Laboratory Assessment of Disease Activity in Pediatric Patients with Inflammatory Bowel Disease: What’s New?
Abstract
:1. Introduction
2. Conventional (Systemic) Markers of Inflammation
2.1. C-Reactive Protein (CRP)
2.2. Erythrocyte Sedimentation Rate (ESR)
2.3. Fibrinogen
2.4. Albumin
2.5. White Blood Cell Count
2.6. Platelet Count
3. Fecal Markers of Inflammation
3.1. Fecal Alpha-1 Antitrypsin
3.2. Fecal Lactoferrin
3.3. Fecal Calprotectin
3.4. M2-Pyruvate Kinase
3.5. Osteoprotegerin
3.6. High Mobility Group Box Protein 1
3.7. Chitinase 3-Like 1
4. Novel Promising Biomarkers in Pediatric Inflammatory Bowel Disease
miRNAs in Pediatric IBD
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liverani, E.; Scaioli, E.; Digby, R.J.; Bellanova, M.; Belluzzi, A. How to predict clinical relapse in inflammatory bowel disease patients. World J Gastroenterol. 2016, 22, 1017–1033. [Google Scholar] [CrossRef] [PubMed]
- Orlando, A.; Guglielmi, F.W.; Cottone, M.; Orlando, E.; Romano, C.; Sinagra, E. Clinical implications of mucosal healing in the management of patients with inflammatory bowel disease. Dig. Liver Dis. 2013, 45, 986–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineton de Chambrun, G.; Peyrin-Biroulet, L.; Lémann, M.; Colombel, J.F. Clinical implications of mucosal healing for the management of IBD. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Fiorino, G.; Cesarini, M.; Indriolo, A.; Malesci, A. Mucosal healing in ulcerative colitis: Where do we stand? Curr. Drug Targets 2011, 12, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.; Fang, C.; Rolim, E.; Klug, W.; Steinwurz, F.; Rossini, L.G.B.; Candelária, P.A. Inflammatory bowel disease activity assessed by fecal calprotectin and lactoferrin: Correlation with laboratory parameters, clinical, endoscopic and histological indexes. BMC Res. Notes 2009, 2, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gisbert, J.; McNicholl, A. Questions and answers on the role of faecal calprotectin as a biological marker in inflammatory bowel disease. Dig. Liver Dis. 2009, 41, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, F.S.; Burri, E.; Beglinger, C. The role and utility of faecal markers in inflammatory bowel disease. Therap. Adv. Gastroenterol. 2015, 8, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Aomatsu, T.; Yoden, A.; Matsumoto, K.; Kimura, E.; Inoue, K.; Andoh, A.; Tamai, H. Fecal calprotectin is a useful marker for disease activity in pediatric patients with inflammatory bowel disease. Dig. Dis. Sci. 2011, 56, 2372–2377. [Google Scholar] [CrossRef]
- Nakov, V. Surrogate markers of intestinal inflammation—Fecal calprotectin. Bulg. Med. J. 2012, 6, 26–30. [Google Scholar]
- Xiang, J.; Ouyang, Q.; Li, G.; Xiao, N. Clinical value of fecal calprotectin in determining disease activity of ulcerative colitis. World J. Gastroenterol. 2008, 7, 53–57. [Google Scholar] [CrossRef]
- Tillet, W.S.; Francis, T. Serological reactions in pneumonia with a non-protein somatic fraction of the pneumococcus. J. Exp. Med. 1930, 52, 561–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeire, S.; Van Assche, G.; Rutgeerts, P. Laboratory markers in IBD: Useful, magic, or unnecessary toys? Gut 2006, 55, 426–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigushin, D.M.; Pepys, M.B.; Hawkins, P.N. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J. Clin. Invest. 1993, 91, 1351–1357. [Google Scholar] [CrossRef]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Invest. 2003, 111, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Saverymuttu, S.H.; Hodgson, H.J.; Chadwick, V.S.; Pepys, M.B. Differing acute phase responses in Crohn’s disease and ulcerative colitis. Gut 1986, 27, 809–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, V.; Andus, T.; Caesar, I.; Roth, M.; Schölmerich, J. Evidence for continuous stimulation of interleukin-6 production in Crohn’s disease. Gastroenterology 1992, 102, 514–519. [Google Scholar] [CrossRef]
