Genetic Profile of Pediatric-Onset Cardiac Channelopathies
Abstract
1. Introduction
2. Materials and Methods
2.1. Genetic Counseling and Sample Collection
2.2. DNA Extraction and Quantification
2.3. Genetic Testing
- Next-Generation Sequencing (NGS) was carried out using a targeted gene sequencing approach (Paired-End 150 bp) on an Illumina NextSeq550 platform.
- Library preparation and enrichment were performed using the Illumina DNA Prep with Enrichment protocol and Twist Custom Panel Cardio_V2 probes.
- The panel comprised 195 genes, of which 29 were specifically analyzed for their association with cardiac channelopathies (see Supplementary Tables S1 and S2).
- Quality threshold metrics were defined as >98% of target bases covered at >20X depth and a mean target coverage >200X.
- Sequencing data were processed using the DRAGEN Enrichment App (BaseSpace Professional, Illumina Inc., San Diego, CA, USA) and interpreted using BaseSpace Variant Interpreter.
- Sanger sequencing was used to validate NGS-detected variants and to perform familial segregation analysis when a known variant had been previously identified in the proband.
2.4. Variant Filtering and Classification
2.5. Copy Number Variant Detection (CNVs)
2.6. Parental Testing and De Novo Variant Assessment
3. Results
3.1. NGS Analysis
3.2. Identified Variants
3.2.1. Brugada Syndrome (BrS)
3.2.2. Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)
3.2.3. Long QT Syndrome (LQTS)
3.2.4. Short QT Syndrome (SQTS)
3.2.5. Conduction Disorders/Unclassified Arrhythmias
3.3. Family Analysis
3.4. Relevant Pediatric Clinical Cases
3.4.1. Case 1—Catecholaminergic Polymorphic Ventricular Tachycardia (RYR2)
3.4.2. Case 2—Jervell and Lange-Nielsen Syndrome (KCNQ1)
3.4.3. Case 3—Long QT Syndrome and Calmodulinopathy (CALM1)
3.4.4. Case 4—Sudden Cardiac Death (KCNH2 CNV)
4. Discussion
4.1. Relevant Pediatric Clinical Cases
4.1.1. Case 1—Catecholaminergic Polymorphic Ventricular Tachycardia (RYR2)
4.1.2. Case 2—Jervell and Lange-Nielsen Syndrome (KCNQ1)
4.1.3. Case 3—Long QT Syndrome and Calmodulinopathy (CALM1)
4.1.4. Case 4—Sudden Cardiac Death (KCNH2 CNV)
4.2. Family Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NGS | Next-Generation Sequencing |
LQTS | Long QT Syndrome |
CPVT | Catecholaminergic Polymorphic Ventricular Tachycardia |
BrS | Brugada Syndrome |
DNA | Deoxyribonucleic Acid |
DRAGEN | Dynamic Read Analysis for GENomics (Illumina pipeline) |
MAF | Minor Allele Frequency |
GnomAD | Genome Aggregation Database |
HGMD | Human Gene Mutation Database |
ACMG | American College of Medical Genetics |
AMP | Association for Molecular Pathology |
P | Pathogenic |
PP | Probably Pathogenic |
VUS | Variant of Uncertain Significance |
PB | Probably Benign |
B | Benign |
MLPA | Multiplex Ligation-Dependent Probe Amplification |
PCR | Polymerase Chain Reaction |
SNV | Single Nucleotide Variant |
SQTS | Short QT Syndrome |
JLNS | Jervell and Lange-Nielsen syndrome |
ICD | Implantable Cardioverter Defibrillator |
ECG | Electrocardiogram |
IGV | Integrative Genomics Viewer |
CNV | Copy Number Variants |
References
- Ackerman, M.J.; Priori, S.G.; Willems, S.; Berul, C.; Brugada, R.; Calkins, H.; Camm, A.J.; Ellinor, P.T.; Gollob, M.; Hamilton, R.; et al. HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies: This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 2011, 13, 1077–1109. [Google Scholar] [CrossRef] [PubMed]
