Cardiovascular Involvement in SYNE Variants: A Case Series and Narrative Review
Abstract
:1. Introduction
2. Case Reports
2.1. Patient 1
2.2. Patient 2
2.3. Patient 3
2.4. Patient 4
2.5. Patient 5
2.6. The Familiar Segregation of the Identified SYNE Variants
3. Review
3.1. Nesprins and the LINC Complex
3.2. Role of Nuclear Envelope-Related Proteins in Cardiomyocytes
3.3. Nuclear Envelope-Related Proteins and Cardiomyopathy
3.4. Other Diseases Related to SYNE Variants
3.5. SYNE Genotype–Phenotype Correlation
3.6. Comparison to Patients with Cardiac Laminopathies
3.7. Implications for Genetic Investigation in Cardiomyopathies and Cardiac Conduction Disorders
3.8. Potential Therapeutic Implications of Cardiomyopathy Due to Nuclear Envelope-Related Proteins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Shin, J.Y.; Worman, H.J. Molecular Pathology of Laminopathies. Annu. Rev. Pathol. Mech. Dis. 2021, 17, 159–180. [Google Scholar] [CrossRef] [PubMed]
- Coste Pradas, J.; Auguste, G.; Matkovich, S.J.; Lombardi, R.; Chen, S.N.; Garnett, T.; Chamberlain, K.; Riyad, J.M.; Weber, T.; Singh, S.K.; et al. Identification of Genes and Pathways Regulated by Lamin A in Heart. J. Am. Heart Assoc. 2020, 9, e015690. [Google Scholar] [CrossRef] [PubMed]
- Bonne, G.; Di Barletta, M.R.; Varnous, S.; Bécane, H.M.; Hammouda, E.H.; Merlini, L.; Muntoni, F.; Greenberg, C.R.; Gary, F.; Urtizberea, J.A.; et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Genet. 1999, 21, 285–288. [Google Scholar] [CrossRef]
- Trivieri, M.G.; Spagnolo, P.; Birnie, D.; Liu, P.; Drake, W.; Kovacic, J.C.; Baughman, R.; Fayad, Z.A.; Judson, M.A. Challenges in Cardiac and Pulmonary Sarcoidosis: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 1878–1901. [Google Scholar] [CrossRef]
- Zi, Z.; Qin, Q.; Fei, Z.; Yu, C.C.; Lin, T. Nesprin proteins: Bridging nuclear envelope dynamics to muscular dysfunction. Cell Commun. Signal. 2024, 22, 208. [Google Scholar] [CrossRef]
- Zhou, C.; Rao, L.; Shanahan, C.M.; Zhang, Q. Nesprin-1/2: Roles in nuclear envelope organisation, myogenesis and muscle disease. Biochem. Soc. Trans. 2018, 46, 311–320. [Google Scholar] [CrossRef]
- Bougaran, P.; Bautch, V.L. Life at the crossroads: The nuclear LINC complex and vascular mechanotransduction. Front. Physiol. 2024, 15, 1411995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Skepper, J.N.; Yang, F.; Davies, J.D.; Hegyi, L.; Roberts, R.G.; Weissberg, P.L.; Ellis, J.A.; Shanahan, C.M. Nesprins: A novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 2001, 114, 4485–4498. [Google Scholar] [CrossRef]
- Lei, K.; Zhang, X.; Ding, X.; Guo, X.; Chen, M.; Zhu, B.; Xu, T.; Zhuang, Y. SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells. Proc. Natl. Acad. Sci. USA 2009, 106, 10207–10212. [Google Scholar] [CrossRef] [PubMed]
- Sosa, B.A.; Kutay, U.; Schwartz, T.U. Structural insights into LINC complexes. Curr. Opin. Struct. Biol. 2013, 23, 285–291. [Google Scholar] [CrossRef]
- Stewart-hutchinson, P.J.; Hale, C.M.; Wirtz, D.; Hodzic, D. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp. Cell Res. 2008, 4, 1892–1905. [Google Scholar] [CrossRef] [PubMed]
