Vehicle to Grid: Technology, Charging Station, Power Transmission, Communication Standards, Techno-Economic Analysis, Challenges, and Recommendations
Abstract
:1. Introduction
- A complete remake of the types and architecture of the V2G system.
- An in-depth analysis of the V2G industry perspective and operations, both present and future.
- The potential of V2G for distributed generation and a smart grid in the future.
- The communication networks for the application of a V2G distribution system.
- A discussion around charging station communication standards for the V2G distribution system.
- Problems regarding V2G application affecting the grid and the vehicles.
- Techno-economic analysis and initiatives for V2G application.
- A showcase of current research initiatives and legislative initiatives to address V2G problems.
- A definition of the research gaps connected with every issue and the available literature’s existing answers.
- An analysis of the harmonics profile and power quality of the V2G technology.
2. EV Technology
2.1. Advancement in Electric Vehicle Technologies
2.2. Advance EV Batteries
2.3. EV Charging Stations
- The residential CS, in which the end-user takes power. The wall-mounted interior outlet is used to charge the vehicles whenever out of use, especially at night;
- The public CS and commercial CS, which are used to charge stationary automobiles in parking lots;
- Fast CSs (>40 kW), which are ideally suited for high-performance EVs as they can deliver 60 miles of backup power in just 10 to 30 min of charge;
- The zero-emission vehicle (ZEV) CS can provide 15 min of charging to travel approximately 200 miles. This kind is used by the California Air Resources Board (CARB) to grant credits to drivers of non-emissive vehicles.
- Slow charging (mode 1)
- Semi-fast charging (mode 2)
- Fast charging (mode 3)
- Ultra-fast charging (mode 4)
3. V2G Prospective
3.1. V2G System
3.2. Impact on Grid System
3.2.1. Improved Power Quality and Demand Management
3.2.2. Support for RESs
3.3. V2G Present Scenario and Growth
3.4. V2G Industrial Outlook for Investors and Policymakers
3.5. Electric Mobility-Driven Socio-Environmental Vulnerabilities
3.6. V2G Real-World Use Cases
4. Techno-Economic Analysis
- Economic development and job creation: In areas where EV manufacture, investigation, and infrastructure development are taking place, the expanding EV industry helps to create jobs and boost the local economy. Investments in EV manufacturing and associated supply chains can boost regional economies, generate new job possibilities, and contribute to the expansion of high-tech sectors. Additionally, the shift to EVs encourages entrepreneurship and innovation in fields like smart mobility solutions, charging infrastructure, and battery technology, which boosts competitiveness and economic growth.
- Community service and collaboration: Through programs like EV clubs, advocacy organizations, and public awareness advertisements, EV adoption frequently promotes social engagement and collaboration. These community-based efforts are essential for raising consumer knowledge of EVs, resolving their issues, and advancing laws and policies that will benefit them. Additionally, cooperative projects involving local governments, corporations, and nonprofit groups as well as community-based EV charging systems aid in the foundational development of EV infrastructure, including the promotion of sustainable mobility solutions.
- Carbon trading: To create a control mechanism for lowering carbon emissions (CEs), carbon trading turns CEs into commodities for trade by creating legal CE certificates that are capable of being purchased and sold. The investigation incorporates the operational expenses of every aspect and the carbon trading process, considering V2G connectivity, encouragement for EVs, and battery degradation. To create a low-carbon economic optimization model, the goal function seeks to minimize the system’s overall operating costs. According to [131], by implementing carbon trading, CEs are further reduced by 0.4%, overall costs are reduced by CNY 276.33, system balance is improved by 4%, EV battery deterioration from V2G operations is reduced by 22.62%, and the requirement for V2G incentive is reduced by 28.5%.
5. Challenges
5.1. Battery Lifetime Degradation
5.2. System Harmonics
5.3. Utility Grid Liability
5.4. Communication System Challenge
5.5. Cyber Vulnerability
6. Effective V2G Proposed Solution
6.1. EV Energy Storage
6.2. Grid Harmonic Preservation
6.3. V2G Load Dispatch
6.4. Communication Systems
6.5. Cyber Vulnerabilities
7. Conclusions
- The current explosive growth of EVs presents a huge opportunity to rationalize V2G technology.
- The battery life lifecycle is one of the most significant implementation issues for V2G. Increased battery charging/discharging cycles can potentially cause early battery deterioration and lower the range of an EV.
- Power loss in the early stages of power electronics and accompanying harmonics could affect the grid’s stability and require correct control.
- The promise of V2G includes auxiliary services such as frequency fluctuation reduction, reactive power flow regulation, load shaving, and system voltage.
- To ensure that the existing electrical grid, related electrical equipment, and control strategies can endure significant EV penetration, they must be changed.
- V2G is currently too new to be marketed. Additionally, the V2G scheme lacks an appropriate business model for commercialization.
- To benefit from bidirectional power flow, countries have already started modifying the standards for EV chargers. In addition, primary EV production facilities have merged beyond the border to launch appropriate business strategies and technological advancement for V2G installation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hannan, M.; Mollik, M.; Al-Shetwi, A.Q.; Rahman, S.; Mansor, M.; Begum, R.; Muttaqi, K.; Dong, Z. Vehicle to grid connected technologies and charging strategies: Operation, control, issues and recommendations. J. Clean. Prod. 2022, 339, 130587. [Google Scholar] [CrossRef]
- Hossain, S.; Rokonuzzaman, M.; Rahman, K.S.; Habib, A.A.; Tan, W.-S.; Mahmud, M.; Chowdhury, S.; Channumsin, S. Grid-Vehicle-Grid (G2V2G) Efficient Power Transmission: An Overview of Concept, Operations, Benefits, Concerns, and Future Challenges. Sustainability 2023, 15, 5782. [Google Scholar] [CrossRef]
- Ternel, C.; Bouter, A.; Melgar, J. Life cycle assessment of mid-range passenger cars powered by liquid and gaseous biofuels: Comparison with greenhouse gas emissions of electric vehicles and forecast to 2030. Transp. Res. Part D Transp. Environ. 2021, 97, 102897. [Google Scholar] [CrossRef]
- Rasbash, D.; Dillman, K.J.; Heinonen, J.; Ásgeirsson, E.I. A National and Regional Greenhouse Gas Breakeven Assessment of EVs across North America. Sustainability 2023, 15, 2181. [Google Scholar] [CrossRef]
- Zhang, H.; Lei, N.; Wang, Z. Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles. Appl. Energy 2024, 369, 123505. [Google Scholar] [CrossRef]
- Powar, V.; Singh, R. End-to-End Direct-Current-Based Extreme Fast Electric Vehicle Charging Infrastructure Using Lithium-Ion Battery Storage. Batteries 2023, 9, 169. [Google Scholar] [CrossRef]
- Xing, J.; Bliznakov, S.; Bonville, L.; Oljaca, M.; Maric, R. A Review of Nonaqueous Electrolytes, Binders, and Separators for Lithium-Ion Batteries. Electrochem. Energy Rev. 2022, 5, 14. [Google Scholar] [CrossRef]
