Constraints in Clinical Cardiology and Personalized Medicine: Interrelated Concepts in Clinical Cardiology
Abstract
:1. Introduction
2. Methodology of Systems Biology
3. Constraints in Medicine and Clinical Cardiology
3.1. Biological and Medical Constraints
3.2. Constraints Due to Limitations of Current Technology
3.3. Constraints on Healthcare Budget
4. Personalized Medicine-Complex Cardiac Diseases
4.1. Personalized Medicine-Ethics and Legal Status
4.2. Personalized Medicine-Data Integration
4.3. Personalized Medicine-Taxonomic Revision
4.4. Personalized Medicine-Policy Decisions
4.5. Personalized Medicine-Organization of Human Genomic Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Palsson, B.O. Systems Biology; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Federoff, H.J.; Gostin, L.O. Evolving from Reductionism to Holism: Is there a future for systems medicine? JAMA 2009, 302, 994–996. [Google Scholar] [CrossRef]
- Boorse, C. A Rebuttal on Health. In What Is Disease? Humber, J.M., Almeder, J.F., Eds.; Humana Press: Totowa, NJ, USA, 1997; pp. 1–134. [Google Scholar] [CrossRef]
- Fiandaca, M.S.; Mapstone, M.; Connors, E.; Jacobson, M.; Monuki, E.S.; Malik, S.; Macciardi, F.; Federoff, H.J. Systems healthcare: A holistic paradigm for tomorrow. BMC Syst. Biol. 2017, 11, 142. [Google Scholar] [CrossRef] [Green Version]
- Louridas, G.E.; Lourida, K.G. Conceptual Foundations of Systems Biology Explaining Complex Cardiac Diseases. Healthcare 2017, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, J.K.; Holmes, E.; Lindon, J.C.; Wilson, I.D. The challenges of modeling mammalian biocomplexity. Nat. Biotechnol. 2004, 22, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Boogerd, F.C.; Bruggeman, F.J.; Hofmeyr, J.H.S.; Westerhoff, H.V. (Eds.) Systems Biology, Philosophical Foundations; Elsevier BV: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Naylor, S.; Chen, J.Y. Unraveling human complexity and disease with systems biology and personalized medicine. Pers. Med. 2010, 7, 275–289. [Google Scholar] [CrossRef] [Green Version]
- Kellenberger, E. The evolution of molecular biology. EMBO Rep. 2004, 5, 546–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberghina, L.; Westerhoff, H.V. (Eds.) Systems Biology: Definitions and Perspectives (Topics in Current Genetics); Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Louridas, G.; Lourida, K. The Complex Cardiac Atherosclerotic Disorder: The Elusive Role of Genetics and the New Consensus of Systems Biology Approach. J. Adv. Ther. Med. Innov. Sci. 2017, 2, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Louridas, G.E.; Kanonidis, I.E.; Lourida, K.G. Systems biology in heart diseases. Hippokratia 2010, 14, 10–16. [Google Scholar]
- Louridas, G.E.; Lourida, K.G. A conceptual paradigm of heart failure and systems biology approach. Int. J. Cardiol. 2012, 159, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Ellis, G.F.R. Top-down causation and emergence: Some comments on mechanisms. Interface Focus 2011, 2, 126–140. [Google Scholar] [CrossRef]
- Noble, D. A theory of biological relativity: No privileged level of causation. Interface Focus 2011, 2, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Dunbar, K.N. Understanding the role of cognition in science: The Science as Category framework. In The Cognitive Basis of Science; Carruthers, P., Stich, S., Siegal, M., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 154–170. [Google Scholar] [CrossRef]
- Louridas, G.E.; Lourida, K.G. Heart failure: A complex clinical process interpreted by systems biology approach and network medicine. Anadolu Kardiyol. Derg. 2014, 14, 178–185. [Google Scholar] [CrossRef]
- Chen, C.; Cui, J.; Zhang, W.; Shen, P. Robustness analysis identifies the plausible model of the Bcl-2 apoptotic switch. FEBS Lett. 2007, 581, 5143–5150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, S.; Jones, N. Constraint-Based Reasoning for Search and Explanation: Strategies for Understanding Variation and Patterns in Biology. Dialectica 2016, 70, 343–374. [Google Scholar] [CrossRef] [Green Version]
- Green, S. Scale Dependency and Downward Causation in Biology. Philos. Sci. 2018, 85, 998–1011. [Google Scholar] [CrossRef]
- Kitano, H. Biological robustness. Nat. Rev. Genet. 2004, 5, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits; Chapman and Hall: Boca Raton, FL, USA, 2007. [Google Scholar]