- Janin, A.; Gache, V.; Kirby, T.J.; Ross, J.A. Nesprins and Lamins in Health and Diseases of Cardiac and Skeletal Muscles. Front. Physiol. 2018, 9, 1277. [Google Scholar] [CrossRef]
- Randles, K.N.; Lam, L.T.; Sewry, C.A.; Puckelwartz, M.; Furling, D.; Wehnert, M.; McNally, E.M.; Morris, G.E. Nesprins, but not sun proteins, switch isoforms at the nuclear envelope during muscle development. Dev. Dyn. 2010, 239, 998–1009. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, R.; Zhu, B.; Yang, X.; Ding, X.; Duan, S.; Xu, T.; Zhuang, Y.; Han, M. Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 2007, 908, 901–908. [Google Scholar] [CrossRef]
- Wilhelmsen, K.; Litjens, S.H.M.; Kuikman, I.; Tshimbalanga, N.; Janssen, H.; van den Bout, I.; Raymond, K.; Sonnenberg, A. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Biol. 2005, 171, 799–810. [Google Scholar] [CrossRef]
- Dreger, M.; Bengtsson, L.; Schöneberg, T.; Otto, H.; Hucho, F. Nuclear envelope proteomics: Novel integral membrane proteins of the inner nuclear membrane. Proc. Natl. Acad. Sci. USA 2001, 98, 11943–11948. [Google Scholar] [CrossRef]
- Brachner, A.; Reipert, S.; Foisner, R.; Gotzmann, J. LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. J. Cell Sci. 2005, 118, 5797–5810. [Google Scholar] [CrossRef]
- Dhein, S.; Salameh, A. Remodeling of cardiac gap junctional cell–cell coupling. Cells 2021, 10, 2422. [Google Scholar] [CrossRef]
- Starr, D.A.; Fridolfsson, H.N. Interactions Between Nuclei and the Cytoskeleton Are Mediated by SUN-KASH Nuclear-Envelope Bridges. Annu. Rev. Cell Dev. Biol. 2010, 26, 421–444. [Google Scholar] [CrossRef] [PubMed]
- Leong, E.L.; Khaing, N.T.; Cadot, B.; Hong, W.L.; Kozlov, S.; Werner, H.; Sook, E.; Wong, M.; Stewart, C.L.; Burke, B. Nesprin-1 LINC complexes recruit microtubule cytoskeleton proteins and drive pathology in Lmna -mutant striated muscle. Hum. Mol. Genet. 2023, 32, 177–191. [Google Scholar] [CrossRef]
- Silva, S.D.; Fan, Z.; Kang, B.; Shanahan, C.M. Nesprin-1: Novel regulator of striated muscle nuclear positioning and mechanotransduction. Biochem. Soc. Trans. 2023, 51, 1331–1345. [Google Scholar] [CrossRef]
- Starr, D.A.; Han, M. ANChors away: An actin based mechanism of nuclear positioning. J. Cell Sci. 2003, 116, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Heffler, J.; Shah, P.P.; Robison, P.; Phyo, S.; Veliz, K.; Uchida, K.; Bogush, A.; Rhoades, J.; Jain, R.; Prosser, B.L. A Balance Between Intermediate Filaments and Microtubules Maintains Nuclear Architecture in the Cardiomyocyte. Circ. Res. 2020, 126, E10–E26. [Google Scholar] [CrossRef]
- Caporizzo, M.A.; Prosser, B.L. The microtubule cytoskeleton in cardiac mechanics and heart failure. Nat. Rev. Cardiol. 2022, 19, 364–378. [Google Scholar] [CrossRef]
- Guilluy, C.; Osborne, L.D.; Van Landeghem, L.; Sharek, L.; Superfine, R.; Garcia-Mata, R.; Burridge, K. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 2014, 16, 376–381. [Google Scholar] [CrossRef]
