol. 2005, 42, 589–598. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Chen, J.G.; Wang, J.Y.; Wu, J.X.; Gong, H. cDNA cloning and functional analysis of goose interleukin-2. Cytokine 2005, 30, 328–338. [Google Scholar]
- Wong, J.P.; Christopher, M.E.; Viswanathan, S.; Dai, X.; Salazar, A.M.; Sun, L.Q.; Wang, M. Antiviral role of toll-like receptor-3 agonists against seasonal and avian influenza viruses. Curr. Pharmaceut. Des. 2009, 15, 1269–1274. [Google Scholar]
- Wong, J.P.; Christopher, M.E.; Viswanathan, S.; Karpoff, N.; Dai, X.; Das, D.; Sun, L.Q.; Wang, M.; Salazar, A.M. Activation of toll-like receptor signaling pathway for protection against influenza virus infection. Vaccine 2009, 27, 3481–3483. [Google Scholar]
- Stewart, C.R.; Bagnaud-Baule, A.; Karpala, A.J.; Lowther, S.; Mohr, P.G.; Wise, T.G.; Lowenthal, J.W.; Bean, A.G. Toll-like receptor 7 ligands inhibit influenza A infection in chickens. J. Interferon Cytokine Res. 2012, 32, 46–51. [Google Scholar]
- Jenkins, K.A.; Lowenthal, J.W.; Kimpton, W.; Bean, A.G. The in vitro and in ovo responses of chickens to TLR9 subfamily ligands. Dev. Comp. Immunol. 2009, 33, 660–667. [Google Scholar] [CrossRef]
- Stram, Y.; Kuzntzova, L. Inhibition of viruses by RNA interference. Virus Gene. 2006, 32, 299–306. [Google Scholar]
- Ge, Q.; Filip, L.; Bai, A.; Nguyen, T.; Eisen, H.N.; Chen, J. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 8676–8681. [Google Scholar]
- Ge, Q.; McManus, M.T.; Nguyen, T.; Shen, C.H.; Sharp, P.A.; Eisen, H.N.; Chen, J. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 2718–2723. [Google Scholar]
- Sui, H.Y.; Zhao, G.Y.; Huang, J.D.; Jin, D.Y.; Yuen, K.Y.; Zheng, B.J. Small interfering RNA targeting m2 gene induces effective and long term inhibition of influenza A virus replication. PLoS One 2009, 4, e5671. [Google Scholar]
- Zhou, K.; He, H.; Wu, Y.; Duan, M. RNA interference of avian influenza virus H5N1 by inhibiting viral mRNA with siRNA expression plasmids. J. Biotechnol. 2008, 135, 140–144. [Google Scholar]
- Hui, E.K.; Yap, E.M.; An, D.S.; Chen, I.S.; Nayak, D.P. Inhibition of influenza virus matrix (M1) protein expression and virus replication by U6 promoter-driven and lentivirus-mediated delivery of siRNA. J. Gen. Virol. 2004, 85, 1877–1884. [Google Scholar]
- Tompkins, S.M.; Lo, C.Y.; Tumpey, T.M.; Epstein, S.L. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 8682–8686. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, C.Y.; Yang, S.T.; Qin, C.; Hu, J.L.; Xia, X.Z. Inhibition of highly pathogenic avian influenza virus H5N1 replication by the small interfering RNA targeting polymerase A gene. Biochem. Biophys. Res. Comm. 2009, 390, 421–426. [Google Scholar]
- Zhou, H.; Jin, M.; Yu, Z.; Xu, X.; Peng, Y.; Wu, H.; Liu, J.; Liu, H.; Cao, S.; Chen, H. Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice. Antivir. Res. 2007, 76, 186–193. [Google Scholar]
- Li, Y.C.; Kong, L.H.; Cheng, B.Z.; Li, K.S. Construction of influenza virus siRNA expression vectors and their inhibitory effects on multiplication of influenza virus. Avian Dis. 2005, 49, 562–573. [Google Scholar] [CrossRef]
- Abrahamyan, A.; Nagy, E.; Golovan, S.P. Human H1 promoter expressed short hairpin RNAs (shRNAs) suppress avian influenza virus replication in chicken CH-SAH and canine MDCK cells. Antivir. Res. 2009, 84, 159–167. [Google Scholar]