- Florin, T.H.; Paterson, E.W.; Fowler, E.V.; Radford-Smith, G.L. Clinically active Crohn’s disease in the presence of a low C-reactive protein. Scand. J. Gastroenterol. 2006, 41, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.S.; Aldred, S.F.; Lee, P.K.; Tracy, R.P.; Schwartz, S.M.; Rieder, M.; Liu, K.; Williams, O.D.; Iribarren, C.; Lewis, E.C.; et al. Polymorphisms within the C-reactive protein (CRP) promoter region are associated with plasma CRP levels. Am. J. Hum. Genet. 2005, 77, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Willot, S.; Vermeire, S.; Ohresser, M.; Rutgeerts, P.; Paintaud, G.; Belaiche, J.; DeVos, M.; VanGossum, A.; Franchimont, D.; Colombel, J.F.; et al. C-reactive protein gene polymorphisms are not associated with biological or clinical response to infliximab in Crohn’s disease. Gastroenterology 2005, 128, A311. [Google Scholar]
- Mendoza, J.L.; Abreu, M.T. Biological markers in inflammatory bowel disease: Practical consideration for clinicians. Gastroenterol. Clin. Biol. 2009, 33, S158–S173. [Google Scholar] [CrossRef]
- Iskandar, N.; Ciorba, M. Biomarkers in inflammatory bowel disease: Current practices and recent advances. Transl. Res. 2012, 159, 313–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilicarslan, A.; Uysal, A.; Roach, E. Acute phase reactants. Acta Medica 2013, 2, 2–7. [Google Scholar]
- Novacek, G.; Miehsler, W.; Kapiotis, S.; Katzenschlager, R.; Speiser, W.; Vogelsang, H. Thromboembolism and resistance to activated protein C in patients with inflammatory bowel disease. Am. J. Gastroenterol. 1999, 94, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Udvardy, M.; Altorjay, I.; Palatka, K. Hematologic aspects of inflammatory bowel diseases. Orvosi Hetilap 2001, 142, 883–886. [Google Scholar]
- Hayat, M.; Ariens, R.A.; Moayyedi, P.; Grant, P.J.; O’Mahony, S. Coagulation factor XIII and markers of thrombin generation and fibrinolysis in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2002, 14, 249–256. [Google Scholar] [CrossRef]
- Novotny, D.A.; Rubin, R.J.; Slezak, F.A.; Porter, J.A. Arterial thromboembolic complications of inflammatory bowel disease. Report of three cases. Dis. Colon Rectum 1992, 35, 193–196. [Google Scholar] [CrossRef]
- Swiatkowski, M.; Grad, K.; Klopocka, M.; Budzyński, J.; Zekanowska, E.; Kotschy, M. Blood coagulation activation in patients with ulcerative colitis. Pol. Arch. Med. Wewn. 2000, 103, 47–51. [Google Scholar]
- Yazici, A.; Senturk, O.; Aygun, C.; Celebi, A.; Caglayan, C.; Hulagu, S. Thrombophilic risk factors in patients with inflammatory bowel disease. Gastroenterol. Res. 2010, 3, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Holmquist, L.; Ahren, C.; Fallstrom, S.P. Clinical disease activity and inflammatory activity in the rectum in relation to mucosal inflammation assessed by colonoscopy. A study of children and adolescents with chronic inflammatory bowel disease. Acta Paediatr. Scand. 1990, 79, 527–534. [Google Scholar] [CrossRef]
