4 pages, 186 KiB  
Editorial
Novel Nanoparticle-Based Treatment and Imaging Modalities
by Oleh Taratula and Olena R. Taratula
Pharmaceutics 2023, 15(1), 244; https://doi.org/10.3390/pharmaceutics15010244 - 11 Jan 2023
Cited by 2 | Viewed by 1682
Abstract
Over the last twenty years, nanomaterials have been widely used in cancer research [...] Full article
(This article belongs to the Special Issue Novel Nanoparticle-Based Treatment and Imaging Modalities)
18 pages, 3661 KiB  
Article
Fabrication and Characterisation of 3D-Printed Triamcinolone Acetonide-Loaded Polycaprolactone-Based Ocular Implants
by Febri Annuryanti, Juan Domínguez-Robles, Qonita Kurnia Anjani, Muhammad Faris Adrianto, Eneko Larrañeta and Raghu Raj Singh Thakur
Pharmaceutics 2023, 15(1), 243; https://doi.org/10.3390/pharmaceutics15010243 - 11 Jan 2023
Cited by 10 | Viewed by 2931
Abstract
Triamcinolone acetonide (TA) is a corticosteroid that has been used to treat posterior segment eye diseases. TA is injected intravitreally in the management of neovascular disorders; however, frequent intravitreal injections result in many potential side effects and poor patient compliance. In this work, [...] Read more.
Triamcinolone acetonide (TA) is a corticosteroid that has been used to treat posterior segment eye diseases. TA is injected intravitreally in the management of neovascular disorders; however, frequent intravitreal injections result in many potential side effects and poor patient compliance. In this work, a 3D bioprinter was used to prepare polycaprolactone (PCL) implants loaded with TA. Implants were manufactured with different shapes (filament-, rectangular-, and circle-shaped) and drug loadings (5, 10, and 20%). The characterisation results showed that TA was successfully mixed and incorporated within the PCL matrix without using solvents, and drug content reached almost 100% for all formulations. The drug release data demonstrate that the filament-shaped implants (SA/V ratio~7.3) showed the highest cumulative drug release amongst all implant shapes over 180 days, followed by rectangular- (SA/V ratio~3.7) and circle-shaped implants (SA/V ratio~2.80). Most implant drug release data best fit the Korsmeyer–Peppas model, indicating that diffusion was the prominent release mechanism. Additionally, a biocompatibility study was performed; the results showed >90% cell viability, thus proving that the TA-loaded PCL implants were safe for ocular application. Full article
(This article belongs to the Special Issue Nanotechnology in Ocular Drug Delivery)
Show Figures