- Ueki, Y.; Karagiannis, A.; Zanchin, C.; Zanchin, T.; Stortecky, S.; Koskinas, K.C.; Siontis, G.C.; Praz, F.; Otsuka, T.; Hunziker, L.; et al. Validation of High-Risk Features for Stent-Related Ischemic Events as Endorsed by the 2017 DAPT Guidelines. JACC Cardiovasc. Interv. 2019, 12, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Louridas, G.E.; Lourida, K.G. Systems Biology and Biomechanical Model of Heart Failure. Curr. Cardiol. Rev. 2012, 8, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Van Baal, P.; Morton, A.; Severens, J.L. Health care input constraints and cost effectiveness analysis decision rules. Soc. Sci. Med. 2018, 200, 59–64. [Google Scholar] [CrossRef]
- Giannoglou, G.; Soulis, J.; Farmakis, T.; Louridas, G. Haemodynamic factors and the important role of local low static pressure in coronary wall thickening. Int. J. Cardiol. 2002, 86, 27–40. [Google Scholar] [CrossRef]
- Perakslis, E.; Ginsburg, G.S. Digital Health—The Need to Assess Benefits, Risks, and Value. JAMA 2021, 325, 127–128. [Google Scholar] [CrossRef] [PubMed]
- Coravos, A.; Goldsack, J.C.; Karlin, D.R.; Nebeker, C.; Perakslis, E.; Zimmerman, N.; Erb, M.K. Digital Medicine: A Primer on Measurement. Digit. Biomark. 2019, 3, 31–71. [Google Scholar] [CrossRef] [PubMed]
- Gaveikaite, V.; Grundstrom, C.; Lourida, K.; Winter, S.; Priori, R.; Chouvarda, I.; Maglaveras, N. Developing a strategic understanding of telehealth service adoption for COPD care management: A causal loop analysis of healthcare professionals. PLoS ONE 2020, 15, e0229619. [Google Scholar] [CrossRef]
- Deloukas, P.; Kanoni, S.; Willenborg, C.; Farrall, M.; Assimes, T.L.; Thompson, J.R.; Ingelsson, E.; Saleheen, D.; Erdmann, J.; The CARDIoGRAMplusC4D Consortium; et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 2012, 45, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Emdin, C.A.; Drake, I.; Natarajan, P.; Bick, A.G.; Cook, N.R.; Chasman, D.I.; Baber, U.; Mehran, R.; Rader, D.J.; et al. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N. Engl. J. Med. 2016, 375, 2349–2358. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kumar, S.; Vikram, A.; Hoffman, T.A.; Naqvi, A.; Lewarchik, C.M.; Kim, Y.-R.; Irani, K. Histone and DNA Methylation–Mediated Epigenetic Downregulation of Endothelial Kruppel-Like Factor 2 by Low-Density Lipoprotein Cholesterol. Arter. Thromb. Vasc. Biol. 2013, 33, 1936–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. International Programme on Chemical Safety, Biomarkers in Risk Assessment: Validity and Validation; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Timmermans, S. Trust in standards: Transitioning clinical exome sequencing from bench to bedside. Soc. Stud. Sci. 2014, 45, 77–99. [Google Scholar] [CrossRef] [Green Version]
- Timmermans, S.; Tietbohl, C.; Skaperdas, E. Narrating uncertainty: Variants of uncertain significance (VUS) in clinical exome sequencing. BioSocieties 2017, 12, 439–458. [Google Scholar] [CrossRef]
- Heimer, J. The Start of a New Proteomics Era. In Advancing Precision Medicine: Current and Future Proteogenomic Strategies for Biomarker Discovery and Development; Science/AAAS: Washington, DC, USA, 2017; p. 2. [Google Scholar]
- Wesson, D.E.; Lucey, C.R.; Cooper, L.A. Building Trust in Health Systems to Eliminate Health Disparities. JAMA 2019, 322, 111–112. [Google Scholar] [CrossRef]
- Hood, L.; Flores, M. A personal view on systems medicine and the emergence of proactive P4 medicine: Predictive, preventive, personalized and participatory. New Biotechnol. 2012, 29, 613–624. [Google Scholar] [CrossRef]
- Price, N.D.; Magis, A.T.; Earls, J.C.; Glusman, G.; Levy, R.; Lausted, C.; McDonald, D.T.; Kusebauch, U.; Moss, C.L.; Zhou, Y.; et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat. Biotechnol. 2017, 35, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Hood, L.; Lovejoy, J.C.; Price, N.D. Integrating big data and actionable health coaching to optimize wellness. BMC Med. 2015, 13, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sanders, S. A Worthwhile Goal. In Advancing Precision Medicine: Current and Future Proteogenomic Strategies for Biomarker Discovery and Development; Science/AAAS: Washington, DC, USA, 2017; p. 2. [Google Scholar]
- National Institutes of Health. What Is Precision Medicine? 2017. Available online: https://ghr.nlm.nih.gov/primer/precisionmedicine/definition (accessed on 9 February 2021).