- Bennink, J.R.; Palmore, T.N. The promise of siRNAs for the treatment of influenza. Trends Mol. Med. 2004, 10, 571–574. [Google Scholar]
- Suzuki, H.; Saitoh, H.; Suzuki, T.; Takaku, H. Inhibition of influenza virus by baculovirus-mediated shRNA. Nucleic Acids Symp. Ser. (Oxf) 2009, 53, 287–288. [Google Scholar] [CrossRef]
- Ge, Q.; Eisen, H.N.; Chen, J. Use of siRNAs to prevent and treat influenza virus infection. Virus Res. 2004, 102, 37–42. [Google Scholar]
- McSwiggen, J.A.; Seth, S. A potential treatment for pandemic influenza using siRNAs targeting conserved regions of influenza A. Expet Opin. Biol. Ther. 2008, 8, 299–313. [Google Scholar] [CrossRef]
- Elbashir, S.M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411, 494–498. [Google Scholar] [CrossRef]
- Wadhwa, R.; Kaul, S.C.; Miyagishi, M.; Taira, K. Know-how of RNA interference and its applications in research and therapy. Mutat. Res. 2004, 567, 71–84. [Google Scholar]
- Aigner, A. Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct application of siRNAs. J. Biotechnol. 2006, 124, 12–25. [Google Scholar] [CrossRef]
- Morris, K.V.; Rossi, J.J. Lentivirus-mediated RNA interference therapy for human immunodeficiency virus type 1 infection. Hum. Gene Ther. 2006, 17, 479–486. [Google Scholar]
- Thomas, M.; Ge, Q.; Lu, J.J.; Klibanov, A.M.; Chen, J. Polycation-mediated delivery of siRNAs for prophylaxis and treatment of influenza virus infection. Expet Opin. Biol. Ther. 2005, 5, 495–505. [Google Scholar] [CrossRef]
- O'Neill, G. Australia tackles bird flu using RNAi. Nat. Biotechnol. 2007, 25, 605–606. [Google Scholar]
- Horby, P.; Nguyen, N.Y.; Dunstan, S.J.; Baillie, J.K. The role of host genetics in susceptibility to influenza: A systematic review. PLoS One 2012, 7, e33180. [Google Scholar]
- Zekarias, B.; Ter Huurne, A.A.; Landman, W.J.; Rebel, J.M.; Pol, J.M.; Gruys, E. Immunological basis of differences in disease resistance in the chicken. Vet. Res. 2002, 33, 109–125. [Google Scholar]
- Sironi, L.; Williams, J.L.; Moreno-Martin, A.M.; Ramelli, P.; Stella, A.; Jianlin, H.; Weigend, S.; Lombardi, G.; Cordioli, P.; Mariani, P. Susceptibility of different chicken lines to H7N1 highly pathogenic avian influenza virus and the role of Mx gene polymorphism coding amino acid position 631. Virology 2008, 380, 152–156. [Google Scholar] [CrossRef]
- Swayne, D.E.; Radin, M.J.; Hoepf, T.M.; Slemons, R.D. Acute renal failure as the cause of death in chickens following intravenous inoculation with avian influenza virus A/chicken/Alabama/7395/75 (H4N8). Avian Dis. 1994, 38, 151–157. [Google Scholar]
- Thomas, C.; Manin, T.B.; Andriyasov, A.V.; Swayne, D.E. Limited susceptibility and lack of systemic infection by an H3N2 swine influenza virus in intranasally inoculated chickens. Avian Dis. 2008, 52, 498–501. [Google Scholar] [CrossRef]
- Gharaibeh, S. Pathogenicity of an avian influenza virus serotype H9N2 in chickens. Avian Dis. 2008, 52, 106–110. [Google Scholar]
- Keawcharoen, J.; van Riel, D.; van Amerongen, G.; Bestebroer, T.; Beyer, W.E.; van Lavieren, R.; Osterhaus, A.D.; Fouchier, R.A.; Kuiken, T. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 2008, 14, 600–607. [Google Scholar]
- Munster, V.J.; Baas, C.; Lexmond, P.; Waldenstrom, J.; Wallensten, A.; Fransson, T.; Rimmelzwaan, G.F.; Beyer, W.E.; Schutten, M.; Olsen, B.; et al. Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog. 2007, 3, e61. [Google Scholar] [CrossRef]