- Wahid, M.R.; Budiman, B.A.; Joelianto, E.; Aziz, M. A review on drive train technologies for passenger electric vehicles. Energies 2021, 14, 6742. [Google Scholar] [CrossRef]
- Nogueira, T.; Sousa, E.; Alves, G.R. Electric vehicles growth until 2030: Impact on the distribution network power. Energy Rep. 2022, 8, 145–152. [Google Scholar] [CrossRef]
- Polat, H.; Hosseinabadi, F.; Hasan, M.M.; Chakraborty, S.; Geury, T.; El Baghdadi, M.; Wilkins, S.; Hegazy, O. A Review of DC Fast Chargers with BESS for Electric Vehicles: Topology, Battery, Reliability Oriented Control and Cooling Perspectives. Batteries 2023, 9, 121. [Google Scholar] [CrossRef]
- Thangavel, S.; Deepak, M.; Girijaprasanna, T.; Raju, S.; Dhanamjayulu, C.; Muyeen, S. A Comprehensive Review on Electric Vehicle: Battery Management System, Charging Station, Traction Motors. IEEE Access 2023, 11, 20994–21019. [Google Scholar] [CrossRef]
- Safayatullah, M.; Elrais, M.T.; Ghosh, S.; Rezaii, R.; Batarseh, I. A comprehensive review of power converter topologies and control methods for electric vehicle fast charging applications. IEEE Access 2022, 10, 40753–40793. [Google Scholar] [CrossRef]
- Zhou, K.; Wu, Y.; Wu, X.; Sun, Y.; Teng, D.; Liu, Y. Research and Development Review of Power Converter Topologies and Control Technology for Electric Vehicle Fast-Charging Systems. Electronics 2023, 12, 1581. [Google Scholar] [CrossRef]
- Thomas, P.; Shanmugam, P.K. A review on mathematical models of electric vehicle for energy management and grid integration studies. J. Energy Storage 2022, 55, 105468. [Google Scholar] [CrossRef]
- Panda, S.; Mohanty, S.; Rout, P.K.; Sahu, B.K.; Bajaj, M.; Zawbaa, H.M.; Kamel, S. Residential Demand Side Management model, optimization and future perspective: A review. Energy Rep. 2022, 8, 3727–3766. [Google Scholar] [CrossRef]
- Ghasemi-Marzbali, A. Electric vehicle fast charging station design by considering probabilistic model of renewable energy source and demand response. Energy 2023, 267, 126545. [Google Scholar]
- Alsharif, A.; Tan, C.W.; Ayop, R.; Al Smin, A.; Ali Ahmed, A.; Kuwil, F.H.; Khaleel, M.M. Impact of electric Vehicle on residential power distribution considering energy management strategy and stochastic Monte Carlo algorithm. Energies 2023, 16, 1358. [Google Scholar] [CrossRef]
- Arfeen, Z.A.; Khairuddin, A.B.; Munir, A.; Azam, M.K.; Faisal, M.; Arif, M.S.B. En route of electric vehicles with the vehicle to grid technique in distribution networks: Status and technological review. Energy Storage 2020, 2, e115. [Google Scholar] [CrossRef]
- Solanke, T.U.; Ramachandaramurthy, V.K.; Yong, J.Y.; Pasupuleti, J.; Kasinathan, P.; Rajagopalan, A. A review of strategic charging–discharging control of grid-connected electric vehicles. J. Energy Storage 2020, 28, 101193. [Google Scholar] [CrossRef]
- Bibak, B.; Tekiner-Moğulkoç, H. A comprehensive analysis of Vehicle to Grid (V2G) systems and scholarly literature on the application of such systems. Renew. Energy Focus 2021, 36, 1–20. [Google Scholar] [CrossRef]
- Alsharif, A.; Tan, C.W.; Ayop, R.; Dobi, A.; Lau, K.Y. A comprehensive review of energy management strategy in Vehicle-to-Grid technology integrated with renewable energy sources. Sustain. Energy Technol. Assess. 2021, 47, 101439. [Google Scholar] [CrossRef]
- Bibak, B.; Tekiner-Mogulkoc, H. Influences of vehicle to grid (V2G) on power grid: An analysis by considering associated stochastic parameters explicitly. Sustain. Energy Grids Netw. 2021, 26, 100429. [Google Scholar] [CrossRef]
- Ravi, S.S.; Aziz, M. Utilization of electric vehicles for vehicle-to-grid services: Progress and perspectives. Energies 2022, 15, 589. [Google Scholar] [CrossRef]
- Rajasekaran, A.S.; Azees, M.; Al-Turjman, F. A comprehensive survey on security issues in vehicle-to-grid networks. J. Control. Decis. 2022, 10, 150–159. [Google Scholar] [CrossRef]
- Parazdeh, M.A.; Kashani, N.Z.; Fateh, D.; Eldoromi, M.; Birjandi, A.A.M. EVs vehicle-to-grid implementation through virtual power plants. In Scheduling and Operation of Virtual Power Plants; Elsevier: Amsterdam, The Netherlands, 2022; pp. 299–324. [Google Scholar]
- Sachan, S.; Deb, S.; Singh, P.P.; Alam, M.S.; Shariff, S.M. A comprehensive review of standards and best practices for utility grid integration with electric vehicle charging stations. Wiley Interdiscip. Rev. Energy Environ. 2022, 11, e424. [Google Scholar] [CrossRef]
- Panchanathan, S.; Vishnuram, P.; Rajamanickam, N.; Bajaj, M.; Blazek, V.; Prokop, L.; Misak, S. A Comprehensive Review of the Bidirectional Converter Topologies for the Vehicle-to-Grid System. Energies 2023, 16, 2503. [Google Scholar] [CrossRef]
- Tasnim, M.N.; Riana, J.M.K.; Shams, T.; Shahjalal, M.; Subhani, N.; Ahmed, M.R.; Iqbal, A. A critical review on contemporary power electronics interface topologies to vehicle-to-grid technology: Prospects, challenges, and directions. IET Power Electron. 2024, 17, 157–181. [Google Scholar] [CrossRef]
- Elkholy, M.; Said, T.; Elymany, M.; Senjyu, T.; Gamil, M.M.; Song, D.; Ueda, S.; Lotfy, M.E. Techno-economic configuration of a hybrid backup system within a microgrid considering vehicle-to-grid technology: A case study of a remote area. Energy Convers. Manag. 2024, 301, 118032. [Google Scholar] [CrossRef]
- Yadlapalli, R.T.; Kotapati, A.; Kandipati, R.; Koritala, C.S. A review on energy efficient technologies for electric vehicle applications. J. Energy Storage 2022, 50, 104212. [Google Scholar] [CrossRef]
- Sayed, K.; Almutairi, A.; Albagami, N.; Alrumayh, O.; Abo-Khalil, A.G.; Saleeb, H. A review of DC-AC converters for electric vehicle applications. Energies 2022, 15, 1241. [Google Scholar] [CrossRef]
- Goetzel, N.; Hasanuzzaman, M. An empirical analysis of electric vehicle cost trends: A case study in Germany. Res. Transp. Bus. Manag. 2022, 43, 100825. [Google Scholar] [CrossRef]
- Joshi, A.; Sharma, R.; Baral, B. Comparative life cycle assessment of conventional combustion engine vehicle, battery electric vehicle and fuel cell electric vehicle in Nepal. J. Clean. Prod. 2022, 379, 134407. [Google Scholar] [CrossRef]
- Habib, A.A.; Hasan, M.K.; Issa, G.F.; Singh, D.; Islam, S.; Ghazal, T.M. Lithium-Ion Battery Management System for Electric Vehicles: Constraints, Challenges, and Recommendations. Batteries 2023, 9, 152. [Google Scholar] [CrossRef]
- Wang, H.; Pourmousavi, S.A.; Soong, W.L.; Zhang, X.; Ertugrul, N. Battery and energy management system for vanadium redox flow battery: A critical review and recommendations. J. Energy Storage 2023, 58, 106384. [Google Scholar] [CrossRef]
- Lipu, M.S.H.; Mamun, A.A.; Ansari, S.; Miah, M.S.; Hasan, K.; Meraj, S.T.; Abdolrasol, M.G.; Rahman, T.; Maruf, M.H.; Sarker, M.R. Battery management, key technologies, methods, issues, and future trends of electric vehicles: A pathway toward achieving sustainable development goals. Batteries 2022, 8, 119. [Google Scholar] [CrossRef]
- Gayatri, M.; Deekshit, K.; Puhan, P. Battery Management System for V2G and G2V in DC Fast Charging Architecture. In Proceedings of the 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 11–12 January 2024; pp. 1–6. [Google Scholar]
- IEA. Global EV Outlook 2021. 2021. Available online: https://www.iea.org/reports/global-ev-outlook-2021 (accessed on 5 August 2024).