- Nicholson, J.K. Global systems biology, personalized medicine and molecular epidemiology. Mol. Syst. Biol. 2006, 2, 52. [Google Scholar] [CrossRef]
- Aboab, J.; Celi, L.A.; Charlton, P.; Feng, M.; Ghassemi, M.; Marshall, D.C.; Mayaud, L.; Naumann, T.; McCague, N.; Paik, K.E.; et al. A “datathon” model to support cross-disciplinary collaboration. Sci. Transl. Med. 2016, 8, 333ps8. [Google Scholar] [CrossRef] [Green Version]
- Loscalzo, J.; Kohane, I.; Barabasi, A. Human disease classification in the postgenomic era: A complex systems approach to human pathobiology. Mol. Syst. Biol. 2007, 3, 124. [Google Scholar] [CrossRef]
- Breen, A.M.; Burton-Houle, T.; Aron, D.C. Applying the Theory of Constraints in Health Care. Qual. Manag. Health Care 2002, 10, 40–46. [Google Scholar] [CrossRef]
- Topol, E.J. A decade of digital medicine innovation. Sci. Transl. Med. 2019, 11, eaaw7610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallis, C.J.D.; Detsky, A.S.; Fan, Y. Establishing the Effectiveness of Procedural Interventions: The Limited Role of Randomized Trials. JAMA 2018, 320, 2421–2422. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, R.S. New Technologies Personalize Diagnostics and Therapeutics. Curr. Atheroscler. Rep. 2010, 12, 184–186. [Google Scholar] [CrossRef]
- Dove, E.S.; Kelly, S.E.; Lucivero, F.; Machirori, M.; Dheensa, S.; Prainsack, B. Beyond individualism: Is there a place for relational autonomy in clinical practice and research? Clin. Ethics 2017, 12, 150–165. [Google Scholar] [CrossRef] [Green Version]
- Avorn, J. The Psychology of Clinical Decision Making—Implications for Medication Use. N. Engl. J. Med. 2018, 378, 689–691. [Google Scholar] [CrossRef] [Green Version]
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus, and Giroux: New York, NY, USA, 2011. [Google Scholar]
- Sharrer, G.T. Personalized Medicine: Ethics for Clinical Trials. Adv. Struct. Saf. Stud. 2011, 823, 35–48. [Google Scholar] [CrossRef]
- Brothers, K.B.; Rothstein, M.A. Ethical, legal and social implications of incorporating personalized medicine into healthcare. Pers. Med. 2015, 12, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347–355. [Google Scholar] [CrossRef]
- Widdows, H. The Connected Self. The Ethics and Governance of the Genetic Individual; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Taylor, M. Genetic Data and the Low. A Critical Perspective on Privacy Protection; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Lazarus, D. “Big Data” Could Mean Big Problems for People’s Healthcare Privacy. LA Times Online, 11 October 2016. Available online: https://www.latimes.com/business/lazarus/la-fi-lazarus-big-data-healthcare-20161011-snap-story.html(accessed on 21 January 2021).
- Schultz, D. As Patients’ Records Go Digital, Theft and Hacking Problems Grow. News KH: KHN, 3 June 2012. Available online: https://khn.org/news/electronic-health-records-theft-hacking/(accessed on 21 January 2021).