Graphical abstract

23 pages, 5603 KiB  
Article
Nano-Hydroxyapatite/PLGA Mixed Scaffolds as a Tool for Drug Development and to Study Metastatic Prostate Cancer in the Bone
by Annachiara Dozzo, Krishnakumar Chullipalliyalil, Michael McAuliffe, Caitriona M. O’Driscoll and Katie B. Ryan
Pharmaceutics 2023, 15(1), 242; https://doi.org/10.3390/pharmaceutics15010242 - 11 Jan 2023
Cited by 5 | Viewed by 3344
Abstract
(1) Background: Three-dimensional (3D) in vitro, biorelevant culture models that recapitulate cancer progression can help elucidate physio-pathological disease cues and enhance the screening of more effective therapies. Insufficient research has been conducted to generate in vitro 3D models to replicate the spread of [...] Read more.
(1) Background: Three-dimensional (3D) in vitro, biorelevant culture models that recapitulate cancer progression can help elucidate physio-pathological disease cues and enhance the screening of more effective therapies. Insufficient research has been conducted to generate in vitro 3D models to replicate the spread of prostate cancer to the bone, a key metastatic site of the disease, and to understand the interplay between the key cell players. In this study, we aim to investigate PLGA and nano-hydroxyapatite (nHA)/PLGA mixed scaffolds as a predictive preclinical tool to study metastatic prostate cancer (mPC) in the bone and reduce the gap that exists with traditional 2D cultures. (2) Methods: nHA/PLGA mixed scaffolds were produced by electrospraying, compacting, and foaming PLGA polymer microparticles, +/− nano-hydroxyapatite (nHA), and a salt porogen to produce 3D, porous scaffolds. Physicochemical scaffold characterisation together with an evaluation of osteoblastic (hFOB 1.19) and mPC (PC-3) cell behaviour (RT-qPCR, viability, and differentiation) in mono- and co-culture, was undertaken. (3) Results: The results show that the addition of nHA, particularly at the higher-level impacted scaffolds in terms of mechanical and degradation behaviour. The nHA 4 mg resulted in weaker scaffolds, but cell viability increased. Qualitatively, fluorescent imaging of cultures showed an increase in PC-3 cells compared to osteoblasts despite lower initial PC-3 seeding densities. Osteoblast monocultures, in general, caused an upregulation (or at least equivalent to controls) in gene production, which was highest in plain scaffolds and decreased with increases in nHA. Additionally, the genes were downregulated in PC3 and co-cultures. Further, drug toxicity tests demonstrated a significant effect in 2D and 3D co-cultures. (4) Conclusions: The results demonstrate that culture conditions and environment (2D versus 3D, monoculture versus co-culture) and scaffold composition all impact cell behaviour and model development. Full article
(This article belongs to the Special Issue In Vitro Cell Models in Regenerative Medicine)
Show Figures

Graphical abstract

20 pages, 2610 KiB  
Article
The More the Better—Investigation of Polymethoxylated N-Carboranyl Quinazolines as Novel Hybrid Breast Cancer Resistance Protein Inhibitors
by Philipp Stockmann, Lydia Kuhnert, Wencke Leinung, Cathleen Lakoma, Birte Scholz, Svetlana Paskas, Sanja Mijatović, Danijela Maksimović-Ivanić, Walther Honscha and Evamarie Hey-Hawkins
Pharmaceutics 2023, 15(1), 241; https://doi.org/10.3390/pharmaceutics15010241 - 10 Jan 2023
Cited by 4 | Viewed by 2151
Abstract
The ineffectiveness and failing of chemotherapeutic treatments are often associated with multidrug resistance (MDR). MDR is primarily linked to the overexpression of ATP-binding cassette (ABC) transporter proteins in cancer cells. ABCG2 (ATP-binding cassette subfamily G member 2, also known as the breast cancer [...] Read more.
The ineffectiveness and failing of chemotherapeutic treatments are often associated with multidrug resistance (MDR). MDR is primarily linked to the overexpression of ATP-binding cassette (ABC) transporter proteins in cancer cells. ABCG2 (ATP-binding cassette subfamily G member 2, also known as the breast cancer resistance protein (BCRP)) mediates MDR by an increased drug efflux from the cancer cells. Therefore, the inhibition of ABCG2 activity during chemotherapy ought to improve the efficacy of the administered anti-cancer agents by reversing MDR or by enhancing the agents’ pharmacokinetic properties. Significant efforts have been made to develop novel, powerful, selective, and non-toxic inhibitors of BCRP. However, thus far the clinical relevance of BCRP-selective MDR-reversal has been unsuccessful, due to either adverse drug reactions or significant toxicities in vivo. We here report a facile access towards carboranyl quinazoline-based inhibitors of ABCG2. We determined the influence of different methoxy-substitution patterns on the 2-phenylquinazoline scaffold in combination with the beneficial properties of an incorporated inorganic carborane moiety. A series of eight compounds was synthesized and their inhibitory effect on the ABCG2-mediated Hoechst transport was evaluated. Molecular docking studies were performed to better understand the structure-protein interactions of the novel inhibitors, exhibiting putative binding modes within the inner binding site. Further, the most potent, non-toxic compounds were investigated for their potential to reverse ABCG2-mediated mitoxantrone (MXN) resistance. Of these five evaluated compounds, N-(closo-1,7-dicarbadodecaboran(12)-9-yl)-6,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-quinazolin-4-amine (DMQCd) exhibited the strongest inhibitory effect towards ABCG2 in the lower nanomolar ranges. Additionally, DMQCd was able to reverse BCRP-mediated MDR, making it a promising candidate for further research on hybrid inorganic-organic compounds. Full article
(This article belongs to the Special Issue Recent Advances in the Development of Hybrid Drugs)
Show Figures