- Mazhar, T.; Asif, R.N.; Malik, M.A.; Nadeem, M.A.; Haq, I.; Iqbal, M.; Kamran, M.; Ashraf, S. Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods. Sustainability 2023, 15, 2603. [Google Scholar] [CrossRef]
- Ganesh, A.H.; Xu, B. A review of reinforcement learning based energy management systems for electrified powertrains: Progress, challenge, and potential solution. Renew. Sustain. Energy Rev. 2022, 154, 111833. [Google Scholar] [CrossRef]
- Amry, Y.; Elbouchikhi, E.; Le Gall, F.; Ghogho, M.; El Hani, S. Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges. Energies 2022, 15, 6037. [Google Scholar] [CrossRef]
- Rohith, J.; Mahesha, G. Review of Energy Management Strategies in Plug-in Hybrid-Electric Vehicles. In Flexible Electronics for Electric Vehicles, Proceedings of FlexEV—2021, Jaipur, India, 18–19 March 2021; Dwivedi, S., Singh, S., Tiwari, M., Shrivastava, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 83–99. [Google Scholar]
- Pramuanjaroenkij, A.; Kakaç, S. The fuel cell electric vehicles: The highlight review. Int. J. Hydrogen Energy 2023, 48, 9401–9425. [Google Scholar] [CrossRef]
- Toktaş-Palut, P. The fuel cell electric vehicle market growth: Analyses of contracts and government incentives. Comput. Ind. Eng. 2023, 176, 108988. [Google Scholar] [CrossRef]
- Mohammed, A.S.; Atnaw, S.M.; Salau, A.O.; Eneh, J.N. Review of optimal sizing and power management strategies for fuel cell/battery/super capacitor hybrid electric vehicles. Energy Rep. 2023, 9, 2213–2228. [Google Scholar] [CrossRef]
- Jawad, M.; Asghar, H.; Arshad, J.; Javed, A.; Qureshi, M.B.; Ali, S.M.; Shabbir, N.; Rassõlkin, A. A novel renewable powered stand-alone electric vehicle parking Lot model. Sustain. Energy Grids Netw. 2023, 33, 100992. [Google Scholar] [CrossRef]
- Kashani, S.A.; Soleimani, A.; Khosravi, A.; Mirsalim, M. State-of-the-Art Research on Wireless Charging of Electric Vehicles Using Solar Energy. Energies 2023, 16, 282. [Google Scholar] [CrossRef]
- Parashar, K.; Verma, K.; Gawre, S.K. Power Quality Analysis of Grid Connected Solar Powered EV Charging Station: A Review. In Recent Advances in Power Electronics and Drives, Proceedings of EPREC 2022, Jamshedpur, India, 2–4 January 2026; Kumar, S., Singh, B., Sood, V.K., Eds.; Springer: Singapore, 2023; pp. 259–271. [Google Scholar]
- Hasan, M.K.; Habib, A.A.; Islam, S.; Balfaqih, M.; Alfawaz, K.M.; Singh, D. Smart grid communication networks for electric vehicles empowering distributed energy generation: Constraints, challenges, and recommendations. Energies 2023, 16, 1140. [Google Scholar] [CrossRef]
- Hasan, M.K.; Mahmud, M.; Habib, A.A.; Motakabber, S.; Islam, S. Review of electric vehicle energy storage and management system: Standards, issues, and challenges. J. Energy Storage 2021, 41, 102940. [Google Scholar] [CrossRef]
- Habib, A.A.; Hasan, M.K.; Mahmud, M.; Motakabber, S.; Ibrahimya, M.I.; Islam, S. A review: Energy storage system and balancing circuits for electric vehicle application. IET Power Electron. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Janek, J.; Zeier, W.G. Challenges in speeding up solid-state battery development. Nat. Energy 2023, 8, 230–240. [Google Scholar] [CrossRef]
- Joshi, A.; Mishra, D.K.; Singh, R.; Zhang, J.; Ding, Y. A comprehensive review of solid-state batteries. Appl. Energy 2025, 386, 125546. [Google Scholar] [CrossRef]
- Li, Z.; Sang, Y.; Tang, R.; Meng, F.; Lan, X.; Hu, R. Challenges and Advances in Low-Temperature Solid-State Batteries. Energy Storage Mater. 2025, 104077. [Google Scholar] [CrossRef]
- Machín, A.; Morant, C.; Márquez, F. Advancements and challenges in solid-state battery technology: An in-depth review of solid electrolytes and anode innovations. Batteries 2024, 10, 29. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Wang, Y.; Zheng, Y.; Jiang, X.; Zhao, Y.; Zhang, Y.; Liu, X.; Wang, Z.; Fang, B. A Review of the Application of Metal-Based Heterostructures in Lithium–Sulfur Batteries. Catalysts 2025, 15, 106. [Google Scholar] [CrossRef]
- Jin, Y.; Deng, N.; Li, Y.; Wang, H.; Zhang, M.; Kang, W.; Cheng, B. Advanced preparation and application of bimetallic materials in lithium-sulfur batteries: A review. J. Energy Chem. 2024, 88, 469–512. [Google Scholar] [CrossRef]
- Zampieri, M.; Tommasone, G.; Morel, L.; Luque, G.L. Cellulose-Based Materials and Their Application in Lithium–Sulfur Batteries. Polymers 2025, 17, 164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhao, Z.; Chen, H.; Pan, Y.; Niu, B.; Long, D.; Zhang, Y. A Review of Advances in Heterostructured Catalysts for Li–S Batteries: Structural Design and Mechanism Analysis. Small 2025, 21, 2409674. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Guo, Z.; Wang, C.; Gao, M.; Lin, X.; Duan, H.; Wang, Y.; Sun, X. Design of multifunctional interfaces on ceramic solid electrolytes for high-performance lithium-air batteries. Green Energy Environ. 2025, 10, 183–192. [Google Scholar] [CrossRef]
- Cao, R.; Chen, K.; Liu, J.; Huang, G.; Liu, W.; Zhang, X. Li–air batteries: Air stability of lithium metal anodes. Sci. China Chem. 2024, 67, 122–136. [Google Scholar] [CrossRef]
- Bi, X.; Jiang, Y.; Chen, R.; Du, Y.; Zheng, Y.; Yang, R.; Wang, R.; Wang, J.; Wang, X.; Chen, Z. Rechargeable zinc–air versus lithium–air battery: From fundamental promises toward technological potentials. Adv. Energy Mater. 2024, 14, 2302388. [Google Scholar] [CrossRef]
- Kale, A.M.; Lee, S.-Y.; Park, S.-J. A Comprehensive Review of Carbon-Based Air Cathode Materials for Advanced non–aqueous Lithium–Air Batteries. Energy Storage Mater. 2024, 73, 103874. [Google Scholar] [CrossRef]
- Fereydooni, A.; Yue, C.; Chao, Y. A Brief Overview of Silicon Nanoparticles as Anode Material: A Transition from Lithium-Ion to Sodium-Ion Batteries. Small 2024, 20, 2307275. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, H.; Peng, J.; Li, L.; Xiao, Y.; Li, L.; Liu, Y.; Qiao, Y.; Chou, S.L. A 30-year overview of sodium-ion batteries. Carbon Energy 2024, 6, e464. [Google Scholar] [CrossRef]
