Morphing of Building Footprints Using a Turning Angle Function
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Conceptual Model
3.2. Transformation of Vector Data into the Turning Angle Function
3.3. Matching of Sides
3.4. Shape Interpolation
4. Case Study
4.1. Selection of the Start Point of the Turning Angle Function
- (P1)
- The geometric distance priority principle. We should select the point with the shortest distance between the original shape and the final shape as the start point.
- (P2)
- The spatial position priority principle. We should select the point closest to the center of the shape as the start point.
- (P3)
- The topological relationships priority principle. We should select a point with topological significance as the start point.
- (P4)
- From P1 to P3, the priority increases. Generally, the topological relationship is more important than the spatial position, and the spatial position is more important than the geometric distance. Thus, principle 3 is given the highest priority, principle 2 has a medium priority, and principle 1 has the lowest priority.
4.2. Application of TAFBM for the Continuous Generalization of Building Features
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Danciger, J.; Devadoss, S.L.; Mugno, J.; Sheehy, D.; Ward, R. Shape deformation in continuous map generalization. Geoinformatica 2009, 13, 203–221. [Google Scholar] [CrossRef]
- Sester, M.; Brenner, C. Continuous generalization for visualization on small mobile devices. In Proceedings of the 11th International Symposium on Spatial Data Handling (SDH’04), Leicester, UK, 23–25 August 2004; pp. 355–368. [Google Scholar]
- Van Oosterom, P. Variable-scale Topological Data Structures Suitable for Progressive Data Transfer: The GAP-face Tree and GAP-edge Forest. Cartogr. Geogr. Inf. Sci. 2005, 32, 331–346. [Google Scholar] [CrossRef]
- Jones, C.B.; Ware, J.M. Map generalization in the web age. Int. J. Geogr. Inf. Sci. 2005, 19, 859–870. [Google Scholar] [CrossRef]
- Ai, T.H.; Li, Z.L.; Liu, Y.L. Progressive Transmission of Vector Data Based on Changes Accumulation Model. Dev. Spat. Data Handl. 2005, 85–96. [Google Scholar] [CrossRef]
- Nöellenburg, M.; Merrick, D.; Wolff, A.; Benkert, M. Morphing polylines: A step towards continuous generalization. Comput. Environ. Urban Syst. 2008, 32, 248–260. [Google Scholar] [CrossRef]
- Deng, M.; Peng, D. Morphing Linear Features Based on Their Entire Structures. Trans. GIS 2015, 19, 653–677. [Google Scholar] [CrossRef]
- Gomes, J.; Darsa, L.; Costa, B.; Velho, L. Warping and Morphing of Graphical Objects; Morgan Kaufman: San Francisco, CA, USA, 1999. [Google Scholar]
- Heinz, F.; Güting, R.H. Robust high-quality interpolation of regions to moving regions. GeoInformatica 2015, 20, 385–413. [Google Scholar] [CrossRef]
- Reilly, D.; Inkpen, K. Map morphing: Making sense of incongruent maps. In Proceedings of the Graphics Interface 2004, London, ON, Canada, 15–19 May 2004; pp. 231–238. [Google Scholar]
- Li, Z.L.; Wong, M. Animating basic operations for digital map generalization with morphing techniques. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Beijing, China, 3–11 July 2008. [Google Scholar]
- Pantazis, D.; Karathanasis, B.; Kassoli, M.; Koukofikis, A. Are the morphing techniques useful for cartographic generalization? In Urban and Regional Data Management; Krek, A., Rumor, M., Zlatanova, S., Fendel, E.M., Eds.; CRC Press: London, UK, 2009; pp. 195–204. [Google Scholar]
- Pantazis, D.; Karathanasis, B.; Kassoli, M.; Koukofikis, A.; Stratakis, P. Morphing techniques: Towards new methods for raster based cartographic generalization. Proceedings the Twenty-fourth International Cartography Conference, Santiago, Chile, 15–21 November 2009; pp. 15–21. [Google Scholar]
- Efrat, A.; Har-Peled, S.; Guibas, L.J.; Murali, T.M. Morphing between polylines. In Proceedings of the 12th ACM-SIAM Symposium Discrete Algorithms, Washington, DC, USA, 7–9 January 2001; pp. 680–689. [Google Scholar]