- Landstrom, A.P.; Kim, J.J.; Gelb, B.D.; Helm, B.M.; Kannankeril, P.J.; Semsarian, C.; Sturm, A.C.; Tristani-Firouzi, M.; Ware, S.M. Genetic Testing for Heritable Cardiovascular Diseases in Pediatric Patients: A Scientific Statement From the American Heart Association. Circ. Genom. Precis. Med. 2021, 14, e000086. [Google Scholar] [CrossRef]
- Girolami, F.; Vergaro, G.; Pieroni, M.; Passantino, S.; Giannotti, G.; Grippo, G.; Canale, M.L.; Favilli, S.; Cappelli, F.; Olivotto, I.; et al. Percorso clinico proposto dall’ANMCO Toscana per la diagnosi genetica delle cardiomiopatie in un sistema assistenziale in rete. G. Ital. Di Cardiol. 2020, 21, 926–934. [Google Scholar] [CrossRef]
- Baltogiannis, G.; Conte, G.; Sieira, J.; De Ferrari, G.M.; Brugada, P. Editorial: Sudden Cardiac Death and Channelopathies. Front. Cardiovasc. Med. 2020, 7, 605834. [Google Scholar] [CrossRef]
- Committee on Bioethics; Committee on Genetics; the American College of Medical Genetics; Genomics Social; Ethical; Legal Issues Committee; Fallat, M.E.; Katz, A.L.; Mercurio, M.R.; Moon, M.R.; et al. Ethical and Policy Issues in Genetic Testing and Screening of Children. Pediatrics 2013, 131, 620–622. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Cerrone, M.; Costa, S.; Delmar, M. The Genetics of Brugada Syndrome. Annu. Rev. Genom. Hum. Genet. 2022, 23, 255–274. [Google Scholar] [CrossRef]
- Haugaa, K.H.; Leren, I.S.; Berge, K.E.; Bathen, J.; Loennechen, J.P.; Anfinsen, O.G.; Früh, A.; Edvardsen, T.; Kongsgård, E.; Leren, T.P.; et al. High prevalence of exercise-induced arrhythmias in catecholaminergic polymorphic ventricular tachycardia mutation-positive family members diagnosed by cascade genetic screening. Europace 2010, 12, 417–423. [Google Scholar] [CrossRef]
- Wleklinski, M.J.; Kannankeril, P.J.; Knollmann, B.C. Molecular and tissue mechanisms of catecholaminergic polymorphic ventricular tachycardia. J. Physiol. 2020, 598, 2817–2834. [Google Scholar] [CrossRef]
- Wallace, E.; Howard, L.; Liu, M.; O’Brien, T.; Ward, D.; Shen, S.; Prendiville, T. Long QT Syndrome: Genetics and Future Perspective. Pediatr. Cardiol. 2019, 40, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tristani-Firouzi, M.; Xu, Q.; Lin, M.; Keating, M.T.; Sanguinetti, M.C. Functional Effects of Mutations in KvLQT1 that Cause Long QT Syndrome. Cardiovasc. Electrophysiol. 1999, 10, 817–826. [Google Scholar] [CrossRef]
- Al-Aama, J.Y.; Al-Ghamdi, S.; Bdier, A.Y.; AlQarawi, A.; Jiman, O.A.; Al-Aama, N.; Al-Aata, J.; Wilde, A.A.M.; Bhuiyan, Z.A. Genotype–phenotype analysis of Jervell and Lange-Nielsen syndrome in six families from Saudi Arabia. Clin. Genet. 2015, 87, 74–79. [Google Scholar] [CrossRef]
- Vyas, B.; Puri, R.D.; Namboodiri, N.; Nair, M.; Sharma, D.; Movva, S.; Saxena, R.; Bohora, S.; Aggarwal, N.; Vora, A.; et al. KCNQ1 mutations associated with Jervell and Lange–Nielsen syndrome and autosomal recessive Romano–Ward syndrome in India—Expanding the spectrum of long QT syndrome type 1. Am. J. Med. Genet. A 2016, 170, 1510–1519. [Google Scholar] [CrossRef]