- Iwan, A.; Bogdanowicz, K.A.; Pich, R.; Gonciarz, A.; Miedziak, J.; Plebankiewicz, I.; Przybyl, W. The Safety Engineering of Sodium-Ion Batteries Used as an Energy Storage System for the Military. Energies 2025, 18, 978. [Google Scholar] [CrossRef]
- Bača, P.; Libich, J.; Gazdošová, S.; Polkorab, J. Sodium-Ion Batteries: Applications and Properties. Batteries 2025, 11, 61. [Google Scholar] [CrossRef]
- Rajendran, G.; Vaithilingam, C.A.; Misron, N.; Naidu, K.; Ahmed, M.R. A comprehensive review on system architecture and international standards for electric vehicle charging stations. J. Energy Storage 2021, 42, 103099. [Google Scholar] [CrossRef]
- Bilal, M.; Ahmad, F.; Rizwan, M. Techno-economic assessment of grid and renewable powered electric vehicle charging stations in India using a modified metaheuristic technique. Energy Convers. Manag. 2023, 284, 116995. [Google Scholar] [CrossRef]
- Franzese, P.; Patel, D.D.; Mohamed, A.A.; Iannuzzi, D.; Fahimi, B.; Risso, M.; Miller, J.M. Fast DC Charging Infrastructures for Electric Vehicles: Overview of Technologies, Standards, and Challenges. IEEE Trans. Transp. Electrif. 2023, 9, 3780–3800. [Google Scholar] [CrossRef]
- Asna, M.; Shareef, H.; Prasanthi, A. Planning of fast charging stations with consideration of EV user, distribution network and station operation. Energy Rep. 2023, 9, 455–462. [Google Scholar] [CrossRef]
- Acharige, S.S.; Haque, M.E.; Arif, M.T.; Hosseinzadeh, N.; Hasan, K.N.; Oo, A.M.T. Review of Electric Vehicle Charging Technologies, Standards, Architectures, and Converter Configurations. IEEE Access 2023, 11, 41218–41255. [Google Scholar] [CrossRef]
- Taghizad-Tavana, K.; Alizadeh, A.a.; Ghanbari-Ghalehjoughi, M.; Nojavan, S. A Comprehensive Review of Electric Vehicles in Energy Systems: Integration with Renewable Energy Sources, Charging Levels, Different Types, and Standards. Energies 2023, 16, 630. [Google Scholar] [CrossRef]
- Namadmalan, A.; Tavakoli, R.; Goetz, S.M.; Pantic, Z. Self-Aligning Capability of IPT Pads for High-Power Wireless EV Charging Stations. IEEE Trans. Ind. Appl. 2022, 58, 5593–5601. [Google Scholar] [CrossRef]
- Palani, G.; Sengamalai, U.; Vishnuram, P.; Nastasi, B. Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles. Energies 2023, 16, 2138. [Google Scholar] [CrossRef]
- Galib, A.R.; Chowdhury, M.R.; Jobayer, A.M.; Islam, M.S.; Hossain, S.; Isalm, M.N. Maximum Efficiency Tracking of a Three-coil Inductive Power Transfer System for Wireless EV Battery Charging Applications. In Proceedings of the 2023 Third International Conference on Advances in Electrical, Computing, Communications and Sustainable Technologies (ICAECT 2023), Bhilai, India, 5–6 January 2023; pp. 5–6. [Google Scholar]
- Amjad, M.; Farooq-i-Azam, M.; Ni, Q.; Dong, M.; Ansari, E.A. Wireless charging systems for electric vehicles. Renew. Sustain. Energy Rev. 2022, 167, 112730. [Google Scholar] [CrossRef]
- Rabih, M.; Takruri, M.; Al-Hattab, M.; Alnuaimi, A.A.; Bin Thaleth, M.R. Wireless charging for electric vehicles: A survey and comprehensive guide. World Electr. Veh. J. 2024, 15, 118. [Google Scholar] [CrossRef]
- Adhikary, S.; Biswas, P.K.; Babu, T.S.; Balasubbareddy, M. Bidirectional operation of electric vehicle charger incorporating grids and home energy storage: V2G/G2V/V2H/V2X for sustainable development. In Renewable Energy for Plug-In Electric Vehicles; Elsevier: Amsterdam, The Netherlands, 2024; pp. 191–207. [Google Scholar]
- Mastoi, M.S.; Zhuang, S.; Munir, H.M.; Haris, M.; Hassan, M.; Alqarni, M.; Alamri, B. A study of charging-dispatch strategies and vehicle-to-grid technologies for electric vehicles in distribution networks. Energy Rep. 2023, 9, 1777–1806. [Google Scholar] [CrossRef]
- Zar, A.; Ahmad, I.; Nazir, M.S.; Ahmed, I. Fuzzy optimized conditioned-barrier nonlinear control of electric vehicle for grid to vehicle & vehicle to grid applications. J. Energy Storage 2023, 64, 107251. [Google Scholar]
- Aktar, A.K.; Taşcıkaraoğlu, A.; Gürleyük, S.S.; Catalão, J.P. A framework for dispatching of an electric vehicle fleet using vehicle-to-grid technology. Sustain. Energy Grids Netw. 2023, 33, 100991. [Google Scholar] [CrossRef]
- Clar-Garcia, D.; Campello-Vicente, H.; Fabra-Rodriguez, M.; Velasco-Sanchez, E. Research on Battery Electric Vehicles’ DC Fast Charging Noise Emissions: Proposals to Reduce Environmental Noise Caused by Fast Charging Stations. World Electr. Veh. J. 2025, 16, 42. [Google Scholar] [CrossRef]
- Leijon, J.; Boström, C. Charging electric vehicles today and in the future. World Electr. Veh. J. 2022, 13, 139. [Google Scholar] [CrossRef]
- Zentani, A.; Almaktoof, A.; Kahn, M.T. A Comprehensive Review of Developments in Electric Vehicles Fast Charging Technology. Appl. Sci. 2024, 14, 4728. [Google Scholar] [CrossRef]
- Torres, S.; Durán, I.; Marulanda, A.; Pavas, A.; Quirós-Tortós, J. Electric vehicles and power quality in low voltage networks: Real data analysis and modeling. Appl. Energy 2022, 305, 117718. [Google Scholar] [CrossRef]
- Justin, F.; Peter, G.; Stonier, A.A.; Ganji, V. Power quality improvement for vehicle-to-grid and grid-to-vehicle technology in a microgrid. Int. Trans. Electr. Energy Syst. 2022, 2022, 2409188. [Google Scholar] [CrossRef]
- Sahoo, B.; Routray, S.K.; Rout, P.K.; Alhaider, M.M. Power quality and stability assessment of hybrid microgrid and electric vehicle through a novel transformation technique. Sustain. Energy Technol. Assess. 2022, 51, 101927. [Google Scholar] [CrossRef]
- Nair, D.R.; Nair, M.G.; Thakur, T. A smart microgrid system with artificial intelligence for power-sharing and power quality improvement. Energies 2022, 15, 5409. [Google Scholar] [CrossRef]
- Jenn, A.; Highleyman, J. Distribution grid impacts of electric vehicles: A California case study. Iscience 2022, 25, 103686. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Khan, I.A.; Khan, A.A.; Mallik, A.; Nadeem, M.F. Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system. Renew. Sustain. Energy Rev. 2022, 153, 111756. [Google Scholar]