- Van Kreveld, M. Smooth generalization for continuous zooming. In Proceedings of the 20th International Cartographic Conference (ICC’01), Beijing, China, 6–10 August 2001; pp. 2180–2185. [Google Scholar]
- Hughes, J.F. Scheduled Fourier Volume Morphing. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 1 July 1992; pp. 43–46. [Google Scholar]
- He, T.; Wang, S.; Kaufman, A. Wavelet-Based Volume Morphing. In Proceedings of the IEEE Visualization, Washington, DC, USA, 21 October 1994; pp. 85–92. [Google Scholar]
- Yang, W.Y.; Feng, J.Q. 2D Shape Morphing via Automatic Feature Matching and Hierarchical Interpolation. Comput. Graph. 2009, 33, 414–423. [Google Scholar] [CrossRef]
- Sederberg, T.; Greenwood, E. A physically based approach to 2D shape blending. ACM Comput. Graph. 1992, 26, 25–34. [Google Scholar] [CrossRef]
- Van, O.R.; Veltkamp, R.C. Parametric search made practical. Comput. Geom. 2004, 28, 75–88. [Google Scholar]
- Ai, T.H. The drainage network extraction from contour lines for contour line generalization. ISPRS J. Photogramm. Remote Sens. 2007, 62, 93–103. [Google Scholar] [CrossRef]
- Sederberg, T.; Gao, P.; Wang, G.; Mu, H. 2-D shape blending: An intrinsic solution to the vertex path problem. Comput. Graph. 1993, 27, 15–18. [Google Scholar]
- Alexa, M.; Cohen-Or, D.; Levin, D. As-rigid-as-possible shape interpolation. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000; pp. 157–164. [Google Scholar]
- Surazhsky, V.; Gotsman, C. Intrinsic morphing of compatible triangulations. Int. J. Shape Modell. 2003, 9, 191–201. [Google Scholar] [CrossRef]
- Erten, C.; Kobourov, S.G.; Pitta, C. Intersection-free morphing of planar graphs. In Proceedings of the 11th International Symposium on Graph Drawing, Perugia, Italy, 21–24 September 2003. [Google Scholar]
- Cecconi, A.; Galanda, M. Adaptive zooming in Web cartography. Comput. Graph. Forum 2002, 21, 787–799. [Google Scholar] [CrossRef]
- Whited, B.; Rossignac, J. B-morphs between b-compatible curves in the plane. In Proceedings of the ACM/SIAM Joint Conference on Geometric and Physical Modeling, New York, NY, USA, 12 January 2009; pp. 187–198. [Google Scholar]
- Chazal, F.; Lieutier, A.; Rossignac, J.; Whited, B. Ball-Map: Homeomorphism between Compatible Surfaces; Georgia Institute of Technology: Atlanta, GA, USA, 2006. [Google Scholar]
- Arkin, E.M.; Chew, L.P.; Huttenlocher, D.P.; Kedem, K.; Mitchell, J.S.B. An efficiently computable metric for comparing polygonal shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 209–216. [Google Scholar] [CrossRef]
1 | ||
2 | ||
3 | ||
4 |
g | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
---|---|---|---|---|---|---|---|---|---|
1/TMid | 46,000 | 42,000 | 38,000 | 34,000 | 30,000 | 26,000 | 22,000 | 18,000 | 14,000 |
adegree | 0.312 | 0.398 | 0.477 | 0.541 | 0.614 | 0.673 | 0.746 | 0.851 | 0.938 |
bdegree | 0.946 | 0.899 | 0.826 | 0.758 | 0.684 | 0.611 | 0.529 | 0.438 | 0.356 |
Turning Function | Matching | Interpolation | Total | |
---|---|---|---|---|
Run time | 1.263 | 2.387 | 1.334 | 4.984 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, X.; Xie, T. Morphing of Building Footprints Using a Turning Angle Function. ISPRS Int. J. Geo-Inf. 2017, 6, 173. https://doi.org/10.3390/ijgi6060173
Li J, Li X, Xie T. Morphing of Building Footprints Using a Turning Angle Function. ISPRS International Journal of Geo-Information. 2017; 6(6):173. https://doi.org/10.3390/ijgi6060173
Chicago/Turabian StyleLi, Jingzhong, Xingong Li, and Tian Xie. 2017. "Morphing of Building Footprints Using a Turning Angle Function" ISPRS International Journal of Geo-Information 6, no. 6: 173. https://doi.org/10.3390/ijgi6060173
APA StyleLi, J., Li, X., & Xie, T. (2017). Morphing of Building Footprints Using a Turning Angle Function. ISPRS International Journal of Geo-Information, 6(6), 173. https://doi.org/10.3390/ijgi6060173