- Walsh, R.; Peters, N.S.; Cook, S.A.; Ware, J.S. Paralogue annotation identifies novel pathogenic variants in patients with Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia. J. Med. Genet. 2014, 51, 35–44. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Moreno, C.; Kotta, M.C.; Pedrazzini, M.; Crotti, L.; Dagradi, F.; Castelletti, S.; Haugaa, K.H.; Denjoy, I.; Shkolnikova, M.A.; et al. Mutation location and I Ks regulation in the arrhythmic risk of long QT syndrome type 1: The importance of the KCNQ1 S6 region. Eur. Heart J. 2021, 42, 4743–4755. [Google Scholar] [CrossRef]
- Adler, A.; Novelli, V.; Amin, A.S.; Abiusi, E.; Care, M.; Nannenberg, E.A.; Feilotter, H.; Amenta, S.; Mazza, D.; Bikker, H.; et al. An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation 2020, 141, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Crotti, L.; Spazzolini, C.; Tester, D.J.; Ghidoni, A.; Baruteau, A.E.; Beckmann, B.M.; Behr, E.R.; Bennett, J.S.; Bezzina, C.R.; Bhuiyan, Z.A.; et al. Calmodulin mutations and life-threatening cardiac arrhythmias: Insights from the International Calmodulinopathy Registry. Eur. Heart J. 2019, 40, 2964–2975. [Google Scholar] [CrossRef] [PubMed]
- Coll, M.; Pérez-Serra, A.; Mates, J.; Del Olmo, B.; Puigmulé, M.; Fernandez-Falgueras, A.; Iglesias, A.; Picó, F.; Lopez, L.; Brugada, R.; et al. Incomplete Penetrance and Variable Expressivity: Hallmarks in Channelopathies Associated with Sudden Cardiac Death. Biology 2017, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Kalayinia, S.; Goodarzynejad, H.; Maleki, M.; Mahdieh, N. Next generation sequencing applications for cardiovascular disease. Ann. Med. 2018, 50, 91–109. [Google Scholar] [CrossRef]
- Arthur, A.D.; Wilde, M.D. Channelopathies in Children and Adults. Pacing Clin. Electrophysiol. 2008, 31, S41–S45. [Google Scholar] [CrossRef]
- Dib Nehme, R.; Sinno, L.; Shouman, W.; Ziade, J.A.; Ammar, L.A.; Amin, G.; Booz, G.W.; Zouein, F.A. Cardiac Channelopathies: Clinical Diagnosis and Promising Therapeutics. JAHA 2025, 14, e040072. [Google Scholar] [CrossRef] [PubMed]
- Wilde, A.A.M.; Marquez, M.F.; Co-Chair, L.; Shamloo, A.S.; Ackerman, M.J.; Ashley, E.A.; Sternick, E.B.; Barajas-Martinez, H.; Behr, E.R.; Bezzina, C.R. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace 2022, 24, 1307–1367. [Google Scholar] [CrossRef] [PubMed]
- El-Battrawy, I.; Albers, S.; Cyganek, L.; Zhao, Z.; Lan, H.; Li, X.; Xu, Q.; Kleinsorge, M.; Huang, M.; Liao, Z.; et al. A cellular model of Brugada syndrome with SCN10A variants using human-induced pluripotent stem cell-derived cardiomyocytes. Europace 2019, 21, 1410–1421. [Google Scholar] [CrossRef]
- Stutzman, M.J.; Kim, C.S.J.; Tester, D.J.; Hamrick, S.K.; Dotzler, S.M.; Giudicessi, J.R.; Miotto, M.C.; Frank, J.; Marks, A.R.; Ackerman, M.J. Characterization of N-terminal RYR2 variants outside CPVT1 hotspot regions using patient iPSCs reveal pathogenesis and therapeutic potential. Stem Cell Rep. 2022, 17, 2023–2036. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Riera, A.R.; Barbosa-Barros, R.; De Rezende Barbosa, M.P.C.; Daminello-Raimundo, R.; De Lucca, A.A.; De Abreu, L.C. Catecholaminergic polymorphic ventricular tachycardia, an update. Ann. Noninvasive Electrocardiol. 2018, 23, e12512. [Google Scholar] [CrossRef]
- Giudicessi, J.R.; Wilde, A.A.M.; Ackerman, M.J. The genetic architecture of long QT syndrome: A critical reappraisal. Trends Cardiovasc. Med. 2018, 28, 453–464. [Google Scholar] [CrossRef]
- Campuzano, O.; Sarquella-Brugada, G.; Cesar, S.; Arbelo, E.; Brugada, J.; Brugada, R. Recent Advances in Short QT Syndrome. Front. Cardiovasc. Med. 2018, 5, 149. [Google Scholar] [CrossRef]
