Emerging Role of Neuropilin-1 and Angiotensin-Converting Enzyme-2 in Renal Carcinoma-Associated COVID-19 Pathogenesis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gelfand, M.V.; Hagan, N.; Tata, A.; Oh, W.-J.; Lacoste, B.; Kang, K.-T.; Kopycinska, J.; Bischoff, J.; Wang, J.-H.; Gu, C. Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. Elife 2014, 3, e03720. [Google Scholar] [CrossRef]
- Mamluk, R.; Gechtman, Z.; Kutcher, M.E.; Gasiunas, N.; Gallagher, J.; Klagsbrun, M. Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its b1b2 domain. J. Biol. Chem. 2002, 277, 24818–24825. [Google Scholar] [CrossRef] [Green Version]
- Sulpice, E.; Plouët, J.; Bergé, M.; Allanic, D.; Tobelem, G.; Merkulova-Rainon, T. Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity. Blood 2008, 111, 2036–2045. [Google Scholar] [CrossRef] [PubMed]
- Koitka, A.; Cooper, M.E.; Thomas, M.C.; Tikellis, C. Angiotensin converting enzyme 2 in the kidney. Clin. Exp. Pharmacol. Physiol. 2008, 35, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Mizuiri, S.; Ohashi, Y. ACE and ACE2 in kidney disease. World J. Nephrol. 2015, 4, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.L.; Simonetti, B.; Klein, K.; Chen, K.E.; Williamson, M.K.; Antón-Plágaro, C.; Shoemark, D.K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R.; et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 2020, 370, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.D.; Zahan, S.; Al Hasib, T.; Ahmed, K.; Khanam, M.; Omit, S.; Moni, A.; Uddin, M.J. Current knowledge on mechanisms involved in SARS-CoV-2 infection and kidney diseases. J. Adv. Biotechnol. Exp. Ther. 2020, 3, 30–35. [Google Scholar] [CrossRef]
- Robba, C.; Battaglini, D.; Pelosi, P.; Rocco, P.R.M. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev. Respir. Med. 2020, 14, 865–868. [Google Scholar] [CrossRef]
- Hossain, M.G.; Akter, S.; Uddin, M.J. Expression Profile of SARS-COV-2 Entry Receptor ACE2 in the Hepatocellular Carcinoma and its Impact on COVID-19 Patients. J. Microbiol. Biotechnol. Food Sci. 2021, e5140. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020, 97, 829–838. [Google Scholar] [CrossRef]
- Portolés, J.; Marques, M.; López-Sánchez, P.; de Valdenebro, M.; Muñez, E.; Serrano, M.L.; Malo, R.; García, E.; Cuervas, V. Chronic kidney disease and acute kidney injury in the COVID-19 Spanish outbreak. Nephrol. Dial. Transplant. 2020, 35, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Yang, B.; Xu, J.; Mao, Z.; Zhou, C.; Xue, C. COVID-19 Infection in a Patient with End-Stage Kidney Disease. Nephron 2020, 144, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Tsimafeyeu, I.; Alekseeva, G.; Berkut, M.; Nosov, A.; Myslevtsev, I.; Andrianov, A.; Semenov, A.; Borisov, P.; Zukov, R.; Goutnik, V.; et al. COVID-19 in Patients with Renal Cell Carcinoma in the Russian Federation. Clin. Genitourin. Cancer 2021, 19, e69–e71. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019, 47, W556–W560. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef]
- Pathan, M.; Keerthikumar, S.; Ang, C.S.; Gangoda, L.; Quek, C.Y.; Williamson, N.A.; Mouradov, D.; Sieber, O.M.; Simpson, R.J.; Salim, A.; et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 2015, 15, 2597–2601. [Google Scholar] [CrossRef]
- Mattingly, C.J.; Colby, G.T.; Forrest, J.N.; Boyer, J.L. The Comparative Toxicogenomics Database (CTD). Environ. Health Perspect. 2003, 111, 793–795. [Google Scholar] [CrossRef]
- Wan, B.; Liu, B.; Huang, Y.; Yu, G.; Lv, C. Prognostic value of immune-related genes in clear cell renal cell carcinoma. Aging 2019, 11, 11474–11489. [Google Scholar] [CrossRef]
- Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal cell carcinoma. Nat. Rev. Dis. Primers 2017, 3, 17009. [Google Scholar] [CrossRef]
- Lan, H.; Zeng, J.; Chen, G.; Huang, H. Survival prediction of kidney renal papillary cell carcinoma by comprehensive LncRNA characterization. Oncotarget 2017, 8, 110811–110829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ustuner, M.; Yaprak, B.; Teke, K.; Ciftci, S.; Kart, M.; Yildiz, K.; Culha, M. Coexisting papillary and clear renal cell carcinoma in the same kidney. Case Rep. Urol. 2014, 2014, 575181. [Google Scholar] [CrossRef]
- Wang, M.; Xiong, H.; Chen, H.; Li, Q.; Ruan, X.Z. Renal Injury by SARS-CoV-2 Infection: A Systematic Review. Kidney Dis. 2021, 7, 100–110. [Google Scholar] [CrossRef]
- Soleimani, M. Acute Kidney Injury in SARS-CoV-2 Infection: Direct Effect of Virus on Kidney Proximal Tubule Cells. Int. J. Mol. Sci. 2020, 21, 3275. [Google Scholar] [CrossRef]
- Wnuk, M.; Anderegg, M.A.; Graber, W.A.; Buergy, R.; Fuster, D.G.; Djonov, V. Neuropilin1 regulates glomerular function and basement membrane composition through pericytes in the mouse kidney. Kidney Int. 2017, 91, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Schramek, H.; Sarközi, R.; Lauterberg, C.; Kronbichler, A.; Pirklbauer, M.; Albrecht, R.; Noppert, S.J.; Perco, P.; Rudnicki, M.; Strutz, F.M.; et al. Neuropilin-1 and neuropilin-2 are differentially expressed in human proteinuric nephropathies and cytokine-stimulated proximal tubular cells. Lab. Investig. A J. Tech. Methods Pathol. 2009, 89, 1304–1316. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, S.C.; Deshmukh, V.; Creighton, C.J.; Patil, A. Renal Carcinoma Is Associated with Increased Risk of Coronavirus Infections. Front. Mol. Biosci. 2020, 7, 579422. [Google Scholar] [CrossRef]
- Khan, M.A.; Islam, A. SARS-CoV-2 Proteins Exploit Host’s Genetic and Epigenetic Mediators for the Annexation of Key Host Signaling Pathways. Front. Mol. Biosci. 2020, 7, 598583. [Google Scholar] [CrossRef]
- Spinelli, F.R.; Colbert, R.A.; Gadina, M. JAK1: Number one in the family; number one in inflammation? Rheumatology 2021, 60, ii3–ii10. [Google Scholar] [CrossRef]
- Shang, D.; Liu, Y.; Ito, N.; Kamoto, T.; Ogawa, O. Defective Jak-Stat activation in renal cell carcinoma is associated with interferon-alpha resistance. Cancer Sci. 2007, 98, 1259–1264. [Google Scholar] [CrossRef]
- Seif, F.; Aazami, H.; Khoshmirsafa, M.; Kamali, M.; Mohsenzadegan, M.; Pornour, M.; Mansouri, D. JAK Inhibition as a New Treatment Strategy for Patients with COVID-19. Int. Arch. Allergy Immunol. 2020, 181, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, Y.; Xu, J.; Bao, J.; Zhao, J.; Chen, J.; Chen, G.; Han, J. The Nephroprotective Effect of TNF Receptor-Associated Factor 6 (TRAF6) Blockade on LPS-Induced Acute Renal Injury Through the Inhibition if Inflammation and Oxidative Stress. Med. Sci. Monit. 2020, 26, e919698. [Google Scholar] [CrossRef] [PubMed]
- Aboudounya, M.M.; Heads, R.J. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediat. Inflamm. 2021, 2021, 8874339. [Google Scholar] [CrossRef]
- Wu, D.S.; Chen, C.; Wu, Z.J.; Liu, B.; Gao, L.; Yang, Q.; Chen, W.; Chen, J.M.; Bao, Y.; Qu, L.; et al. ATF2 predicts poor prognosis and promotes malignant phenotypes in renal cell carcinoma. J. Exp. Clin. Cancer Res. CR 2016, 35, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, R.; Leeson, A.; Andonov, A.; Li, Y.; Bastien, N.; Cao, J.; Osiowy, C.; Dobie, F.; Cutts, T.; Ballantine, M.; et al. Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun. 2003, 311, 870–876. [Google Scholar] [CrossRef]
- Kong, Y.; Han, J.; Wu, X.; Zeng, H.; Liu, J.; Zhang, H. VEGF-D: A novel biomarker for detection of COVID-19 progression. Crit. Care 2020, 24, 373. [Google Scholar] [CrossRef]