- Brown, J.D.; Stallknecht, D.E.; Beck, J.R.; Suarez, D.L.; Swayne, D.E. Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses. Emerg. Infect. Dis. 2006, 12, 1663–1670. [Google Scholar]
- Ruff, M. Interferon-mediated development of influenza virus resistance in hybrids between Mx gene-bearing and control mouse embryo fibroblasts. J. Gen. Virol. 1983, 64, 1291–1300. [Google Scholar] [CrossRef]
- Staeheli, P.; Haller, O.; Boll, W.; Lindenmann, J.; Weissmann, C. Mx protein: Constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell 1986, 44, 147–158. [Google Scholar]
- Chang, K.C.; Goldspink, G.; Lida, J. Studies in the in vivo expression of the influenza resistance gene Mx by in-situ hybridisation. Arch. Virol. 1990, 110, 151–164. [Google Scholar] [CrossRef]
- Meier, E.; Kunz, G.; Haller, O.; Arnheiter, H. Activity of rat Mx proteins against a rhabdovirus. J. Virol. 1990, 64, 6263–6269. [Google Scholar]
- Salomon, R.; Staeheli, P.; Kochs, G.; Yen, H.L.; Franks, J.; Rehg, J.E.; Webster, R.G.; Hoffmann, E. Mx1 gene protects mice against the highly lethal human H5N1 influenza virus. Cell Cycle 2007, 6, 2417–2421. [Google Scholar] [CrossRef]
- Haller, O.; Staeheli, P.; Kochs, G. Protective role of interferon-induced Mx GTPases against influenza viruses. Rev. Sci. Tech. 2009, 28, 219–231. [Google Scholar]
- Pavlovic, J.; Zurcher, T.; Haller, O.; Staeheli, P. Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein. J. Virol. 1990, 64, 3370–3375. [Google Scholar]
- Ko, J.H.; Jin, H.K.; Asano, A.; Takada, A.; Ninomiya, A.; Kida, H.; Hokiyama, H.; Ohara, M.; Tsuzuki, M.; Nishibori, M.; et al. Polymorphisms and the differential antiviral activity of the chicken Mx gene. Genome Res. 2002, 12, 595–601. [Google Scholar]
- Li, X.Y.; Qu, L.J.; Yao, J.F.; Yang, N. Skewed allele frequencies of an Mx gene mutation with potential resistance to avian influenza virus in different chicken populations. Poultry Sci. 2006, 85, 1327–1329. [Google Scholar]
- Li, X.Y.; Qu, L.J.; Hou, Z.C.; Yao, J.F.; Xu, G.Y.; Yang, N. Genomic structure and diversity of the chicken Mx gene. Poultry Sci. 2007, 86, 786–789. [Google Scholar]
- Watanabe, T. Polymorphisms of the chicken antiviral MX gene. Cytogenet. Genome Res. 2007, 117, 370–375. [Google Scholar]
- Sartika, T.; Sulandari, S.; Zein, M.S. Selection of Mx gene genotype as genetic marker for Avian Influenza resistance in Indonesian native chicken. BMC Proc. 2011, 5, S37. [Google Scholar]
- Dillon, D.; Runstadler, J. Mx gene diversity and influenza association among five wild dabbling duck species (Anas spp.) in Alaska. Infect. Genet. Evol. 2010, 10, 1085–1093. [Google Scholar] [CrossRef]
- Berlin, S.; Qu, L.; Li, X.; Yang, N.; Ellegren, H. Positive diversifying selection in avian Mx genes. Immunogenetics 2008, 60, 689–697. [Google Scholar]
- Yin, C.G.; Zhang, C.S.; Zhang, A.M.; Qin, H.W.; Wang, X.Q.; Du, L.X.; Zhao, G.P. Expression analyses and antiviral properties of the Beijing-You and White Leghorn myxovirus resistance gene with different amino acids at position 631. Poultry Sci. 2010, 89, 2259–2264. [Google Scholar] [CrossRef]