Graphical abstract

23 pages, 5893 KiB  
Article
A Novel Perilla frutescens (L.) Britton Cell-Derived Phytocomplex Regulates Keratinocytes Inflammatory Cascade and Barrier Function and Preserves Vaginal Mucosal Integrity In Vivo
by Giovanna Pressi, Giovanna Rigillo, Paolo Governa, Vittoria Borgonetti, Giulia Baini, Raffaella Rizzi, Chiara Guarnerio, Oriana Bertaiola, Marco Frigo, Matilde Merlin, Stefania Paltrinieri, Roberto Zambonin, Stefano Pandolfo and Marco Biagi
Pharmaceutics 2023, 15(1), 240; https://doi.org/10.3390/pharmaceutics15010240 - 10 Jan 2023
Cited by 6 | Viewed by 2202
Abstract
In the last years, the medicinal plant Perilla frutescens (L.) Britton has gained scientific interest because leaf extracts, due to the presence of rosmarinic acid and other polyphenols, have shown anti-allergic and skin protective potential in pre-clinical studies. Nevertheless, the lack of standardized [...] Read more.
In the last years, the medicinal plant Perilla frutescens (L.) Britton has gained scientific interest because leaf extracts, due to the presence of rosmarinic acid and other polyphenols, have shown anti-allergic and skin protective potential in pre-clinical studies. Nevertheless, the lack of standardized extracts has limited clinical applications to date. In this work, for the first time, a standardized phytocomplex of P. frutescens, enriched in rosmarinic acid and total polyphenols, was produced through innovative in vitro cell culture biotechnology and tested. The activity of perilla was evaluated in an in vitro inflammatory model of human keratinocytes (HaCaT) by monitoring tight junctions, filaggrin, and loricrin protein levels, the release of pro-inflammatory cytokines and JNK MAPK signaling. In a practical health care application, the perilla biotechnological phytocomplex was tested in a multilayer model of vaginal mucosa, and then, in a preliminary clinical observation to explore its capacity to preserve vaginal mucosal integrity in women in peri-menopause. In keratinocytes cells, perilla phytocomplex demonstrated to exert a marked activity in epidermis barrier maintenance and anti-inflammatory effects, preserving tight junction expression and downregulating cytokines release through targeting JNK activation. Furthermore, perilla showed positive effects in retaining vaginal mucosal integrity in the reconstructed vaginal mucosa model and in vivo tests. Overall, our data suggest that the biotechnological P. frutescens phytocomplex could represent an innovative ingredient for dermatological applications. Full article
Show Figures