- Moran, A.; Jones, A.; Asquith, P. Laboratory markers of colonoscopic activity in ulcerative colitis and Crohn colitis. Scand. J. Gastroenterol. 1995, 30, 356–360. [Google Scholar] [CrossRef]
- Morowitz, D.A.; Allen, L.W.; Kirsner, J.B. Thrombocytosis in chronic inflammatory Bowel disease. Ann. Intern. Med. 1968, 68, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Harries, A.D.; Beeching, N.J.; Rogerson, S.J.; Nye, F.J. The platelet count as a simple measure to distinguish inflammatory bowel disease from infective diarrhoea. J. Infect. 1991, 22, 247–250. [Google Scholar] [CrossRef]
- Talstad, I.; Rootwelt, K.; Gjone, E. Thrombocytosis in ulcerative colitis and Crohn’s disease. Scand. J. Gastroenterol. 1973, 8, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Ran, Z.H.; Zhang, Y.; Cai, Q.; Yin, H.M.; Zhou, X.T.; Xiao, S.D. Biomarkers of altered coagulation and fibrinolysis as measures of disease activity in active inflammatory bowel disease: A gender-stratified, cohort analysis. Thromb. Res. 2009, 123, 604–611. [Google Scholar] [CrossRef]
- Kulnigg-Dabsch, S.; Evstatiev, R.; Dejaco, C.; Gasche, C. Effect of iron therapy on platelet counts in patients with inflammatory bowel disease-associated anemia. PLoS ONE 2012, 7, 34520. [Google Scholar] [CrossRef] [Green Version]
- Collins, C.E.; Rampton, D.S. Review article: Platelets in inflammatory bowel disease—Pathogenetic role and therapeutic implications. Aliment. Pharmacol. Ther. 1997, 11, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Fengming, Y.; Jianbing, W. Biomarkers of inflammatory bowel disease. Dis. Markers 2014, 2014, 710915. [Google Scholar] [CrossRef]
- Collins, C.E.; Rampton, D.S. Platelet dysfunction: A new dimension in inflammatory bowel disease. Gut 1995, 36, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Danese, S.; De la Motte, C.; Fiocchi, C. Platelets in inflammatory bowel disease: Clinical, pathogenic, and therapeutic implications. Am. J. Gastroenterol. 2004, 99, 938–945. [Google Scholar] [CrossRef]
- Dong, W.G.; Liu, S.P.; Zhu, H.H.; Luo, H.S.; Yu, J.P. Abnormal function of platelets and role of Angelica sinensis in patients with ulcerative colitis. World J. Gastroenterol. 2004, 10, 606–609. [Google Scholar] [CrossRef]
- Poullis, A.; Foster, R.; Mendall, M.A. Proton pump inhibitors are associated with elevation of faecal calprotectin and may affect specificity. Eur. J. Gastroenterol. Hepatol. 2003, 15, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Poullis, A.; Foster, R.; Northfield, T.C.; Mendall, M.A. Review article: Faecal markers in the assessment of activity in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2002, 16, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.K. Calprotectin or lactoferrin: Do they help. Dig. Dis. 2016, 34, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Sharp, H.L. The current status of alpha-1-antityrpsin, a protease inhibitor, in gastrointestinal disease. Gastroenterology 1976, 70, 611–621. [Google Scholar] [CrossRef]
- Kosek, M.; Haque, R.; Lima, A. Fecal markers of intestinal inflammation and permeability associated with the subsequent acquisition of linear growth deficits in infants. Am. J. Trop. Med. Hyg. 2013, 88, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Fischbach, W.; Becker, W.; Mössner, J.; Koch, W.; Reiners, C. Faecal alpha-1-antitrypsin and excretion of 111indium granulocytes in assessment of disease activity in chronic inflammatory bowel diseases. Gut 1987, 28, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Grill, B.B.; Hillemeier, A.C.; Gryboski, J.D. Fecal alpha 1-antitrypsin clearance in patients with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 1984, 3, 56–61. [Google Scholar] [CrossRef]