- Seyama, T.; Ko, J.H.; Ohe, M.; Sasaoka, N.; Okada, A.; Gomi, H.; Yoneda, A.; Ueda, J.; Nishibori, M.; Okamoto, S.; et al. Population research of genetic polymorphism at amino acid position 631 in chicken Mx protein with differential antiviral activity. Biochem. Genet. 2006, 44, 437–448. [Google Scholar]
- Balkissoon, D.; Staines, K.; McCauley, J.; Wood, J.; Young, J.; Kaufman, J.; Butter, C. Low frequency of the Mx allele for viral resistance predates recent intensive selection in domestic chickens. Immunogenetics 2007, 59, 687–691. [Google Scholar] [CrossRef]
- Bazzigher, L.; Schwarz, A.; Staeheli, P. No enhanced influenza virus resistance of murine and avian cells expressing cloned duck Mx protein. Virology 1993, 195, 100–112. [Google Scholar]
- Schumacher, B.; Bernasconi, D.; Schultz, U.; Staeheli, P. The chicken Mx promoter contains an ISRE motif and confers interferon inducibility to a reporter gene in chick and monkey cells. Virology 1994, 203, 144–148. [Google Scholar] [CrossRef]
- Ewald, S.J.; Kapczynski, D.R.; Livant, E.J.; Suarez, D.L.; Ralph, J.; McLeod, S.; Miller, C. Association of Mx1 Asn631 variant alleles with reductions in morbidity, early mortality, viral shedding, and cytokine responses in chickens infected with a highly pathogenic avian influenza virus. Immunogenetics 2011, 63, 363–375. [Google Scholar] [CrossRef]
- Benfield, C.T.; Lyall, J.W.; Kochs, G.; Tiley, L.S. Asparagine 631 variants of the chicken Mx protein do not inhibit influenza virus replication in primary chicken embryo fibroblasts or in vitro surrogate assays. J. Virol. 2008, 82, 7533–7539. [Google Scholar] [CrossRef]
- Benfield, C.T.; Lyall, J.W.; Tiley, L.S. The cytoplasmic location of chicken mx is not the determining factor for its lack of antiviral activity. PLoS One 2010, 5, e12151. [Google Scholar]
- Schusser, B.; Reuter, A.; von der Malsburg, A.; Penski, N.; Weigend, S.; Kaspers, B.; Staeheli, P.; Hartle, S. Mx is dispensable for interferon-mediated resistance of chicken cells against influenza A virus. J. Virol. 2011, 85, 8307–8315. [Google Scholar]
- Bernasconi, D.; Schultz, U.; Staeheli, P. The interferon-induced Mx protein of chickens lacks antiviral activity. J. Interferon Cytokine Res. 1995, 15, 47–53. [Google Scholar]
- Sironi, L.; Williams, J.L.; Stella, A.; Minozzi, G.; Moreno, A.; Ramelli, P.; Han, J.; Weigend, S.; Wan, J.; Lombardi, G.; et al. Genomic study of the response of chicken to highly pathogenic avian influenza virus. BMC Proc. 2011, 5, S25. [Google Scholar]
- Qu, L.J.; Li, X.Y.; Xu, G.Y.; Ning, Z.H.; Yang, N. Lower antibody response in chickens homozygous for the Mx resistant allele to avian influenza. Asian-Aust. J. Anim. Sci. 2009, 22, 465–470. [Google Scholar]
- Barber, M.R.; Aldridge, J.R., Jr.; Webster, R.G.; Magor, K.E. Association of RIG-I with innate immunity of ducks to influenza. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 5913–5918. [Google Scholar]
- Karpala, A.J.; Stewart, C.; McKay, J.; Lowenthal, J.W.; Bean, A.G. Characterization of chicken Mda5 activity: Regulation of IFN-beta in the absence of RIG-I functionality. J. Immunol. 2011, 186, 5397–5405. [Google Scholar]
- Liniger, M.; Summerfield, A.; Zimmer, G.; McCullough, K.C.; Ruggli, N. Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. J. Virol. 2012, 86, 705–717. [Google Scholar]
- Adams, S.C.; Xing, Z.; Li, J.; Cardona, C.J. Immune-related gene expression in response to H11N9 low pathogenic avian influenza virus infection in chicken and Pekin duck peripheral blood mononuclear cells. Mol. Immunol. 2009, 46, 1744–1749. [Google Scholar] [CrossRef]