Figure 1

39 pages, 2411 KiB  
Review
Therapeutic Monitoring of Orally Administered, Small-Molecule Anticancer Medications with Tumor-Specific Cellular Protein Targets in Peripheral Fluid Spaces—A Review
by Zoltán Köllő, Miklós Garami, István Vincze, Barna Vásárhelyi and Gellért Balázs Karvaly
Pharmaceutics 2023, 15(1), 239; https://doi.org/10.3390/pharmaceutics15010239 - 10 Jan 2023
Cited by 3 | Viewed by 2464
Abstract
Orally administered, small-molecule anticancer drugs with tumor-specific cellular protein targets (OACD) have revolutionized oncological pharmacotherapy. Nevertheless, the differences in exposure to these drugs in the systemic circulation and extravascular fluid compartments have led to several cases of therapeutic failure, in addition to posing [...] Read more.
Orally administered, small-molecule anticancer drugs with tumor-specific cellular protein targets (OACD) have revolutionized oncological pharmacotherapy. Nevertheless, the differences in exposure to these drugs in the systemic circulation and extravascular fluid compartments have led to several cases of therapeutic failure, in addition to posing unknown risks of toxicity. The therapeutic drug monitoring (TDM) of OACDs in therapeutically relevant peripheral fluid compartments is therefore essential. In this work, the available knowledge regarding exposure to OACD concentrations in these fluid spaces is summarized. A review of the literature was conducted by searching Embase, PubMed, and Web of Science for clinical research articles and case reports published between 10 May 2001 and 31 August 2022. Results show that, to date, penetration into cerebrospinal fluid has been studied especially intensively, in addition to breast milk, leukocytes, peripheral blood mononuclear cells, peritoneal fluid, pleural fluid, saliva and semen. The typical clinical indications of peripheral fluid TDM of OACDs were (1) primary malignancy, (2) secondary malignancy, (3) mental disorder, and (4) the assessment of toxicity. Liquid chromatography–tandem mass spectrometry was most commonly applied for analysis. The TDM of OACDs in therapeutically relevant peripheral fluid spaces is often indispensable for efficient and safe treatments. Full article
Show Figures

Figure 1

16 pages, 2970 KiB  
Article
A Self-Emulsified Adjuvant System Containing the Immune Potentiator Alpha Tocopherol Induces Higher Neutralizing Antibody Responses than a Squalene-Only Emulsion When Evaluated with a Recombinant Cytomegalovirus (CMV) Pentamer Antigen in Mice
by Rushit N. Lodaya, Amey P. Kanitkar, Asma Ashraf, Douty Bamba, Mansoor M. Amiji and Derek T. O’Hagan
Pharmaceutics 2023, 15(1), 238; https://doi.org/10.3390/pharmaceutics15010238 - 10 Jan 2023
Cited by 2 | Viewed by 2313
Abstract
The development of new vaccine adjuvants represents a key approach to improvingi the immune responses to recombinant vaccine antigens. Emulsion adjuvants, such as AS03 and MF59, in combination with influenza vaccines, have allowed antigen dose sparing, greater breadth of responses and fewer immunizations. [...] Read more.
The development of new vaccine adjuvants represents a key approach to improvingi the immune responses to recombinant vaccine antigens. Emulsion adjuvants, such as AS03 and MF59, in combination with influenza vaccines, have allowed antigen dose sparing, greater breadth of responses and fewer immunizations. It has been demonstrated previously that emulsion adjuvants can be prepared using a simple, low-shear process of self-emulsification (SE). The role of alpha tocopherol as an immune potentiator in emulsion adjuvants is clear from the success of AS03 in pandemic responses, both to influenza and COVID-19. Although it was a significant formulation challenge to include alpha tocopherol in an emulsion prepared by a low-shear process, the resultant self-emulsifying adjuvant system (SE-AS) showed a comparable effect to the established AS03 when used with a quadrivalent influenza vaccine (QIV). In this paper, we first optimized the SE-AS with alpha tocopherol to create SE-AS44, which allowed the emulsion to be sterile-filtered. Then, we compared the in vitro cell activation cytokine profile of SE-AS44 with the self-emulsifying adjuvant 160 (SEA160), a squalene-only adjuvant. In addition, we evaluated SE-AS44 and SEA160 competitively, in combination with a recombinant cytomegalovirus (CMV) pentamer antigen mouse. Full article
(This article belongs to the Special Issue Recent Advances in Vaccine Delivery Systems)
Show Figures