- Puckelwartz, M.J.; Kessler, E.J.; Kim, G.; Dewitt, M.M.; Zhang, Y.; Earley, J.U.; Depreux, F.F.S.; Holaska, J.; Mewborn, S.K.; Pytel, P.; et al. Nesprin-1 mutations in human and murine cardiomyopathy. J. Mol. Cell. Cardiol. 2010, 48, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, I.; Zhang, J.; Moore-morris, T.; Pfeiffer, E.; Buchholz, K.S.; Liu, A.; Ouyang, K.; Stroud, M.J.; Gerace, L.; Evans, S.M.; et al. Targeted Ablation of Nesprin 1 and Nesprin 2 from Murine Myocardium Results in Cardiomyopathy, Altered Nuclear Morphology and Inhibition of the Biomechanical Gene Response. PLoS Genet. 2014, 10, e1004114. [Google Scholar] [CrossRef]
- Chapman, M.A.; Zhang, J.; Banerjee, I.; Guo, L.T.; Zhang, Z.; Shelton, G.D.; Ouyang, K.; Lieber, R.L.; Chen, J. Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle. Hum. Mol. Genet. 2014, 23, 5879–5892. [Google Scholar] [CrossRef]
- Brodehl, A.; Holler, S.; Gummert, J.; Milting, H. The N-Terminal Part of the 1A Domain of Desmin Is a Hot Spot Region for Putative Pathogenic DES Mutations Affecting Filament Assembly. Cells 2022, 11, 3906. [Google Scholar] [CrossRef] [PubMed]
- Rouhi, L.; Cheedipudi, S.M.; Chen, S.N.; Fan, S.; Lombardi, R.; Chen, X.; Coarfa, C.; Robertson, M.J.; Gurha, P.; Marian, A.J. Haploinsufficiency of Tmem43 in cardiac myocytes activates the DNA damage response pathway leading to a late-onset senescence-associated pro-fibrotic cardiomyopathy. Cardiovasc. Res. 2021, 117, 2377–2394. [Google Scholar] [CrossRef]
- Zink, M.; Seewald, A.; Rohrbach, M.; Brodehl, A.; Liedtke, D.; Williams, T.; Childs, S.J.; Gerull, B. Altered Expression of TMEM43 Causes Abnormal Cardiac Structure and Function in Zebrafish. Int. J. Mol. Sci. 2022, 23, 9530. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Buchmann, S.; Kroth, A.; Arias-Loza, A.-P.; Kohlhaas, M.; Wagner, N.; Grüner, G.; Nickel, A.; Cirnu, A.; Williams, T.; et al. Mechanistic Insights of the LEMD2 p.L13R Mutation and Its Role in Cardiomyopathy. Circ. Res. 2023, 132, e43–e58. [Google Scholar] [CrossRef] [PubMed]
- Wolf, C.M.; Wang, L.; Alcalai, R.; Pizard, A.; Burgon, P.G.; Ahmad, F.; Sherwood, M.; Branco, D.M.; Wakimoto, H.; Fishman, G.I.; et al. Lamin A/C haploinsufficiency causes dilated cardiomyopathy and apoptosis-triggered cardiac conduction system disease. J. Mol. Cell. Cardiol. 2008, 44, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Bione, S.; Maestrini, E.; Rivella, S.; Mancini, M.; Regis, S.; Romeo, G.; Toniolo, D. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat. Genet. 1994, 8, 323–327. [Google Scholar] [CrossRef]
- ul Hassan, Z.; Fastabend, C.P.; Mohanty, P.K.; Isaacs, E.R. Atrioventricular block and supraventricular arrhythmias with X-linked muscular dystrophy. Circulation 1979, 60, 1365–1369. [Google Scholar] [CrossRef]
- Bonne, G.; Mercuri, E.; Muchir, A.; Urtizberea, A.; Bécane, H.M.; Recan, D.; Merlini, L.; Wehnert, M.; Boor, R.; Reuner, U.; et al. Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann. Neurol. 2000, 48, 170–180. [Google Scholar] [CrossRef]