- Meyers, S.; Wolke, A.; Field, S.P.; Feuer, E.J.; Johnson, J.W.; Janowitz, H.D. Fecal alpha-1-antitrypsin measurement: An indicator of Crohn’s disease activity. Gastroenterology 1985, 89, 13–18. [Google Scholar] [CrossRef]
- Thomas, D.W.; Sinatra, F.R.; Merritt, R.J. Fecal α-1-antitrypsin excretion in young people with Crohn’s disease. J. Pediatr. Gastroenterol. Nutr. 1983, 2, 491–496. [Google Scholar] [CrossRef]
- Masson, P.L.; Heremans, J.F.; Dive, C. An iron-binding protein common to many external secretions. Clin. Chim. Acta 1966, 14, 735–739. [Google Scholar] [CrossRef]
- Masson, P.L.; Heremans, J.F.; Schonne, E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J. Exp. Med. 1969, 130, 643–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, D.Y.; Taylor, C.R. Distribution of transferrin, ferritin, and lactoferrin in human tissues. J. Clin. Pathol. 1978, 31, 316–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, D.; Faubion, W.A.; Sandborn, W.J. Review article: Biological activity markers in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2007, 25, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Sugi, K.; Saitoh, O.; Hirata, I.; Katsu, K. Fecal lactoferrin as a marker for disease activity in inflammatory bowel disease: Comparison with other neutrophil-derived proteins. Am. J. Gastroenterol. 1996, 91, 927–934. [Google Scholar]
- Uchida, K.; Matsuse, R.; Tomita, S.; Sugi, K.; Saitoh, O.; Ohshiba, S. Immunochemical detection of human lactoferrin in feces as a new marker for inflammatory gastrointestinal disorders and colon cancer. Clin. Biochem. 1994, 27, 259–264. [Google Scholar] [CrossRef]
- Schoepfer, A.; Trummler, M.; Seeholzer, P.; Seibold-Schmid, B.; Seibold, F. Discriminating IBD from IBS: Comparison of the test performance of fecal markers, blood leukocytes, CRP, and IBD antibodies. Inflamm. Bowel Dis. 2008, 14, 32–39. [Google Scholar] [CrossRef]
- Schroder, O.; Naumann, M.; Shastri, Y.; Povse, N.; Stein, J. Prospective evaluation of faecal neutrophil-derived proteins in identifying intestinal inflammation: Combination of parameters does not improve diagnostic accuracy of calprotectin. Aliment. Pharmacol. Ther. 2007, 26, 1035–1042. [Google Scholar] [CrossRef]
- Silberer, H.; Kuppers, B.; Mickisch, O.; Baniewicz, W.; Drescher, M.; Traber, L.; Kempf, A.; Schmidt-Gayk, H. Fecal leukocyte proteins in inflammatory bowel disease and irritable bowel syndrome. Clin. Lab. 2005, 51, 117–126. [Google Scholar]
- Vrabie, R.; Kane, S. Noninvasive markers of disease activity in inflammatory bowel disease. Gastroenterol. Hepatol. 2014, 10, 576–584. [Google Scholar]
- Dale, I.; Fagerhol, M.K.; Naesgaard, I. Purification and partial characterization of a highly immunogenic human leukocyte protein, the L1 antigen. Eur. J. Biochem. 1983, 134, 1–6. [Google Scholar] [CrossRef]
- Fagerhol, M.K.; Dale, I.; Andersson, T. Release and quantitation of a leucocyte derived protein (LI). Scand. J. Haematol. 1980, 24, 393–398. [Google Scholar] [CrossRef]
- Steinbakk, M.; Naess-Andresen, C.F.; Lingaas, E.; Dale, I.; Brandtzaeg, P. Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet 1990, 336, 763–765. [Google Scholar] [CrossRef]
- Fagerhol, M.K.; Andersson, K.B.; Naess-Andresen, C.F.; Brandtzaeg, P.; Dale, I.; Smith, V.L.; Dedman, J.R. Calprotectin (the L1 leukocyte protein). In Stimulus Response Coupling: The Role of Intracellular Calcium-Binding Proteins; Smith, V.L., Dedman, J.R., Eds.; CRC Press: Boca Raton, FL, USA, 1990; pp. 187–210. [Google Scholar]