Figure 1

19 pages, 1718 KiB  
Review
Oligonucleotide Therapeutics for Age-Related Musculoskeletal Disorders: Successes and Challenges
by Thomas A. Nicholson, Michael Sagmeister, Susanne N. Wijesinghe, Hussein Farah, Rowan S. Hardy and Simon W. Jones
Pharmaceutics 2023, 15(1), 237; https://doi.org/10.3390/pharmaceutics15010237 - 10 Jan 2023
Cited by 3 | Viewed by 2670
Abstract
Age-related disorders of the musculoskeletal system including sarcopenia, osteoporosis and arthritis represent some of the most common chronic conditions worldwide, for which there remains a great clinical need to develop safer and more efficacious pharmacological treatments. Collectively, these conditions involve multiple tissues, including [...] Read more.
Age-related disorders of the musculoskeletal system including sarcopenia, osteoporosis and arthritis represent some of the most common chronic conditions worldwide, for which there remains a great clinical need to develop safer and more efficacious pharmacological treatments. Collectively, these conditions involve multiple tissues, including skeletal muscle, bone, articular cartilage and the synovium within the joint lining. In this review, we discuss the potential for oligonucleotide therapies to combat the unmet clinical need in musculoskeletal disorders by evaluating the successes of oligonucleotides to modify candidate pathological gene targets and cellular processes in relevant tissues and cells of the musculoskeletal system. Further, we discuss the challenges that remain for the clinical development of oligonucleotides therapies for musculoskeletal disorders and evaluate some of the current approaches to overcome these. Full article
(This article belongs to the Special Issue Recent Trends in Oligonucleotide Based Therapies)
Show Figures

Figure 1

32 pages, 5946 KiB  
Review
Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy
by Thomas Vangijzegem, Valentin Lecomte, Indiana Ternad, Levy Van Leuven, Robert N. Muller, Dimitri Stanicki and Sophie Laurent
Pharmaceutics 2023, 15(1), 236; https://doi.org/10.3390/pharmaceutics15010236 - 10 Jan 2023
Cited by 41 | Viewed by 6562
Abstract
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able [...] Read more.
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy. Full article
(This article belongs to the Special Issue Magnetic Nanomaterials – a Promising Approach in Cancer Therapy)
Show Figures

Graphical abstract

19 pages, 3270 KiB  
Article
Niosomes Functionalized with a Synthetic Carbohydrate Binding Agent for Mannose-Targeted Doxorubicin Delivery
by Nastassja Burrini, Mario D’Ambrosio, Matteo Gentili, Roberta Giaquinto, Veronica Settimelli, Cristina Luceri, Marzia Cirri and Oscar Francesconi
Pharmaceutics 2023, 15(1), 235; https://doi.org/10.3390/pharmaceutics15010235 - 10 Jan 2023
Cited by 3 | Viewed by 2084
Abstract
Niosomes are a potential tool for the development of active targeted drug delivery systems (DDS) for cancer therapy because of their excellent behaviour in encapsulating antitumorals and the possibility to easily functionalise their surface with targeting agents. Recently, some of us developed a [...] Read more.
Niosomes are a potential tool for the development of active targeted drug delivery systems (DDS) for cancer therapy because of their excellent behaviour in encapsulating antitumorals and the possibility to easily functionalise their surface with targeting agents. Recently, some of us developed a synthetic carbohydrate binding agent (CBA) able to target the mannosidic residues of high-mannose-type glycans overexpressed on the surface of several cancer cell lines, promoting their apoptosis. In this article, we modified the structure of this mannose receptor to obtain an amphiphilic analogue suitable for the functionalization of doxorubicin-based niosomes. Several niosomal formulations and preparation methods were investigated deeply to finally obtain functionalized niosomes suitable for parental administration, which were stable for over six months and able to encapsulate up to 85% of doxorubicin (DOXO). In vitro studies, carried out towards triple-negative cancer cells (MDA-MB231), overexpressing high-mannose-type glycans, showed a cytotoxic activity comparable to that of DOXO but with an appreciable increment in apoptosis given by the CBA. Moreover, niosomal formulation was observed to reduce doxorubicin-induced cytotoxicity towards normal cell lines of rat cardiomyocytes (H9C2). This study is propaedeutic to further in vivo investigations that can aim to shed light on the antitumoral activity and pharmacokinetics of the developed active targeted DDS. Full article
(This article belongs to the Collection Feature Papers in Nanomedicine and Nanotechnology)
Show Figures