- Arbustini, E.; Pilotto, A.; Repetto, A.; Grasso, M.; Negri, A.; Diegoli, M.; Campana, C.; Scelsi, L.; Baldini, E.; Gavazzi, A.; et al. Autosomal dominant dilated cardiomyopathy with atrioventricular block: A lamin A/C defect-related disease. J. Am. Coll. Cardiol. 2002, 39, 981–990. [Google Scholar] [CrossRef]
- Taylor, M.R.G.; Fain, P.R.; Sinagra, G.; Robinson, M.L.; Robertson, A.D.; Carniel, E.; Di Lenarda, A.; Bohlmeyer, T.J.; Ferguson, D.A.; Brodsky, G.L.; et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J. Am. Coll. Cardiol. 2003, 41, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Merner, N.D.; Hodgkinson, K.A.; Haywood, A.F.M.; Connors, S.; French, V.M.; Drenckhahn, J.-D.; Kupprion, C.; Ramadanova, K.; Thierfelder, L.; McKenna, W.; et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am. J. Hum. Genet. 2008, 82, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.-C.; Mitsuhashi, H.; Keduka, E.; Nonaka, I.; Noguchi, S.; Nishino, I.; Hayashi, Y.K. TMEM43 mutations in Emery-Dreifuss muscular dystrophy-related myopathy. Ann. Neurol. 2011, 69, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; Helle, E.; Care, M.; Moayedi, Y.; Gollob, M.H.; Thavendiranathan, P.; Spears, D.; Hanneman, K. Cardiac MRI and Clinical Outcomes in TMEM43 Arrhythmogenic Cardiomyopathy. Radiol. Cardiothorac. Imaging 2023, 5, e230155. [Google Scholar] [CrossRef] [PubMed]
- Abdelfatah, N.; Chen, R.; Duff, H.J.; Seifer, C.M.; Buffo, I.; Huculak, C.; Clarke, S.; Clegg, R.; Jassal, D.S.; Gordon, P.M.K.; et al. Characterization of a Unique Form of Arrhythmic Cardiomyopathy Caused by Recessive Mutation in LEMD2. JACC. Basic Transl. Sci. 2019, 4, 204–221. [Google Scholar] [CrossRef] [PubMed]
- Brodehl, A.; Gaertner-Rommel, A.; Milting, H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys. Rev. 2018, 10, 983–1006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bethmann, C.; Worth, N.F.; Davies, J.D.; Wasner, C.; Feuer, A.; Ragnauth, C.D.; Yi, Q.; Mellad, J.A.; Warren, D.T.; et al. Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum. Mol. Genet. 2007, 16, 2816–2833. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, C.; Zhou, B.; Sun, H.; Koullourou, V.; Holt, I.; Puckelwartz, M.J.; Warren, D.T.; Hayward, R.; Lin, Z.; et al. Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis. Hum. Mol. Genet. 2017, 26, 2258–2276. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzo, F.; Femminò, S.; Ravera, F.; Angelini, F.; Caccioppo, A.; Franchin, L.; Grosso, A.; Comità, S.; Cavallari, C.; Penna, C.; et al. Extracellular vesicles from patients with Acute Coronary Syndrome impact on ischemia-reperfusion injury. Pharmacol. Res. 2021, 170, 105715. [Google Scholar] [CrossRef] [PubMed]
- Puckelwartz, M.J.; Kessler, E.; Zhang, Y.; Hodzic, D.; Randles, K.N.; Morris, G.; Earley, J.U.; Hadhazy, M.; Holaska, J.M.; Mewborn, S.K.; et al. Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum. Mol. Genet. 2009, 18, 607–620. [Google Scholar] [CrossRef]
