- Article
Improving Coil Misalignment Performance in Wireless Power Transfer for Electric Vehicles Using Magnetic Flux Density Analysis
- Pharida Jeebklum,
- Takehiro Imura and
- Chaiyut Sumpavakup
The efficiency of power transfer is a critical issue for wireless charging applications in electric vehicles. The misalignment between the transmitter coil and the receiver coil in wireless charging leads to a significant reduction in efficiency. This article investigates improving coil misalignment performance in wireless power transfer for electric vehicles using magnetic flux density analysis. The objective is to study the effect of the automatic alignment transmitter system’s movement on error distance. The automatic alignment transmitter system was integrated with a wireless power transfer system to realign the transmitter coil whenever lateral misalignment occurred between the transmitter and receiver coils. The experiment was performed with a horizontal misalignment of 0.35 m and was repeated three times. The gap between the coils was held constant at 0.15 m. The wireless charging system was designed according to the Society of Automotive Engineers (SAE) standard. The experimental results demonstrated that the movement error distance was 0.001 m, with an average error of 0.33%. These findings indicate that the automatic alignment transmitter system achieved an operational effectiveness of 99.67%. The maximum wireless charging efficiencies of 75.78% and 75.59% were recorded for the X-axis and Y-axis adjustments, respectively.
6 February 2026