Figure 1

25 pages, 6064 KiB  
Article
Green Synthesis of Highly Fluorescent Carbon Dots from Bovine Serum Albumin for Linezolid Drug Delivery as Potential Wound Healing Biomaterial: Bio-Synergistic Approach, Antibacterial Activity, and In Vitro and Ex Vivo Evaluation
by Dina Saeed Ghataty, Reham Ibrahim Amer, Mai A. Amer, Mohamed F. Abdel Rahman and Rehab Nabil Shamma
Pharmaceutics 2023, 15(1), 234; https://doi.org/10.3390/pharmaceutics15010234 - 10 Jan 2023
Cited by 12 | Viewed by 2908
Abstract
A simple and green approach was developed to produce novel highly fluorescent bovine serum albumin carbon dots (BCDs) via facile one-step hydrothermal treatment, using bovine serum albumin as a precursor carbon source. Inherent blue photoluminescence of the synthesized BCDs provided a maximum photostability [...] Read more.
A simple and green approach was developed to produce novel highly fluorescent bovine serum albumin carbon dots (BCDs) via facile one-step hydrothermal treatment, using bovine serum albumin as a precursor carbon source. Inherent blue photoluminescence of the synthesized BCDs provided a maximum photostability of 90.5 ± 1.2% and was characterized via TEM, FT-IR, XPS, XRD, UV-visible, and zeta potential analyses. By virtue of their extremely small size, intrinsic optical and photoluminescence properties, superior photostability, and useful non-covalent interactions with the synthetic oxazolidinone antibiotic linezolid (LNZ), BCDs were investigated as fluorescent nano-biocarriers for LNZ drug delivery. The release profile of LNZ from the drug delivery system (LNZ–BCDs) revealed a distinct biphasic release, which is beneficial for mollifying the lethal incidents associated with wound infection. The effective wound healing performance of the developed LNZ–BCDs were evaluated through various in vitro and ex vivo assays such as MTT, ex vivo hemolysis, in vitro antibacterial activity, in vitro skin-related enzyme inhibition, and scratch wound healing assays. The examination of LNZ–BCDs as an efficient wound healing biomaterial illustrated excellent biocompatibility and low cytotoxicity against normal human skin fibroblast (HSF) cell line, indicating distinct antibacterial activity against the most common wound infectious pathogens including Staphylococcus aureus (ATCC® 25922) and methicillin-resistant Staphylococcus aureus, robust anti-elastase, anti-collagenase, and anti-tyrosinase activities, and enhanced cell proliferation and migration effect. The obtained results confirmed the feasibility of using the newly designed fluorescent LNZ–BCDs nano-bioconjugate as a unique antibacterial biomaterial for effective wound healing and tissue regeneration. Besides, the greenly synthesized BCDs could be considered as a great potential substitute for toxic nanoparticles in biomedical applications due to their biocompatibility and intense fluorescence characteristics and in pharmaceutical industries as promising drug delivery nano-biocarriers for effective wound healing applications. Full article
Show Figures