- Zhang, J.; Felder, A.; Liu, Y.; Guo, L.T.; Lange, S.; Dalton, N.D.; Gu, Y.; Peterson, K.L.; Mizisin, A.P.; Shelton, G.D.; et al. Nesprin 1 is critical for nuclear positioning and anchorage. Hum. Mol. Genet. 2010, 19, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Ellinor, P.T.; Lunetta, K.L.; Albert, C.M.; Glazer, N.L.; Ritchie, M.D.; Smith, A.V.; Arking, D.E.; Müller-Nurasyid, M.; Krijthe, B.P.; Lubitz, S.A.; et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat. Genet. 2012, 44, 670–675. [Google Scholar] [CrossRef]
- Christophersen, I.E.; Rienstra, M.; Roselli, C.; Yin, X.; Geelhoed, B.; Barnard, J.; Lin, H.; Arking, D.E.; Smith, A.V.; Albert, C.M.; et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat. Genet. 2017, 49, 946–952. [Google Scholar] [CrossRef]
- Liu, N.; Hsu, J.; Mahajan, G.; Sun, H.; Laurita, K.R.; Naga Prasad, S.V.; Barnard, J.; Van Wagoner, D.R.; Kothapalli, C.R.; Chung, M.K.; et al. Common SYNE2 Genetic Variant Associated with Atrial Fibrillation Lowers Expression of Nesprin-2α1 With Downstream Effects on Nuclear and Electrophysiological Traits. Circ. Genom. Precis. Med. 2024, 17, e004750. [Google Scholar] [CrossRef]
- Qian, N.; Wei, T.; Yang, W.; Wang, J.; Zhang, S.; Jin, S. Case Report: Late-Onset Autosomal Recessive Cerebellar Ataxia Associated With SYNE1 Mutation in a Chinese Family. Front. Genet. 2022, 13, 795188. [Google Scholar] [CrossRef]
- Abicht, A.; Schwartz, O.; Katona, I.; Paulus, W.; Neuen-jacob, E.; Weis, J.; Schara, U. Original article Characteristic clinical and ultrastructural findings in nesprinopathies. Eur. J. Paediatr. Neurol. 2018, 3, 254–261. [Google Scholar] [CrossRef]
- Asatryan, B.; Medeiros-Domingo, A. Molecular and genetic insights into progressive cardiac conduction disease. EP Eur. 2019, 21, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Wahbi, K.; Ben Yaou, R.; Gandjbakhch, E.; Anselme, F.; Gossios, T.; Lakdawala, N.K.; Stalens, C.; Sacher, F.; Babuty, D.; Trochu, J.-N.; et al. Development and Validation of a New Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in Laminopathies. Circulation 2019, 140, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Wilde, A.A.M.; Semsarian, C.; Márquez, M.F.; Shamloo, A.S.; Ackerman, M.J.; Ashley, E.A.; Sternick, E.B.; Barajas-Martinez, H.; Behr, E.R.; Bezzina, C.R.; et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. EP Eur. 2022, 24, 1307–1367. [Google Scholar] [CrossRef]
- Resdal Dyssekilde, J.; Frederiksen, T.C.; Christiansen, M.K.; Hasle Sørensen, R.; Pedersen, L.N.; Loof Møller, P.; Christensen, L.S.; Larsen, J.M.; Thomsen, K.K.; Lindhardt, T.B.; et al. Diagnostic Yield of Genetic Testing in Young Patients With Atrioventricular Block of Unknown Cause. J. Am. Heart Assoc. 2022, 11, e025643. [Google Scholar] [CrossRef]
- Balla, C.; Margutti, A.; De Carolis, B.; Canovi, L.; Di Domenico, A.; Vivaldi, I.; Vitali, F.; De Raffele, M.; Malagù, M.; Sassone, B.; et al. Cardiac conduction disorders in young adults: Clinical characteristics and genetic background of an underestimated population. Heart Rhythm 2024, 21, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, J.P.; Espinosa, M.Á.; Gayan-Ordas, J.; Fernández-Valledor, A.; Gallego-Delgado, M.; Tirón, C.; Lozano-Ibañez, A.; García-Pinilla, J.M.; Rodríguez-Palomares, J.F.; Larrañaga-Moreira, J.M.; et al. Rare Genetic Variants in Young Adults Requiring Pacemaker Implantation. JACC. Clin. Electrophysiol. 2024, 10, 2250–2260. [Google Scholar] [CrossRef]