- Murdoch, T.B.; Detsky, A.S. The Inevitable Application of Big Data to Health Care. JAMA 2013, 309, 1351–1352. [Google Scholar] [CrossRef] [PubMed]
- Raghupathi, W.; Raghupathi, V. Big data analytics in healthcare: Promise and potential. Health Inf. Sci. Syst. 2014, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bossen, C.; Pine, K.H.; Cabitza, F.; Ellingsen, G.; Piras, E.M. Data work in healthcare: An Introduction. Heal. Inform. J. 2017, 25, 465–474. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences (NAS). Toward precision medicine: Building a knowledge-network for biomedical research and a new taxonomy of disease. In Committee on A Framework for Developing a New Taxonomy of Disease; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Louridas, G.E.; Louridas, K.G. Systems biology approach for human complexity and personalized cardiology. In Recent Advances in Systems Biology Research; Valente, A.X., Sarkar, A., Gao, Y., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2014; pp. 211–236. [Google Scholar]
- Van Der Greef, J.; Hankemeier, T.; McBurney, R.N. Metabolomics-based systems biology and personalized medicine: Moving towards n = 1 clinical trials? Pharmacogenomics 2006, 7, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- Joyner, M.J.; Paneth, N. Seven Questions for Personalized Medicine. JAMA 2015, 314, 999–1000. [Google Scholar] [CrossRef] [PubMed]
- The New York Academy of Sciences. Phenotypic and Biomarker-Based Drug Discovery. Academy eBriefing, 12 January 2016. Available online: https://www.nyas.org/ebriefings/phenotypic-and-biomarker-based-drug-discovery/(accessed on 9 February 2021).
- Green, S.; Carusi, A.; Hoeyer, K. Plastic diagnostics: The remaking of disease and evidence in personalized medicine. Soc. Sci. Med. 2019, 112318. [Google Scholar] [CrossRef]
- Genomics England. The 100000 Genomes Project Protocol V3. 2017. Available online: https://doi.org/10.6084/m9.figshare.4530893.v2 (accessed on 9 February 2021).
- National Institutes of Health. All of US Research Program. Protocol Version v.1.7. 2018. Available online: https://allofus.nih.gov/about/all-us-research-program-protocol (accessed on 9 February 2021).
- Minari, J.; Brothers, K.B.; Morrison, M. Tensions in ethics and policy created by National Precision Medicine Programs. Hum. Genom. 2018, 12, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassall, A.; Bozzani, F.; Hanson, K. Considering Health-Systems Constraints in Economic Evaluation in Low- and Middle-Income Settings. Oxf. Res. Encycl. Econ. Financ. 2019. [Google Scholar] [CrossRef]
- O’Doherty, K.C.; Shabani, M.; Dove, E.S.; Bentzen, H.B.; Borry, P.; Burgess, M.M.; Chalmers, D.; De Vries, J.; Eckstein, L.; Fullerton, S.M.; et al. Toward better governance of human genomic data. Nat. Genet. 2021, 53, 2–8. [Google Scholar] [CrossRef]
- Mills, M.C.; Rahal, C. A scientometric review of genome-wide association studies. Commun. Biol. 2019, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, J.; Terry, S.F.; Juengst, E.; Coy, S.; Harris, J.R.; Chalmers, D.; Dove, E.S.; Budin-Ljøsne, I.; Adebamowo, C.; Ogbe, E.; et al. Including all voices in international data-sharing governance. Hum. Genom. 2018, 12, 1–6. [Google Scholar] [CrossRef]
Constraints | Personalized Medicine |
---|---|
Biological and medical constraints Limitations of current technology Healthcare expenditure | Ethics and legal status |
Data integration | |
Taxonomic revision | |
Policy decisions | |
Organization of human genomic data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lourida, K.G.; Louridas, G.E. Constraints in Clinical Cardiology and Personalized Medicine: Interrelated Concepts in Clinical Cardiology. Cardiogenetics 2021, 11, 50-67. https://doi.org/10.3390/cardiogenetics11020007
Lourida KG, Louridas GE. Constraints in Clinical Cardiology and Personalized Medicine: Interrelated Concepts in Clinical Cardiology. Cardiogenetics. 2021; 11(2):50-67. https://doi.org/10.3390/cardiogenetics11020007
Chicago/Turabian StyleLourida, Katerina G., and George E. Louridas. 2021. "Constraints in Clinical Cardiology and Personalized Medicine: Interrelated Concepts in Clinical Cardiology" Cardiogenetics 11, no. 2: 50-67. https://doi.org/10.3390/cardiogenetics11020007
APA StyleLourida, K. G., & Louridas, G. E. (2021). Constraints in Clinical Cardiology and Personalized Medicine: Interrelated Concepts in Clinical Cardiology. Cardiogenetics, 11(2), 50-67. https://doi.org/10.3390/cardiogenetics11020007