- Tamayo-Velasco, Á.; Martínez-Paz, P.; Peñarrubia-Ponce, M.J.; de la Fuente, I.; Pérez-González, S.; Fernández, I.; Dueñas, C.; Gómez-Sánchez, E.; Lorenzo-López, M.; Gómez-Pesquera, E.; et al. HGF, IL-1α, and IL-27 Are Robust Biomarkers in Early Severity Stratification of COVID-19 Patients. J. Clin. Med. 2021, 10, 2017. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.X.; Zheng, X.R.; Peng, W.; Wu, M.L.; Mao, X.Y. Vascular Endothelial Growth Factor (VEGF) as a Vital Target for Brain Inflammation during the COVID-19 Outbreak. ACS Chem. Neurosci. 2020, 11, 1704–1705. [Google Scholar] [CrossRef]
Sl. | Gene | Sl. | Gene | Sl. | Gene | Sl. | Gene | Sl. | Gene |
---|---|---|---|---|---|---|---|---|---|
1. | ATF2 | 27. | ATP7B | 53. | SLC35A5 | 79. | SLC33A1 | 105. | DYNLL2 |
2. | CYLD | 28. | SLC40A1 | 54. | BBS10 | 80. | WDR31 | 106. | PCYOX1 |
3. | HBP1 | 29. | ALAD | 55. | MED29 | 81. | SIK2 | 107. | APPL2 |
4. | PGK1 | 30. | RNF19B | 56. | AP3B1 | 82. | TCP11L1 | 108. | CDC14B |
5. | CFLAR | 31. | RAG1 | 57. | TBC1D19 | 83. | RAB3IP | 109. | DBT |
6. | CHUK | 32. | IFIH1 | 58. | KBTBD3 | 84. | USP8 | 110. | HFE |
7. | RAB7A | 33. | TAOK3 | 59. | TULP3 | 85. | DAZAP2 | 111. | MYO6 |
8. | SLC30A4 | 34. | APPL1 | 60. | AASDHPPT | 86. | DDX18 | 112. | AKTIP |
9. | ACOX1 | 35. | TGOLN2 | 61. | TGFBRAP1 | 87. | PEX12 | 113. | AFF4 |
10. | TEAD1 | 36. | CANX | 62. | CRIPT | 88. | DUSP11 | 114. | RIOK3 |
11. | MTMR6 | 37. | WIPF2 | 63. | TM9SF2 | 89. | SBNO1 | 115. | RRAGC |
12. | PPP2R1B | 38. | STOM | 64. | RAB21 | 90. | VPS33A | 116. | RNF13 |
13. | RAB1A | 39. | PNMA2 | 65. | MAGT1 | 91. | FBXO3 | 117. | IDE |
14. | NCOA4 | 40. | TSR1 | 66. | ANKRD27 | 92. | SAP30L | 118. | PAFAH1B1 |
15. | AP1G1 | 41. | MAP3K13 | 67. | DHX29 | 93. | MTRR | 119. | ENDOD1 |
16. | JAK1 | 42. | PIGN | 68. | DENND5B | 94. | RANBP2 | 120. | CLTC |
17. | ATF7IP | 43. | APBB1 | 69. | TMLHE | 95. | EPB41L4A | 121. | PHLDB2 |
18. | MIA2 | 44. | PSMD11 | 70. | BIRC2 | 96. | NLRX1 | 122. | FZD1 |
19. | TSHZ1 | 45. | VPS24 | 71. | DCTN1 | 97. | SGCB | 123. | CREB5 |
20. | SPAG9 | 46. | TBL1X | 72. | NARS2 | 98. | ZFP91 | 124. | ADD3 |
21. | MLEC | 47. | AP2B1 | 73. | SHPK | 99. | FARS2 | 125. | SLC1A1 |
22. | TRAF6 | 48. | INVS | 74. | TTC26 | 100. | PURA | 126. | PPP2CA |
23. | IFIT1 | 49. | NCOA1 | 75. | SLU7 | 101. | FRMD4B | 127. | APC |
24. | RPS6KA3 | 50. | PIK3R4 | 76. | TXNDC9 | 102. | MDM1 | 128. | NCOR1 |
25. | FTO | 51. | TMEM127 | 77. | CHIC1 | 103. | PCBP1 | ||
26. | CLIC4 | 52. | TTC21B | 78. | ZSWIM5 | 104. | BICC1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.G.; Akter, S.; Uddin, M.J. Emerging Role of Neuropilin-1 and Angiotensin-Converting Enzyme-2 in Renal Carcinoma-Associated COVID-19 Pathogenesis. Infect. Dis. Rep. 2021, 13, 902-909. https://doi.org/10.3390/idr13040081
Hossain MG, Akter S, Uddin MJ. Emerging Role of Neuropilin-1 and Angiotensin-Converting Enzyme-2 in Renal Carcinoma-Associated COVID-19 Pathogenesis. Infectious Disease Reports. 2021; 13(4):902-909. https://doi.org/10.3390/idr13040081
Chicago/Turabian StyleHossain, Md. Golzar, Sharmin Akter, and Md Jamal Uddin. 2021. "Emerging Role of Neuropilin-1 and Angiotensin-Converting Enzyme-2 in Renal Carcinoma-Associated COVID-19 Pathogenesis" Infectious Disease Reports 13, no. 4: 902-909. https://doi.org/10.3390/idr13040081
APA StyleHossain, M. G., Akter, S., & Uddin, M. J. (2021). Emerging Role of Neuropilin-1 and Angiotensin-Converting Enzyme-2 in Renal Carcinoma-Associated COVID-19 Pathogenesis. Infectious Disease Reports, 13(4), 902-909. https://doi.org/10.3390/idr13040081