- Bhukya, J.; Kumar Singh, N.; Mahajan, V. Impact of aggregated model-based optimization for wind farm and electric vehicle on power system stability. Comput. Electr. Eng. 2023, 105, 108480. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Galib, A.R.; Jobayer, A.M.; Hossain, S.; Isalm, M.N.; Islam, M.S. Impact of PLL Dynamics on Frequency Stability in Low Inertia Trending Power Systems. In Proceedings of the 2023 5th International Conference on Power, Control & Embedded Systems (ICPCES), Allahabad, India, 6–8 January 2023; pp. 1–6. [Google Scholar]
- Anany, M.G.; ElDesouky, A.A.; Salem, A.A. Real-time V2G simulator for grid system frequency and voltage regulation with fault ride-through capabilities. Electr. Power Syst. Res. 2024, 234, 110561. [Google Scholar] [CrossRef]
- Kang, Y.; Lu, G.; Chen, M.; Li, S. Collaborative Optimization of Direct Current Distribution Network Based on Scaled Electric Vehicles Charging and Discharging and Soft Open Points Topology Reconfiguration. Energies 2025, 18, 373. [Google Scholar] [CrossRef]
- Costa, J.S.; Lunardi, A.; Lourenço, L.F.N.; Sguarezi Filho, A.J. Disturbance Robust Predictive Repetitive Direct Power Control Applied to an Electric Vehicle Charger Grid-side Converter. IEEE J. Emerg. Sel. Top. Ind. Electron. 2024, 1–9. [Google Scholar] [CrossRef]
- Zheng, Y.; Shao, Z.; Lei, X.; Shi, Y.; Jian, L. The economic analysis of electric vehicle aggregators participating in energy and regulation markets considering battery degradation. J. Energy Storage 2022, 45, 103770. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Jordehi, A.R.; Mansouri, S.A.; Jurado, F. A two-stage IGDT-stochastic model for optimal scheduling of energy communities with intelligent parking lots. Energy 2023, 263, 126018. [Google Scholar] [CrossRef]
- Abo-Khalil, A.G.; Abdelkareem, M.A.; Sayed, E.T.; Maghrabie, H.M.; Radwan, A.; Rezk, H.; Olabi, A. Electric vehicle impact on energy industry, policy, technical barriers, and power systems. Int. J. Thermofluids 2022, 13, 100134. [Google Scholar] [CrossRef]
- IEA: New CEM Campaign Aims for Goal of 30% New Electric Vehicle Sales by 2030. Available online: https://www.iea.org/news/new-cem-campaign-aims-for-goal-of-30-new-electric-vehicle-sales-by-2030 (accessed on 15 August 2024).
- BloombergNEF: Electric Vehicle Outlook 2022. Available online: https://about.bnef.com/electric-vehicle-outlook/ (accessed on 15 August 2024).
- IEA: Global EV Data Explorer, EV Worldwide Projected Sales, STEPS Scenario 2022–2030. Available online: https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer (accessed on 5 September 2024).
- IEA: Global Electric Car Stock, 2015–2021. Available online: https://www.iea.org/data-and-statistics/charts/global-electric-car-stock-2010-2021 (accessed on 5 September 2024).
- Yu, H.; Niu, S.; Shang, Y.; Shao, Z.; Jia, Y.; Jian, L. Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications. Renew. Sustain. Energy Rev. 2022, 168, 112812. [Google Scholar] [CrossRef]
- Anthony Jnr, B. Integrating electric vehicles to achieve sustainable energy as a service business model in smart cities. Front. Sustain. Cities 2021, 3, 685716. [Google Scholar] [CrossRef]
- IEA: Webinar-Managing Grid Integration of Electric Vehicles. Available online: https://www.iea.org/events/managing-grid-integration-of-electric-vehicles (accessed on 7 September 2024).
- Ford, R.; Hardy, J. Are we seeing clearly? The need for aligned vision and supporting strategies to deliver net-zero electricity systems. Energy Policy 2020, 147, 111902. [Google Scholar] [CrossRef] [PubMed]
- Pallonetto, F. Advanced Energy Management Systems and Demand-Side Measures for Buildings towards the Decarbonisation of Our Society. Afford. Clean Energy 2022, 173. [Google Scholar]
- Yao, X.; Fan, Y.; Zhao, F.; Ma, S.-C. Economic and climate benefits of vehicle-to-grid for low-carbon transitions of power systems: A case study of China’s 2030 renewable energy target. J. Clean. Prod. 2022, 330, 129833. [Google Scholar] [CrossRef]
- Thiel, C.; Amillo, A.G.; Tansini, A.; Tsakalidis, A.; Fontaras, G.; Dunlop, E.; Taylor, N.; Jäger-Waldau, A.; Araki, K.; Nishioka, K. Impact of climatic conditions on prospects for integrated photovoltaics in electric vehicles. Renew. Sustain. Energy Rev. 2022, 158, 112109. [Google Scholar] [CrossRef]
- Gopal, A.R.; Park, W.Y.; Witt, M.; Phadke, A. Hybrid-and battery-electric vehicles offer low-cost climate benefits in China. Transp. Res. Part D Transp. Environ. 2018, 62, 362–371. [Google Scholar] [CrossRef]
- Togun, H.; Aljibori, H.S.S.; Abed, A.M.; Biswas, N.; Alshamkhani, M.T.; Niyas, H.; Mohammed, H.I.; Rashid, F.L.; Paul, D. A review on recent advances on improving fuel economy and performance of a fuel cell hybrid electric vehicle. Int. J. Hydrog. Energy 2024, 89, 22–47. [Google Scholar] [CrossRef]
- Chen, L.; Ma, R. Clean energy synergy with electric vehicles: Insights into carbon footprint. Energy Strategy Rev. 2024, 53, 101394. [Google Scholar] [CrossRef]
- Tansini, A.; Pavlovic, J.; Fontaras, G. Quantifying the real-world CO2 emissions and energy consumption of modern plug-in hybrid vehicles. J. Clean. Prod. 2022, 362, 132191. [Google Scholar] [CrossRef]
- Pavković, D.; Cipek, M.; Plavac, F.; Karlušić, J.; Krznar, M. Internal combustion engine starting and torque boosting control system design with vibration active damping features for a P0 mild hybrid vehicle configuration. Energies 2022, 15, 1311. [Google Scholar] [CrossRef]
- Wan, M.; Yu, H.; Huo, Y.; Yu, K.; Jiang, Q.; Geng, G. Feasibility and challenges for vehicle-to-grid in electricity market: A review. Energies 2024, 17, 679. [Google Scholar] [CrossRef]
- Gomes, D.M.; Neto, R.C. Techno-economic analysis of vehicle-to-grid technology: Efficient integration of electric vehicles into the grid in Portugal. J. Energy Storage 2024, 97, 112769. [Google Scholar] [CrossRef]
- Shi, L.; Guo, M. An economic evaluation of electric vehicles balancing grid load fluctuation, new perspective on electrochemical energy storage alternative. J. Energy Storage 2023, 68, 107801. [Google Scholar] [CrossRef]
- Adegbohun, F.; von Jouanne, A.; Agamloh, E.; Yokochi, A. A Review of Bidirectional Charging Grid Support Applications and Battery Degradation Considerations. Energies 2024, 17, 1320. [Google Scholar] [CrossRef]