- Auricchio, A.; Demarchi, A.; Özkartal, T.; Campanale, D.; Caputo, M.L.; di Valentino, M.; Menafoglio, A.; Regoli, F.; Facchini, M.; Del Bufalo, A.; et al. Role of genetic testing in young patients with idiopathic atrioventricular conduction disease. EP Eur. 2023, 25, 643–650. [Google Scholar] [CrossRef] [PubMed]
- de Uña-Iglesias, D.; Ochoa, J.P.; Monserrat, L.; Barriales-Villa, R. Clinical Relevance of the Systematic Analysis of Copy Number Variants in the Genetic Study of Cardiomyopathies. Genes 2024, 15, 774. [Google Scholar] [CrossRef]
- Cardenas Reyes, I.; Gomez Diaz, I.; De La Higuera Romero, L.; Amor Salamanca, A.; Garcia Hernandez, S.; Valverde Gomez, M.; Cabrera Argana, D.; Fernandez Fernandez, X.; Ortiz Genga, M.; Cazon Varela, L.; et al. Contribution of copy number variants to the genetic etiology of dilated cardiomyopathy. Eur. Heart J. 2023, 44, ehad655.1862. [Google Scholar] [CrossRef]
- Mates, J.; Mademont-Soler, I.; Del Olmo, B.; Ferrer-Costa, C.; Coll, M.; Pérez-Serra, A.; Picó, F.; Allegue, C.; Fernandez-Falgueras, A.; Álvarez, P.; et al. Role of copy number variants in sudden cardiac death and related diseases: Genetic analysis and translation into clinical practice. Eur. J. Hum. Genet. 2018, 26, 1014–1025. [Google Scholar] [CrossRef] [PubMed]
- Tobita, T.; Nomura, S.; Fujita, T.; Morita, H.; Asano, Y.; Onoue, K.; Ito, M.; Imai, Y.; Suzuki, A.; Ko, T.; et al. Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling. Sci. Rep. 2018, 8, 1998. [Google Scholar] [CrossRef] [PubMed]
- Paldino, A.; Dal Ferro, M.; Stolfo, D.; Gandin, I.; Medo, K.; Graw, S.; Gigli, M.; Gagno, G.; Zaffalon, D.; Castrichini, M.; et al. Prognostic Prediction of Genotype vs. Phenotype in Genetic Cardiomyopathies. J. Am. Coll. Cardiol. 2022, 80, 1981–1994. [Google Scholar] [CrossRef] [PubMed]
- Crasto, S.; My, I.; Di Pasquale, E. The Broad Spectrum of LMNA Cardiac Diseases: From Molecular Mechanisms to Clinical Phenotype. Front. Physiol. 2020, 11, 761. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, L.; Wu, J.C. New Insights Into the Therapy for Lamin-Associated Dilated Cardiomyopathy. JACC Basic Transl. Sci. 2022, 7, 1246–1248. [Google Scholar] [CrossRef]
- Cheedipudi, S.M.; Asghar, S.; Marian, A.J. Genetic Ablation of the DNA Damage Response Pathway Attenuates Lamin-Associated Dilated Cardiomyopathy in Mice. JACC Basic Transl. Sci. 2022, 7, 1232–1245. [Google Scholar] [CrossRef]
- D’Onofrio, A.; Palmiero, G.; D’Alterio, G.; De Vivo, S.; Maione, B.; Leonardi, S. First human implant of the cardiac contractility modulation in patient with dilated cardiomyopathy-related laminopathy. Heart Case Rep. 2023, 9, 381–385. [Google Scholar] [CrossRef]