- Antzelevitch, C.; Pollevick, G.D.; Cordeiro, J.M.; Casis, O.; Sanguinetti, M.C.; Aizawa, Y.; Guerchicoff, A.; Pfeiffer, R.; Oliva, A.; Wollnik, B.; et al. Loss-of-Function Mutations in the Cardiac Calcium Channel Underlie a New Clinical Entity Characterized by ST-Segment Elevation, Short QT Intervals, and Sudden Cardiac Death. Circulation 2007, 115, 442–449. [Google Scholar] [CrossRef]
Gene | Number of Probands | Variant | Disease | Variant Class |
SCN5A (OMIM: 600163) | 1 | c.655C>T p.(Arg219Cys) | BrS | High-VUS |
1 | c.3840+5G>A p.(?) | VUS | ||
1 | c.3940_3941delCT p. (Leu1341Valfs*4) | PP | ||
CACNA1C (OMIM: 114205) | 1 | c.2548_2550del p.(Glu850del) | LQTS | VUS |
1 | c.1468G>A p.(Gly490Arg) | Conduction Disorders/Unclassified Arrhythmias | VUS | |
1 | c.5759A>G p.(Tyr1920Cys) | BrS | VUS | |
RYR2 (OMIM: 180902) | 1 | c.11761A>T p.(Thr3921Ser) | CPVT | High-VUS |
1 | c.527G>A p.(Arg176Gln) de novo | P | ||
1 | c.5755C>T p.(Arg1919Trp) | Conduction Disorders/Unclassified Arrhythmias | VUS | |
1 | c.942_944del p.(Leu316del) | VUS | ||
KCNQ1 (OMIM: 607542) | 1 | c.467T>C p.(Leu156Pro) | LQTS | High-VUS |
1 | c.1486_1487del p.(Leu496Alafs*19) | P | ||
2 | c.1032 + 6T>G p.(?) | VUS | ||
1 | c.1686-2A>G p.(?) | P | ||
1 | c.1700T>C p.(Ile567Thr) | P | ||
1 | c.1664G>A p.(Arg555His) | P | ||
1 | c.1096C>T p.(Arg366W) | P | ||
1 | c.683+5G>A p.(?) | PP | ||
2 | c.518T>A p.(Val173Asp) | PP | ||
1 | c.1034G>A p.(Gly345Glu) | P | ||
1 | c.514_524dup p.(Gly179Serfs*62) | P | ||
ANK2 (OMIM: 607542) | 1 | c.6164G>A p.(Arg2055Lys) | LQTS | VUS |
1 | c.7142C>A p.(Ala2381Asp) | VUS | ||
KCNH2 (OMIM: 152427) | 1 | c.1600C>T p.(Arg534Cys) | LQTS | PP |
1 | ex12-13-14del CNV de novo | PP | ||
AKAP9 (OMIM: 604001) | 1 | c.9830T>C p.(Ile3277Thr) | LQTS | VUS |
CALM1 (OMIM: 114180) | 1 | c.389A>T p.(Asp130Val) de novo | LQTS | P |
PKP2 (OMIM: 602861) | 1 | c.194_196del p.(Ala65_Arg66delinsGly) | Conduction Disorders/Unclassified Arrhythmias | VUS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovani, S.; Ballerini, A.; Gozzini, A.; Di Lorenzo, M.; Mei, D.; Passantino, S.; Zampieri, M.; Tomberli, A.; Marchi, A.; Calabri, G.B.; et al. Genetic Profile of Pediatric-Onset Cardiac Channelopathies. Cardiogenetics 2025, 15, 25. https://doi.org/10.3390/cardiogenetics15030025
Giovani S, Ballerini A, Gozzini A, Di Lorenzo M, Mei D, Passantino S, Zampieri M, Tomberli A, Marchi A, Calabri GB, et al. Genetic Profile of Pediatric-Onset Cardiac Channelopathies. Cardiogenetics. 2025; 15(3):25. https://doi.org/10.3390/cardiogenetics15030025
Chicago/Turabian StyleGiovani, Sara, Adelaide Ballerini, Alessia Gozzini, Michele Di Lorenzo, Davide Mei, Silvia Passantino, Mattia Zampieri, Alessia Tomberli, Alberto Marchi, Giovanni Battista Calabri, and et al. 2025. "Genetic Profile of Pediatric-Onset Cardiac Channelopathies" Cardiogenetics 15, no. 3: 25. https://doi.org/10.3390/cardiogenetics15030025
APA StyleGiovani, S., Ballerini, A., Gozzini, A., Di Lorenzo, M., Mei, D., Passantino, S., Zampieri, M., Tomberli, A., Marchi, A., Calabri, G. B., Spaziani, G., Porcedda, G., Bennati, E., Favilli, S., Olivotto, I., & Girolami, F. (2025). Genetic Profile of Pediatric-Onset Cardiac Channelopathies. Cardiogenetics, 15(3), 25. https://doi.org/10.3390/cardiogenetics15030025