- Dorin, J.R.; Emslie, E.; Van Heyningen, V. Related calcium-binding proteins map to the same subregion of chromosome 1q and to an extended region of synteny on mouse chromosome 3. Genomics 1990, 8, 420–426. [Google Scholar] [CrossRef]
- Donato, R. Intracellular and extracellular roles of S100 proteins. Microsc. Res. Tech. 2003, 60, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Dale, I.; Brandtzaeg, P.; Fagerhol, M.K.; Scott, H. Distribution of a new myelomonocytic antigen (L1) in human peripheral blood leukocytes. Immunofluorescence and immunoperoxidase staining features in comparison with lysozyme and lactoferrin. Am. J. Clin. Pathol. 1985, 84, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Rugtveit, J.; Brandtzaeg, P.; Halstensen, T.S.; Fausa, O.; Scott, H. Increased macrophage subset in inflammatory bowel disease: Apparent recruitment from peripheral blood monocytes. Gut 1994, 35, 669–674. [Google Scholar] [CrossRef] [Green Version]
- Rugtveit, J.; Scott, H.; Halstensen, T.S.; Norstein, J.; Brandtzaeg, P. Expression of the L1 antigen (calprotectin) by tissue macrophages reflects recent recruitment from peripheral blood rather than upregulation of local synthesis: Implications for rejection diagnosis in formalin-fixed kidney specimens. J. Pathol. 1996, 180, 194–199. [Google Scholar] [CrossRef]
- Nisapakultorn, K.; Ross, K.; Herzberg, M. calprotectin expression inhibits bacterial binding to mucosal epithelial cells. Infect. Immun. 2001, 69, 3692–3696. [Google Scholar] [CrossRef] [Green Version]
- Ghavami, S.; Kerkhoff, C.; Los, M.; Hashemi, M.; Sorg, C.; Karami-Tehrani, F. Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines: The role of ROS and the effect of metal ions. J. Leukoc. Biol. 2004, 76, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Yui, S.; Mikami, M.; Tsurumaki, K.; Yamazaki, M. Growth-inhibitory and apoptosis-inducing activities of calprotectin derived from inflammatory exudate cells on normal fibroblasts: Regulation by metal ions. J. Leukoc. Biol. 1997, 61, 50–57. [Google Scholar] [CrossRef]
- Yui, S.; Mikami, M.; Yamazaki, M. Induction of apoptotic cell death in mouse lymphoma and human leukemia cell lines by a calcium-binding protein complex, calprotectin, derived from inflammatory peritoneal exudate cells. J. Leukoc. Biol. 1995, 58, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Voganatsi, A.; Panyutich, A.; Miyasaki, K.T.; Murthy, R.K. Mechanism of extracellular release of human neutrophil calprotectin complex. J. Leukoc. Biol. 2001, 70, 130–134. [Google Scholar] [PubMed]
- Sander, J.; Fagerhol, M.K.; Bakken, J.S.; Dale, I. Plasma levels of the leucocyte L1 protein in febrile conditions: Relation to aetiology, number of leucocytes in blood, blood sedimentation reaction and C-reactive protein. Scand. J. Clin. Lab. Invest. 1984, 44, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Røseth, A.G.; Fagerhol, M.K.; Aadland, E.; Schjønsby, H. Assessment of the neutrophil dominating protein calprotectin in feces. A methodologic study. Scand. J. Gastroenterol. 1992, 27, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Røseth, A.G.; Schmidt, P.N.; Fagerhol, M.K. Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand. J. Gastroenterol. 1999, 34, 50–54. [Google Scholar] [PubMed]