- Lei, X.; Shang, Y.; Shao, Z.; Jia, Y.; Jian, L. Grid integration of electric vehicles for optimal marginal revenue of distribution system operator in spot market. Energy Rep. 2022, 8, 1061–1068. [Google Scholar] [CrossRef]
- Zheng, Y.; Shao, Z.; Shang, Y.; Jian, L. Modeling the temporal and economic feasibility of electric vehicles providing vehicle-to-grid services in the electricity market under different charging scenarios. J. Energy Storage 2023, 68, 107579. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Nordfjaern, T.; Klöckner, C.A. Estimating financial compensation and minimum guaranteed charge for vehicle-to-grid technology. Energy Policy 2023, 180, 113649. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Liang, Y.; Song, C.; Liao, S. Economic and carbon reduction potential assessment of vehicle-to-grid development in Guangdong province. Energy 2024, 302, 131742. [Google Scholar] [CrossRef]
- Nagel, N.O.; Jåstad, E.O.; Martinsen, T. The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home-and public parking potentials. Energy 2024, 293, 130729. [Google Scholar] [CrossRef]
- Shaheen, H.I.; Rashed, G.I.; Yang, B.; Yang, J. Optimal electric vehicle charging and discharging scheduling using metaheuristic algorithms: V2G approach for cost reduction and grid support. J. Energy Storage 2024, 90, 111816. [Google Scholar] [CrossRef]
- Geng, J.; Bai, B.; Hao, H.; Sun, X.; Liu, M.; Liu, Z.; Zhao, F. Assessment of vehicle-side costs and profits of providing vehicle-to-grid services. eTransportation 2024, 19, 100303. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Nastasi, B.; Groppi, D.; Garcia, D.A. Socio-techno-economic-environmental investigation of scenarios-based combination sources of green energy system-a case study in Spain. Energy Rep. 2024, 12, 2611–2620. [Google Scholar] [CrossRef]
- Farajnezhad, M.; Kuan, J.S.T.S.; Kamyab, H. Impact of economic, social, and environmental factors on electric vehicle adoption: A review. Eídos 2024, 17, 39–62. [Google Scholar] [CrossRef]
- Mogire, E.; Kilbourn, P.; Luke, R. Electric Vehicles in Last-Mile Delivery: A Bibliometric Review. World Electr. Veh. J. 2025, 16, 52. [Google Scholar] [CrossRef]
- Steinbach, S.A.; Blaschke, M.J. How grid reinforcement costs differ by the income of electric vehicle users. Nat. Commun. 2024, 15, 9674. [Google Scholar] [CrossRef]
- Li, R.; Ren, H.; Wu, Q.; Li, Q.; Gao, W. Cooperative economic dispatch of EV-HV coupled electric-hydrogen integrated energy system considering V2G response and carbon trading. Renew. Energy 2024, 227, 120488. [Google Scholar] [CrossRef]
- Harnischmacher, C.; Markefke, L.; Brendel, A.B.; Kolbe, L. Two-sided sustainability: Simulating battery degradation in vehicle to grid applications within autonomous electric port transportation. J. Clean. Prod. 2023, 384, 135598. [Google Scholar] [CrossRef]
- Wei, Y.; Yao, Y.; Pang, K.; Xu, C.; Han, X.; Lu, L.; Li, Y.; Qin, Y.; Zheng, Y.; Wang, H. A Comprehensive Study of Degradation Characteristics and Mechanisms of Commercial Li (NiMnCo) O2 EV Batteries under Vehicle-To-Grid (V2G) Services. Batteries 2022, 8, 188. [Google Scholar] [CrossRef]
- Prakash, K.; Ali, M.; Siddique, M.N.I.; Chand, A.A.; Kumar, N.M.; Dong, D.; Pota, H.R. A review of battery energy storage systems for ancillary services in distribution grids: Current status, challenges and future directions. Front. Energy Res. 2022, 10, 1404. [Google Scholar] [CrossRef]
- Inci, M.; Celik, O.; Lashab, A.; Bayindir, K.C.; Vasquez, J.C.; Guerrero, J.M. Power system integration of electric vehicles: A review on impacts and contributions to the smart grid. Appl. Sci. 2024, 14, 2246. [Google Scholar]
- Fei, F.; Sun, W.; Iacobucci, R.; Schmöcker, J.-D. Exploring the profitability of using electric bus fleets for transport and power grid services. Transp. Res. Part C Emerg. Technol. 2023, 149, 104060. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, D.; Dehghanian, P.; Tian, Y.; Hong, T. Aggregated electric vehicle load modeling in large-scale electric power systems. IEEE Trans. Ind. Appl. 2020, 56, 5796–5810. [Google Scholar] [CrossRef]
- Jaman, S.; Verbrugge, B.; Garcia, O.H.; Abdel-Monem, M.; Oliver, B.; Geury, T.; Hegazy, O. Development and Validation of V2G Technology for Electric Vehicle Chargers Using Combo CCS Type 2 Connector Standards. Energies 2022, 15, 7364. [Google Scholar] [CrossRef]
- Kapassa, E.; Themistocleous, M.; Christodoulou, K.; Iosif, E. Blockchain application in internet of vehicles: Challenges, contributions and current limitations. Future Internet 2021, 13, 313. [Google Scholar] [CrossRef]
- Chamola, V.; Sancheti, A.; Chakravarty, S.; Kumar, N.; Guizani, M. An IoT and edge computing based framework for charge scheduling and EV selection in V2G systems. IEEE Trans. Veh. Technol. 2020, 69, 10569–10580. [Google Scholar] [CrossRef]
- Sarkar, A.; Daripa, K.; Khan, M.Z.; Noorwali, A. Cloud enabled Blockchain-based secured communication in mutual intelligent transportation using neural synchronization. Veh. Commun. 2022, 38, 100533. [Google Scholar] [CrossRef]
- Jabbar, R.; Dhib, E.; Said, A.B.; Krichen, M.; Fetais, N.; Zaidan, E.; Barkaoui, K. Blockchain technology for intelligent transportation systems: A systematic literature review. IEEE Access 2022, 10, 20995–21031. [Google Scholar] [CrossRef]
- Mojumder, M.R.H.; Ahmed Antara, F.; Hasanuzzaman, M.; Alamri, B.; Alsharef, M. Electric vehicle-to-grid (V2G) technologies: Impact on the power grid and battery. Sustainability 2022, 14, 13856. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, J.; Chen, Y.; Cao, Z.; Dong, X.; Choo, K.-K.R. PADP: Efficient privacy-preserving data aggregation and dynamic pricing for vehicle-to-grid networks. IEEE Internet Things J. 2020, 8, 7863–7873. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, Y.; Zhang, X.; Liu, G. Physically secure and privacy-preserving charging authentication framework with data aggregation in vehicle-to-grid networks. IEEE Trans. Intell. Transp. Syst. 2024, 25, 18831–18846. [Google Scholar] [CrossRef]
- Wu, T.; Li, G.; Wang, J.; Xiao, B.; Song, Y. PPCA: Privacy-Preserving Continuous Authentication Scheme with Consistency Proof for Zero-Trust Architecture Networks. IEEE Internet Things J. 2025. [Google Scholar] [CrossRef]