Graphical abstract

35 pages, 1264 KiB  
Review
Translational Considerations in the Development of Intranasal Treatments for Epilepsy
by Richard N. Prentice and Shakila B. Rizwan
Pharmaceutics 2023, 15(1), 233; https://doi.org/10.3390/pharmaceutics15010233 - 10 Jan 2023
Cited by 3 | Viewed by 2305
Abstract
Epilepsy is a common and serious neurological disorder, to which a high proportion of patients continue to be considered “drug-resistant”, despite the availability of a host of anti-seizure drugs. Investigation into new treatment strategies is therefore of great importance. One such strategy is [...] Read more.
Epilepsy is a common and serious neurological disorder, to which a high proportion of patients continue to be considered “drug-resistant”, despite the availability of a host of anti-seizure drugs. Investigation into new treatment strategies is therefore of great importance. One such strategy is the use of the nose to deliver drugs directly to the brain with the help of pharmaceutical formulation to overcome the physical challenges presented by this route. The following review explores intranasal delivery of anti-seizure drugs, covering the link between the nose and seizures, pathways from the nose to the brain, current formulations in clinical use, animal seizure models and their proposed application in studying intranasal treatments, and a critical discussion of relevant pre-clinical studies in the literature. Full article
Show Figures

Figure 1

27 pages, 5789 KiB  
Article
Improving Lurasidone Hydrochloride’s Solubility and Stability by Higher-Order Complex Formation with Hydroxypropyl-β-cyclodextrin
by María Elena Gamboa-Arancibia, Nelson Caro, Alexander Gamboa, Javier Octavio Morales, Jorge Enrique González Casanova, Diana Marcela Rojas Gómez and Sebastián Miranda-Rojas
Pharmaceutics 2023, 15(1), 232; https://doi.org/10.3390/pharmaceutics15010232 - 10 Jan 2023
Cited by 2 | Viewed by 2656
Abstract
The biopharmaceutical classification system groups low-solubility drugs into two groups: II and IV, with high and low permeability, respectively. Most of the new drugs developed for common pathologies present solubility issues. This is the case of lurasidone hydrochloride—a drug used for the treatment [...] Read more.
The biopharmaceutical classification system groups low-solubility drugs into two groups: II and IV, with high and low permeability, respectively. Most of the new drugs developed for common pathologies present solubility issues. This is the case of lurasidone hydrochloride—a drug used for the treatment of schizophrenia and bipolar depression. Likewise, the stability problems of some drugs limit the possibility of preparing them in liquid pharmaceutical forms where hydrolysis and oxidation reactions can be favored. Lurasidone hydrochloride presents the isoindole-1,3-dione ring, which is highly susceptible to alkaline hydrolysis, and the benzisothiazole ring, which is susceptible to a lesser extent to oxidation. Herein, we propose to study the increase in the solubility and stability of lurasidone hydrochloride by the formation of higher-order inclusion complexes with hydroxypropyl-β-cyclodextrin. Several stoichiometric relationships were studied at between 0.5 and 3 hydroxypropyl-β-cyclodextrin molecules per drug molecule. The obtained products were characterized, and their solubility and stability were assessed. According to the obtained results, the formation of inclusion complexes dramatically increased the solubility of the drug, and this increased with the increase in the inclusion ratio. This was associated with the loss of crystalline state of the drug, which was in an amorphous state according to infrared spectroscopy, calorimetry, and X-ray analysis. This was also correlated with the stabilization of lurasidone by the cyclodextrin inhibiting its recrystallization. Phase solubility,1H-NMR, and docking computational characterization suggested that the main stoichiometric ratio was 1:1; however, we cannot rule out a 1:2 ratio, where a second cyclodextrin molecule could bind through the isoindole-1,3-dione ring, improving its stability as well. Finally, we can conclude that the formation of higher-order inclusion complexes of lurasidone with hydroxypropyl-β-cyclodextrin is a successful strategy to increase the solubility and stability of the drug. Full article
Show Figures