- Røseth, A.G.; Kristinsson, J.; Fagerhol, M.K.; Schjønsby, H.; Aadland, E.; Nygaard, K.; Roald, B. Faecal calprotectin: A novel test for the diagnosis of colorectal cancer? Scand. J. Gastroenterol. 1993, 28, 1073–1076. [Google Scholar] [CrossRef]
- Mulder, D.; Noble, A.; Justinic, C.J.; Duffin, J.M. A tale of two diseases: The history of inflammatory bowel disease. J. Crohn’s Colitis 2014, 8, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Kostakis, I.; Cholidou, K.; Vaiopoulos, A.; Vlachos, I.S.; Perrea, D.; Vaos, G. Fecal calprotectin in pediatric inflammatory bowel disease: A systematic review. Dig. Dis. Sci. 2013, 58, 309–319. [Google Scholar] [CrossRef]
- D’Angelo, F.; Felley, C.; Frossard, J.L. Calprotectin in daily practice: Where do we stand in 2017? Digestion 2017, 95, 293–301. [Google Scholar] [CrossRef]
- Chung-Faye, G.; Hayee, B.; Maestranzi, S.; Donaldson, N.; Forgacs, I.; Sherwood, R. Fecal M2-pyruvate kinase (M2-PK): A novel marker of intestinal inflammation. Inflamm. Bowel Dis. 2007, 13, 1374–1378. [Google Scholar] [CrossRef]
- Duvoisin, G.; Lopez, R.N.; Day, A.S.; Lemberg, D.A.; Gearry, R.B.; Leach, S.T. Novel biomarkers and the future potential of biomarkers in inflammatory bowel disease. Mediat. Inflamm. 2017, 2017, 1936315. [Google Scholar] [CrossRef] [PubMed]
- Czub, E.; Herzig, K.H.; Szaflarska-Popawska, A.; Kiehne, K.; Socha, P.; Woś, H.; Kamińska, B.; Błaszczyński, M.; Cichy, W.; Bała, G.; et al. Fecal pyruvate kinase: A potential new marker for intestinal inflammation in children with inflammatory bowel disease. Scand. J. Gastroenterol. 2007, 42, 1147–1150. [Google Scholar] [CrossRef]
- Day, A.S.; Judd, T.; Lemberg, D.A.; Leach, S.T. Fecal M2-PK in children with Crohn’s disease: A preliminary report. Dig. Dis. Sci. 2012, 57, 2166–2170. [Google Scholar] [CrossRef] [PubMed]
- Czub, E.; Nowak, J.K.; Szaflarska-Poplawska, A.; Grzybowska-Chlebowczyk, U.; Landowski, P.; Moczko, J.; Adamczak, D.; Mankowski, P.; Banasiewicz, T.; Plawski, A.; et al. Comparison of fecal pyruvate kinase isoform M2 and calprotectin in assessment of pediatric inflammatory bowel disease severity and activity. Acta Biochim. Pol. 2014, 61, 99–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roszak, D.; Galecka, M.; Cichy, W.; Szachta, P. Determination of faecal inflammatory marker concentration as a non-invasive method of evaluation of pathological activity in children with inflammatory bowel diseases. Adv. Med Sci. 2015, 60, 246–252. [Google Scholar] [CrossRef]
- Nahidi, L.; Leach, S.T.; Sidler, M.A.; Levin, A.; Lemberg, D.A.; Day, A.S. Osteoprotegerin in pediatric Crohn’s disease and the effects of exclusive enteral nutrition. Inflamm. Bowel Dis. 2011, 17, 516–523. [Google Scholar] [CrossRef]
- Sylvester, F.A.; Turner, D.; Draghi, A.; Uuosoe, K.; McLernon, R.; Koproske, K.; Mack, D.R.; Crandall, W.V.; Hyams, J.S.; LeLeiko, N.S.; et al. Fecal osteoprotegerin may guide the introduction of second-line therapy in hospitalized children with ulcerative colitis. Inflamm. Bowel Dis 2011, 17, 1726–1730. [Google Scholar] [CrossRef] [PubMed]
- Vitali, R.; Stronati, L.; Negroni, A.; Di Nardo, G.; Pierdomenico, M.; Del Giudice, E.; Rossi, P.; Cucchiara, S. Fecal HMGB1 is a novel marker of intestinal mucosal inflammation in pediatric inflammatory bowel disease. Am. J. Gastroenterol. 2011, 106, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Aomatsu, T.; Imaeda, H.; Matsumoto, K.; Kimura, E.; Yoden, A.; Tamai, H.; Fujiyama, Y.; Mizoguchi, E.; Andoh, A. Faecal chitinase 3-like-1: A novel biomarker of disease activity in paediatric inflammatory bowel disease. Aliment. Pharmacol. Ther. 2011, 34, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Pekow, J.; Llado, V.; Kanneganti, M.; Lau, C.W.; Mizoguchi, A.; Mino-Kenudson, M.; Bissonnette, M.; Mizoguchi, E. Chitinase 3-like-1 expression in colonic epithelial cells as a potentially novel marker for colitis-associated neoplasia. Am. J. Pathol. 2011, 179, 1494–1503. [Google Scholar] [CrossRef] [PubMed]