- Yu, S.; Park, K. PUF-based robust and anonymous authentication and key establishment scheme for V2G networks. IEEE Internet Things J. 2024, 11, 15450–15464. [Google Scholar] [CrossRef]
- Zou, S.; Cao, Q.; Huangqi, C.; Huang, A.; Li, Y.; Wang, C.; Xu, G. A Physician’s Privacy-Preserving Authentication and Key Agreement Protocol Based on Decentralized Identity for Medical Data Sharing in IoMT. IEEE Internet Things J. 2024, 11, 29174–29189. [Google Scholar] [CrossRef]
- Wang, B.; Shi, Z.; Zhang, S. A Charging and Discharging Data Privacy Protection Scheme for V2G Networks Based on Cloud–Fog-End. Appl. Sci. 2024, 14, 4096. [Google Scholar] [CrossRef]
- Kwon, D.; Son, S.; Park, K.; Das, A.K.; Park, Y. Design of Blockchain-Based Multi-Domain Authentication Protocol for Secure EV Charging Services in V2G Environments. IEEE Trans. Intell. Transp. Syst. 2024, 25, 21783–21795. [Google Scholar] [CrossRef]
- Zafar, B.; Slama, S.A.B. PV-EV integrated home energy management using vehicle-to-home (V2H) technology and household occupant behaviors. Energy Strategy Rev. 2022, 44, 101001. [Google Scholar] [CrossRef]
- Darcovich, K.; Laurent, T.; Ribberink, H. Improved prospects for V2X with longer range 2nd generation electric vehicles. eTransportation 2020, 6, 100085. [Google Scholar] [CrossRef]
- Scott, C.; Ahsan, M.; Albarbar, A. Machine learning based vehicle to grid strategy for improving the energy performance of public buildings. Sustainability 2021, 13, 4003. [Google Scholar] [CrossRef]
- Habib, A.A.; Hasan, M.K.; Islam, S.; Sharma, R.; Hassan, R.; Nafi, N.; Yadav, K.; Alotaibi, S.D. Energy-efficient system and charge balancing topology for electric vehicle application. Sustain. Energy Technol. Assess. 2022, 53, 102516. [Google Scholar]
- Duc, M.L.; Bilik, P.; Martinek, R. Analysis of Factors Affecting Electric Power Quality: PLS-SEM and Deep Learning Neural Network Analysis. IEEE Access 2023, 11, 40591–40607. [Google Scholar] [CrossRef]
- Kumar, K.J.; Kumar, S.; Nandakumar, V.S. Standards for electric vehicle charging stations in India: A review. Energy Storage 2022, 4, e261. [Google Scholar] [CrossRef]
- De Luca, F.; Calderaro, V.; Galdi, V. A fuzzy logic-based control algorithm for the recharge/v2g of a nine-phase integrated on-board battery charger. Electronics 2020, 9, 946. [Google Scholar] [CrossRef]
- Yazdan, T.; Humza, M.; Cho, H.-W. Three-phase Dual-Winding Multitasked PMSM Machine Using Double Layer Concentrated Winding for HEV Application. IEEE Access 2023, 11, 36682–36691. [Google Scholar] [CrossRef]
- Feng, J.; Xu, P.; Zhu, Z.; Wang, S.; Shao, B.; Xiao, Y.; Guo, S.; Li, Y.; Feng, S. Comparative study of dual 3-phase permanent magnet machines with coil span of two slot-pitches. IET Electr. Power Appl. 2022, 16, 1426–1438. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, Z.; Pride, A.; Shi, J.; Deodhar, R.; Umemura, C. Comparison of different winding configurations for dual three-phase interior PM machines in electric vehicles. World Electr. Veh. J. 2022, 13, 51. [Google Scholar] [CrossRef]
- Li, S.; Gu, C.; Li, J.; Wang, H.; Yang, Q. Boosting grid efficiency and resiliency by releasing V2G potentiality through a novel rolling prediction-decision framework and deep-LSTM algorithm. IEEE Syst. J. 2020, 15, 2562–2570. [Google Scholar] [CrossRef]
- Sharma, S.; Jain, P. Integrated DR and V2G Framework of EV Aggregator Under Low Carbon Paradigm. In Flexible Electronics for Electric Vehicles, Proceedings of FlexEV—2021, Jaipur, India, 18–19 March 2021; Dwivedi, S., Singh, S., Tiwari, M., Shrivastava, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 489–503. [Google Scholar]
- Hyodo, F.; Sato, Y.; Masuta, T.; Tayjasanant, T. Scheduling method for aggregated photovoltaic-battery systems considering information notified by distribution system operator. Electr. Eng. Jpn. 2023, 216, e23419. [Google Scholar] [CrossRef]
- Wong, R.; White, J.; Gill, S.; Tayeb, S. Virtual Traffic Light Implementation on a Roadside Unit over 802.11 p Wireless Access in Vehicular Environments. Sensors 2022, 22, 7699. [Google Scholar] [CrossRef]
- Hou, W.; Sun, Y.; Li, D.; Guan, Z.; Liu, J. Lightweight and Privacy-Preserving Charging Reservation Authentication Protocol for 5G-V2G. IEEE Trans. Veh. Technol. 2023, 72, 7871–7883. [Google Scholar] [CrossRef]
- ElGhanam, E.; Sharf, H.; Odeh, Y.; Hassan, M.S.; Osman, A.H. On the coordination of charging demand of electric vehicles in a network of dynamic wireless charging systems. IEEE Access 2022, 10, 62879–62892. [Google Scholar] [CrossRef]
- Biswas, P.; Rashid, A.; Biswas, A.; Nasim, M.A.A.; Chakraborty, S.; Gupta, K.D.; George, R. AI-driven approaches for optimizing power consumption: A comprehensive survey. Discov. Artif. Intell. 2024, 4, 116. [Google Scholar] [CrossRef]
- Warraich, Z.; Morsi, W. Early detection of cyber–physical attacks on fast charging stations using machine learning considering vehicle-to-grid operation in microgrids. Sustain. Energy Grids Netw. 2023, 34, 101027. [Google Scholar] [CrossRef]
- Johnson, J.; Berg, T.; Anderson, B.; Wright, B. Review of electric vehicle charger cybersecurity vulnerabilities, potential impacts, and defenses. Energies 2022, 15, 3931. [Google Scholar] [CrossRef]
- Bansal, G.; Naren, N.; Chamola, V.; Sikdar, B.; Kumar, N.; Guizani, M. Lightweight mutual authentication protocol for V2G using physical unclonable function. IEEE Trans. Veh. Technol. 2020, 69, 7234–7246. [Google Scholar] [CrossRef]
- Ahmadian, A.; Ponnambalam, K.; Almansoori, A.; Elkamel, A. Optimal Management of a Virtual Power Plant Consisting of Renewable Energy Resources and Electric Vehicles Using Mixed-Integer Linear Programming and Deep Learning. Energies 2023, 16, 1000. [Google Scholar] [CrossRef]
- Biswas, P.; Rashid, A.; Al Masum, A.; Al Nasim, M.A.; Ferdous, A.A.; Gupta, K.D.; Biswas, A. An Extensive and Methodical Review of Smart Grids for Sustainable Energy Management-Addressing Challenges with AI, Renewable Energy Integration and Leading-edge Technologies. IEEE Access 2025. [Google Scholar] [CrossRef]