Figure 1

29 pages, 3609 KiB  
Review
Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo
by Anastasiia S. Obozina, Elena N. Komedchikova, Olga A. Kolesnikova, Anna M. Iureva, Vera L. Kovalenko, Fedor A. Zavalko, Tatiana V. Rozhnikova, Ekaterina D. Tereshina, Elizaveta N. Mochalova and Victoria O. Shipunova
Pharmaceutics 2023, 15(1), 231; https://doi.org/10.3390/pharmaceutics15010231 - 10 Jan 2023
Cited by 9 | Viewed by 3900
Abstract
Targeted nanoparticles of different origins are considered as new-generation diagnostic and therapeutic tools. However, there are no targeted drug formulations within the composition of nanoparticles approved by the FDA for use in the clinic, which is associated with the insufficient effectiveness of the [...] Read more.
Targeted nanoparticles of different origins are considered as new-generation diagnostic and therapeutic tools. However, there are no targeted drug formulations within the composition of nanoparticles approved by the FDA for use in the clinic, which is associated with the insufficient effectiveness of the developed candidates, the difficulties of their biotechnological production, and inadequate batch-to-batch reproducibility. Targeted protein self-assembling nanoparticles circumvent this problem since proteins are encoded in DNA and the final protein product is produced in only one possible way. We believe that the combination of the endless biomedical potential of protein carriers as nanoparticles and the standardized protein purification protocols will make significant progress in “magic bullet” creation possible, bringing modern biomedicine to a new level. In this review, we are focused on the currently existing platforms for targeted self-assembling protein nanoparticles based on transferrin, lactoferrin, casein, lumazine synthase, albumin, ferritin, and encapsulin proteins, as well as on proteins from magnetosomes and virus-like particles. The applications of these self-assembling proteins for targeted delivery in vitro and in vivo are thoroughly discussed, including bioimaging applications and different therapeutic approaches, such as chemotherapy, gene delivery, and photodynamic and photothermal therapy. A critical assessment of these protein platforms’ efficacy in biomedicine is provided and possible problems associated with their further development are described. Full article
(This article belongs to the Special Issue Novel Metal-Based Drugs for Anticancer and Antiviral Applications)
Show Figures

Figure 1

18 pages, 549 KiB  
Article
A Universal Pharmacological-Based List of Drugs with Anticholinergic Activity
by Marta Lavrador, Ana C. Cabral, Manuel T. Veríssimo, Fernando Fernandez-Llimos, Isabel V. Figueiredo and M. Margarida Castel-Branco
Pharmaceutics 2023, 15(1), 230; https://doi.org/10.3390/pharmaceutics15010230 - 10 Jan 2023
Cited by 4 | Viewed by 3554
Abstract
Anticholinergic burden tools have relevant pharmacological gaps that may explain their limited predictive ability for clinical outcomes. The aim of this study was to provide a universal pharmacological-based list of drugs with their documented affinity for muscarinic receptors. A comprehensive literature review was [...] Read more.
Anticholinergic burden tools have relevant pharmacological gaps that may explain their limited predictive ability for clinical outcomes. The aim of this study was to provide a universal pharmacological-based list of drugs with their documented affinity for muscarinic receptors. A comprehensive literature review was performed to identify the anticholinergic burden tools. Drugs included in these instruments were searched in four pharmacological databases, and the investigation was supplemented with PubMed. The evidence regarding the potential antagonism of the five muscarinic receptors of each drug was assessed. The proportion of drugs included in the tools with an affinity for muscarinic receptors was evaluated. A universal list of drugs with anticholinergic activity was developed based on their documented affinity for the different subtypes of muscarinic receptors and their ability to cross the blood-brain barrier. A total of 23 tools were identified, including 304 different drugs. Only 48.68%, 47.70%, 48.03%, 43.75%, and 42.76% of the drugs had an affinity to the M1, M2, M3, M4, and M5 receptor, respectively, reported in any pharmacological database. The proportion of drugs with confirmed antagonism varied among the tools (36.8% to 100%). A universal pharmacological-based list of 133 drugs is presented. It should be further validated in different clinical settings. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Graphical abstract