- Escher, J.C.; Dias, J.A.; Bochenek, K.; Buderus, S.; De Mesquita, M.B.; Bujanover, Y.; Büller, H.A.; Chong, S.K.F.; Cucchiara, S.; Fell, J.M.; et al. IBD Working Group of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. Inflammatory bowel disease in children and adolescents: Recommendations for diagnosis—the Porto criteria. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 1–7. [Google Scholar]
- Levine, A.; Koletzko, S.; Turner, D.; Escher, J.C.; Cucchiara, S.; De Ridder, L.; Kolho, K.L.; Veres, G.; Russell, R.K.; Paerregaard, A.; et al. ESPGHAN revised Porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 795–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, D.; Ruemmele, F.M.; Orlanski-Meyer, E.; Griffiths, A.M.; De Carpi, J.M.; Bronsky, J.; Veres, G.; Aloi, M.; Strisciuglio, C.; Braegger, C.P.; et al. Management of paediatric ulcerative colitis, part 1: Ambulatory care-an evidence-based guideline from European Crohn’s and colitis organization and European society of paediatric gastroenterology, hepatology and nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 257–291. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Ruemmele, F.M.; Orlanski-Meyer, E.; Griffiths, A.M.; de Carpi, J.M.; Bronsky, J.; Veres, G.; Aloi, M.; Strisciuglio, C.; Braegger, C.P.; et al. Management of paediatric ulcerative colitis, Part 2: Acute severe colitis-an evidence-based consensus guideline from the European Crohn’s and colitis organization and the European society of paediatric gastroenterology, hepatology and nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 292–310. [Google Scholar] [CrossRef] [PubMed]
- Van Rheenen, P.F.; Aloi, M.; Assa, A.; Bronsky, J.; Escher, J.C.; Fagerberg, U.L.; Gasparetto, M.; Gerasimidis, K.; Griffiths, A.; Henderson, P.; et al. The medical management of paediatric Crohn’s disease: An ECCO-ESPGHAN guideline update. J. Crohns Colitis 2020, 7, 1–24. [Google Scholar] [CrossRef]
- Waugh, N.; Cummins, E.; Royle, P.; Kandala, N.B.; Shyangdan, D.; Arasaradnam, R.; Clar, C.; Johnston, R. Faecal calprotectin testing for differentiating amongst inflammatory and non-inflammatory bowel diseases: Systematic review and economic evaluation. Health Technol. Assess. 2013, 17, 15–19. [Google Scholar] [CrossRef]
- DeRidder, L.; Rings, E.H.; Escher, J.C. Guideline diagnosis and treatment of inflammatory bowel disease in children. Ned. Tijdschr. Voor Geneeskd. 2009, 154, A1898. [Google Scholar]
- Bossuyt, P.M.; Irwig, L.; Craig, J.; Glasziou, P. Comparative accuracy: Assessing new tests against existing diagnostic pathways. BMJ 2006, 332, 1089. [Google Scholar] [CrossRef] [Green Version]
- Van Rheenen, P.F.; Van de Vijver, E.; Fidler, V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: Diagnostic meta-analysis. BMJ 2010, 341, 3369. [Google Scholar] [CrossRef] [Green Version]
- Borkowska, A.; Liberek, A.; Łuczak, G.; Jankowska, A.; Plata-Nazar, K.; Korzon, M.; Kamińska, B. Fecal lactoferrin, a marker of intestinal inflammation in children with inflammatory bowel disease. Acta Biochim. Pol. 2015, 62, 541–545. [Google Scholar] [CrossRef]