- Arasu, R.; Nick, W.Y.; Rajani, B.; Baskar, S.; Vijayesvaran, A. Intellogent Resource Monitoring and Control Method in Vehicular Ad-hoc Networks for Electric Vehicle Enabled Microgrids. J. Wirel. Mob. Netw. Uniquitous Comput. Dependable Appl. 2024, 15, 50–59. [Google Scholar]
- Ikumapayi, O.M.; Adegoke, O.; Guwor-Niki, W.-E.H.; Jaiyesimi, B.G.; Laseinde, O.T.; Ting, T.T. A Concise Review on the Impact of Electric Vehicle Penertration on National Grid. In Proceedings of the 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SB4SDG), Omu-Aran, Nigeria, 2–4 April 2024; pp. 1–9. [Google Scholar]
Ref | Years | Contributions | Research Gaps |
---|---|---|---|
[18] | 2020 | V2G distribution networks | V2G generation, transmission, and cyber-security |
[19] | 2020 | Charging/discharging control for G2V | Cyber-security and communication standards and protocols |
[20] | 2021 | V2G concept, technology, obstacles, and barriers | Transmission distribution and cyber-physical security |
[21] | 2021 | V2G energy management, communication standards, and protocols | Transmission distribution and cyber-physical security |
[22] | 2021 | EV and V2G reliability, cost, and emissions. | Cyber-security, communication standards, and protocols |
[23] | 2022 | Cost and environment-wise benefits | V2G communication standards and protocols, and cyber-security |
[1] | 2022 | V2G connection and benefits | Cyber-security, communication standards, and protocols |
[24] | 2022 | V2G network security issues | V2G cyber-physical transmission and distribution |
[25] | 2022 | V2G virtual power plants | Cyber-security and charging station communication standards and protocols |
[26] | 2022 | G2Vcharging station standards | Cyber-security issues |
[27] | 2023 | V2G and G2V power transfer bidirectional converter | EV charging station standards, transmission, distribution, and cyber-security issues |
[2] | 2023 | V2G power transfer operations and control | CPS communication standards and protocols and cyber-security |
[28] | 2024 | V2G power electronic interface | CPS communication standards and protocols and cyber-security |
[29] | 2024 | V2G hybrid backup system and techno-economic analysis | V2G cyber-physical transmission and distribution, and charging station communication standards and protocols |
EV Technology | Power Rating (kW) | Charging Time | Features | Drawback | ||
---|---|---|---|---|---|---|
AC | DC | First (min) | Slow (hour) | |||
BEV | 40–221 | 4–22 | 18–90 | 3–13 |
|
|
HEV | - | 21–185 | <20 | 2–22 |
|
|
PHEV | 50–350 | 1–19 | - | 1.5–20 |
|
|
Solar EV | 50–300 | 2–22 | 20 | 4–7 |
|
|
FCEV | 100 | Refueling time |
|
|
Standards | Source | Phase | Level/Mode | Current (A) | Voltage (V) | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|
SAE-J1772 | DC | DC | Level 1 | 16 | 120 | Frequently used in North America, integrated safety features, ensure various EVs and CSs are compatible, weather-resistant | No DC fast charging, slower charging speeds, bulky connector, inadequate futureproofing |
Level 2 | 32–80 | 240 | |||||
AC | Single | Level 1 | 80 | 200–450 | |||
Level 2 | 200 | ||||||
IEC-62196 | DC | Mode 4 | 400 | 600 | Adoption in Europe, AC and DC charging support, future-proof design, higher charging power, durable and more secure | AC charging limitations, bulkier design, high infrastructure costs | |
AC | Single | Mode 1 | 16 | 120 | |||
Mode 2 | 32 | 240 | |||||
Mode 3 | 32–250 | 250 | |||||
IEC-61851-1 | DC | DC | Mode 4 | 200 | 400 | Covers AC and DC charging and multiple power levels, global recognition, interoperability, scalability, and safety features | Complex implementation, connectors not defined, limited control features, Modes 1 and 2 deliver comparatively insufficient power |
AC | Single | Mode 3 (dedicated) and Mode 2 (non-dedicated) | 32 | 250 | |||
Three | 32 | 480 | |||||
Single | Mode 1 (non-dedicated) | 16 | 250 | ||||
Three | 16 | 480 | |||||
Tesla-NACS | DC/AC | DC, Single, Three | all | Manufacture recurred | 500–1000 | High power capability, AC and DC unified connector, supercharger network, industry adaption, lightweight, simplified, and efficient design | Compatibility issues, supercharger pricing inconsistency, other EV manufacturers are required to update vehicles or supply adapters |
Charger Category | Power Transfer | Operation Range | Auxiliary Units | Features |
---|---|---|---|---|
CWCS | 7.7 kVA | 100–600 kHz |
|
|
RIWCS | 22 kVA | 10–150 Hz |
|
|
PMWCS | 11 KVA | <150 Hz for 1 kW |
|
|
IWCS | 3.7 kVA | 19–50 kHz |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, P.; Rashid, A.; Habib, A.K.M.A.; Mahmud, M.; Motakabber, S.M.A.; Hossain, S.; Rokonuzzaman, M.; Molla, A.H.; Harun, Z.; Khan, M.M.H.; et al. Vehicle to Grid: Technology, Charging Station, Power Transmission, Communication Standards, Techno-Economic Analysis, Challenges, and Recommendations. World Electr. Veh. J. 2025, 16, 142. https://doi.org/10.3390/wevj16030142
Biswas P, Rashid A, Habib AKMA, Mahmud M, Motakabber SMA, Hossain S, Rokonuzzaman M, Molla AH, Harun Z, Khan MMH, et al. Vehicle to Grid: Technology, Charging Station, Power Transmission, Communication Standards, Techno-Economic Analysis, Challenges, and Recommendations. World Electric Vehicle Journal. 2025; 16(3):142. https://doi.org/10.3390/wevj16030142
Chicago/Turabian StyleBiswas, Parag, Abdur Rashid, A. K. M. Ahasan Habib, Md Mahmud, S. M. A. Motakabber, Sagar Hossain, Md. Rokonuzzaman, Altaf Hossain Molla, Zambri Harun, Md Munir Hayet Khan, and et al. 2025. "Vehicle to Grid: Technology, Charging Station, Power Transmission, Communication Standards, Techno-Economic Analysis, Challenges, and Recommendations" World Electric Vehicle Journal 16, no. 3: 142. https://doi.org/10.3390/wevj16030142
APA StyleBiswas, P., Rashid, A., Habib, A. K. M. A., Mahmud, M., Motakabber, S. M. A., Hossain, S., Rokonuzzaman, M., Molla, A. H., Harun, Z., Khan, M. M. H., Cheng, W.-H., & Lei, T. M. T. (2025). Vehicle to Grid: Technology, Charging Station, Power Transmission, Communication Standards, Techno-Economic Analysis, Challenges, and Recommendations. World Electric Vehicle Journal, 16(3), 142. https://doi.org/10.3390/wevj16030142