- Sarmento, L.; Afonso, C.L.; Estevez, C.; Wasilenko, J.; Pantin-Jackwood, M. Differential host gene expression in cells infected with highly pathogenic H5N1 avian influenza viruses. Vet. Immunol. Immunopathol. 2008, 125, 291–302. [Google Scholar]
- Liang, Q.L.; Luo, J.; Zhou, K.; Dong, J.X.; He, H.X. Immune-related gene expression in response to H5N1 avian influenza virus infection in chicken and duck embryonic fibroblasts. Mol. Immunol. 2011, 48, 924–930. [Google Scholar] [CrossRef]
- Kuchipudi, S.V.; Dunham, S.P.; Nelli, R.; White, G.A.; Coward, V.J.; Slomka, M.J.; Brown, I.H.; Chang, K.C. Rapid death of duck cells infected with influenza: A potential mechanism for host resistance to H5N1. Immunol. Cell Biol. 2012, 90, 116–123. [Google Scholar]
- Xu, C.; Meng, S.; Liu, X.; Sun, L.; Liu, W. Chicken cyclophilin A is an inhibitory factor to influenza virus replication. Virol. J. 2010, 7, 372. [Google Scholar] [CrossRef]
- Hsiang, T.Y.; Zhao, C.; Krug, R.M. Interferon-induced ISG15 conjugation inhibits influenza A virus gene expression and replication in human cells. J. Virol. 2009, 83, 5971–5977. [Google Scholar]
- Wang, X.; Hinson, E.R.; Cresswell, P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2007, 2, 96–105. [Google Scholar]
- Watanabe, K.; Fuse, T.; Asano, I.; Tsukahara, F.; Maru, Y.; Nagata, K.; Kitazato, K.; Kobayashi, N. Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. FEBS Lett. 2006, 580, 5785–5790. [Google Scholar] [CrossRef]
- Honda, A.; Okamoto, T.; Ishihama, A. Host factor Ebp1: Selective inhibitor of influenza virus transcriptase. Gene. Cell. 2007, 12, 133–142. [Google Scholar]
- Scott, B.B.; Lois, C. Generation of tissue-specific transgenic birds with lentiviral vectors. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16443–16447. [Google Scholar] [CrossRef]
- Harvey, A.J.; Speksnijder, G.; Baugh, L.R.; Morris, J.A.; Ivarie, R. Consistent production of transgenic chickens using replication-deficient retroviral vectors and high-throughput screening procedures. Poultry Sci. 2002, 81, 202–212. [Google Scholar]
- Lyall, J.; Irvine, R.M.; Sherman, A.; McKinley, T.J.; Nunez, A.; Purdie, A.; Outtrim, L.; Brown, I.H.; Rolleston-Smith, G.; Sang, H.; et al. Suppression of avian influenza transmission in genetically modified chickens. Science 2011, 331, 223–226. [Google Scholar] [CrossRef]
- Enserink, M. Avian influenza. Transgenic chickens could thwart bird flu, curb pandemic risk. Science 2011, 331, 132–133. [Google Scholar] [CrossRef]
- Boon, A.C.; deBeauchamp, J.; Hollmann, A.; Luke, J.; Kotb, M.; Rowe, S.; Finkelstein, D.; Neale, G.; Lu, L.; Williams, R.W.; et al. Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice. J. Virol. 2009, 83, 10417–10426. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Abdelwhab, E.M.; Hafez, H.M. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1. Viruses 2012, 4, 3179-3208. https://doi.org/10.3390/v4113179
Abdelwhab EM, Hafez HM. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1. Viruses. 2012; 4(11):3179-3208. https://doi.org/10.3390/v4113179
Chicago/Turabian StyleAbdelwhab, E. M., and Hafez M. Hafez. 2012. "Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1" Viruses 4, no. 11: 3179-3208. https://doi.org/10.3390/v4113179