- Sipponen, T.; Kolho, K.L. Faecal calprotectin in children with clinically quiescent inflammatory bowel disease. Scand. J. Gastroenterol. 2010, 45, 872–877. [Google Scholar] [CrossRef] [PubMed]
- McKenna, L.B.; Schug, J.; Vourekas, A.; McKenna, J.B.; Bramswig, N.C.; Friedman, J.R.; Kaestner, K.H. MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology 2010, 139, 1654–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biton, M.; Levin, A.; Slyper, M.; Alkalay, I.; Horwitz, E.; Mor, H.; Kredo-Russo, S.; Avnit-Sagi, T.; Cojocaru, G.; Zreik, F.; et al. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat. Immunol. 2011, 12, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Peruhova, M.; Peshevska-Sekulovska, M.; Krastev, B.; Panayotova, G.; Georgieva, V.; Konakchieva, R.; Nikolaev, G.; Velikova, T.V. What could microRNA expression tell us more about colorectal serrated pathway carcinogenesis? World J. Gastroenterol. 2020, 26, 6556–6571. [Google Scholar] [CrossRef]
- Zahm, A.M.; Hand, N.J.; Tsoucas, D.M.; Le Guen, C.L.; Baldassano, R.N.; Friedman, J.R. Rectal microRNAs are perturbed in pediatric inflammatory bowel disease of the colon. J. Crohn’s Colitis 2014, 8, 1108–1117. [Google Scholar] [CrossRef] [Green Version]
- Zahm, A.M.; Thayu, M.; Hand, N.J.; Horner, A.; Leonard, M.B.; Friedman, J.R. Circulating microRNA is a biomarker of pediatric Crohn disease. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 26–33. [Google Scholar] [CrossRef] [Green Version]
Marker | Cut Off Value | Sensitivity | Specificity | Citation |
---|---|---|---|---|
C-reactive protein | 5 mg/L | 51–73% | 80–93% | Waugh et al., 2013 [97] |
Erythrocyte sedimentation ratio | N/A | 58–73% | 80–88% | DeRidder et al., 2010 [98] |
Fibrinogen | N/A | N/A | N/A | - |
Albumin | N/A | 31–66% | 86–98% | Bossuyt et al., 2006 [99] |
White blood cells | N/A | N/A | N/A | - |
Platelet count | N/A | 36–73% | 81–93% | Van Rheenen et al., 2010 [100] |
Fecal alpha-1 antitrypsin | N/A | N/A | N/A | - |
Fecal lactoferrin | 13 μg/g | 80.7% | 92.7% | Borkowska et al., 2015 [101] |
Fecal calprotectin | 50–275 μg/g | 94.4–100% | 71.9–100% | Sipponen et al., 2010 [102] |
M2-pyruvate kinase | 4–5 U/g | 94.1–97.1% | 94.3–100% | Chung-Faye et al., 2007 [81] |
Osteoprotegerin * | 50 pmol/L | 71% | 69% | Sylvester et al., 2011 [88] |
High mobility group box protein 1 | N/A | N/A | N/A | - |
Chitinase 3-like 1 | 13.7 ng/g | 81.6–84.7% | 90–100% | Aomatsu et al., 2011 [90] |
microRNAs | N/A | N/A | N/A | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shentova-Eneva, R.; Velikova, T. Laboratory Assessment of Disease Activity in Pediatric Patients with Inflammatory Bowel Disease: What’s New? Gastroenterol. Insights 2020, 11, 58-71. https://doi.org/10.3390/gastroent11020009
Shentova-Eneva R, Velikova T. Laboratory Assessment of Disease Activity in Pediatric Patients with Inflammatory Bowel Disease: What’s New? Gastroenterology Insights. 2020; 11(2):58-71. https://doi.org/10.3390/gastroent11020009
Chicago/Turabian StyleShentova-Eneva, Rayna, and Tsvetelina Velikova. 2020. "Laboratory Assessment of Disease Activity in Pediatric Patients with Inflammatory Bowel Disease: What’s New?" Gastroenterology Insights 11, no. 2: 58-71. https://doi.org/10.3390/gastroent11020009
APA StyleShentova-Eneva, R., & Velikova, T. (2020). Laboratory Assessment of Disease Activity in Pediatric Patients with Inflammatory Bowel Disease: What’s New? Gastroenterology Insights, 11(2), 58-71. https://doi.org/10.3390/gastroent11020009