- MacRae, C.A.; Taylor, M.R.G.; Mestroni, L.; Moses, J.; Ashley, E.A.; Wheeler, M.T.; Lakdawala, N.K.; Hershberger, R.E.; Sandor, V.; Saunders, M.E.; et al. Efficacy and Safety of ARRY-371797 in LMNA-Related Dilated Cardiomyopathy: A Phase 2 Study. Circ. Genom. Precis. Med. 2023, 16, e003730. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pavia, P.; Palomares, J.F.R.; Sinagra, G.; Barriales-Villa, R.; Lakdawala, N.K.; Gottlieb, R.L.; Goldberg, R.I.; Elliott, P.; Lee, P.; Li, H.; et al. REALM-DCM: A Phase 3, Multinational, Randomized, Placebo-Controlled Trial of ARRY-371797 in Patients With Symptomatic LMNA-Related Dilated Cardiomyopathy. Circ. Heart Fail. 2024, 17, e011548. [Google Scholar] [CrossRef]
Case Index | Onset Age/First Manifestation | SYNE Variant | Genotype/ Classification (ACMG Criteria) | Protein Domain | Family History | Conduction Disease | Ventricular Arrythmias | LV EDVi LV EF/ RV FAC at Last FU (Years) | Skeletal Muscle Involvement |
---|---|---|---|---|---|---|---|---|---|
Patient 1 | 50/VT | SYNE 1: Exon 126, c.22904C>T p.Ala7635Val | Heterozygous VUS (PM2) | Spectrin repeats | 2 mother’s brothers die for unknown CMP (40 and 55 years) | LAFB | VT | 65 mL/mq 55%/38% (55 years) | No |
Patient 2 | 33/AVB | SYNE 1: Exon 18, c.2719C>T p.Arg907* | Heterozygous VUS (PM2, BP6) | Spectrin repeats | Negative | Advanced AVB | NSVT | 55 mL/mq 54%/53% (41 years) | No |
Patient 3 | 36/LBBB | SYNE 1: Exon 78, c.14423C>T p.Thr4808Met | Heterozygous VUS (BP4) | Spectrin repeats | Negative | LBBB | VF | 75 mL/mq 53%/39% (58 years) | No |
Patient 4 | 46/AVB | SYNE 1: Exon 66, c.10584T>G p.His3528Gln | Heterozygous VUS (PM2, BP4) | Spectrin repeats | Negative | AVB II-degree type 1, 2:1 AVB | NSVT | 86 mL/mq 46%/45% (55 years) | No |
Patient 5 | 61/AFL | SYNE 2: Exon 48 c.9285del p.Lys3095Asnfs*7 | Heterozygous C4 (PVS1, PM2) | Spectrin repeats | Negative | AVB I-degree | None | 60 mL/mq 65%/42% (67 years) | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravera, F.; Dusi, V.; Bocchino, P.P.; Gobello, G.; Giannino, G.; Melis, D.; Brach Del Prever, G.M.; Angelini, F.; Saglietto, A.; Giustetto, C.; et al. Cardiovascular Involvement in SYNE Variants: A Case Series and Narrative Review. Cardiogenetics 2025, 15, 2. https://doi.org/10.3390/cardiogenetics15010002
Ravera F, Dusi V, Bocchino PP, Gobello G, Giannino G, Melis D, Brach Del Prever GM, Angelini F, Saglietto A, Giustetto C, et al. Cardiovascular Involvement in SYNE Variants: A Case Series and Narrative Review. Cardiogenetics. 2025; 15(1):2. https://doi.org/10.3390/cardiogenetics15010002
Chicago/Turabian StyleRavera, Francesco, Veronica Dusi, Pier Paolo Bocchino, Giulia Gobello, Giuseppe Giannino, Daniele Melis, Giulia Margherita Brach Del Prever, Filippo Angelini, Andrea Saglietto, Carla Giustetto, and et al. 2025. "Cardiovascular Involvement in SYNE Variants: A Case Series and Narrative Review" Cardiogenetics 15, no. 1: 2. https://doi.org/10.3390/cardiogenetics15010002
APA StyleRavera, F., Dusi, V., Bocchino, P. P., Gobello, G., Giannino, G., Melis, D., Brach Del Prever, G. M., Angelini, F., Saglietto, A., Giustetto, C., Gallone, G., Pidello, S., Cannillo, M., Cingolani, M. M., Deaglio, S., Marra, W. G., De Ferrari, G. M., & Raineri, C. (2025). Cardiovascular Involvement in SYNE Variants: A Case Series and Narrative Review. Cardiogenetics, 15(1), 2. https://doi.org/10.3390/cardiogenetics15010002