Roles for Pathogen Interference in Influenza Vaccination, with Implications to Vaccine Effectiveness (VE) and Attribution of Influenza Deaths
Abstract
:1. Background
2. Introduction
3. A Wider Context to Pathogen Interference
3.1. How Many Human Pathogens
3.2. Pathogen Burden and Persistent Infections
3.3. Roles for the Immune Modifying Persistent Virus Cytomegalovirus
3.4. Heterologous Immunity
3.5. Antigenic Original Sin and Immune Priming
3.6. Immune Function and Malnutrition in Children and the Elderly
3.7. Role of the Human Microbiome
3.8. Influenza (and Other Pathogens) Show Extreme Spatiotemporal Variation
3.9. Implications to Pathogen Interference
4. The Role of Time as a Confounding Variable
5. Respiratory Pathogen Interference
5.1. An Example of Pathogen Interference and Methodological Issues
5.2. How Common Is Influenza Infection
5.3. Pathogen Interference and Influenza-Like Illness (ILI)
5.4. Pathogen Interference, Influenza Infection and Vaccination
5.5. Pathogen Interference and Influenza Outbreaks
5.6. Did Lockdown or COVID-19 Halt Influenza in Early 2020
5.7. Studies Implying Pathogen Interference in the Net Effects of Influenza Vaccination
6. Issues Relating to Influenza Vaccine Effectiveness
6.1. Vaccine Effectiveness Estimates in the Real World of Multiple Pathogens
6.2. What Does Vaccine Effectiveness Measure
6.3. Pathogen Interference and Variation in VE
6.4. Negative Vaccine Effectiveness and Pathogen Interference
6.5. Peculiar Longitudinal Behavior of International Vaccine Effectiveness (VE)
6.6. Roles for Age and Nearness-to-Death
- Pathogen interference is operating such that any benefits of influenza vaccination are counterbalanced by pathogen interference.
- Age 65 is too young to commence influenza vaccination.
7. Roles for Temperature and Pollution
8. Comments Specific to Respiratory Syncytial Virus (RSV) and Pneumonia
8.1. Respiratory Syncytial Virus (RSV) and Attributed “Influenza” Mortality in the Elderly
8.2. Interaction between Influenza and Pneumonia
9. System Complexity and the Unanticipated Effects of Influenza Vaccination
9.1. The Immunology of Why Vaccines Work
9.2. Possible Role of Asymptomatic Infections
9.3. Influenza Vaccination and HIV/AIDS
9.4. Unanticipated Effects on All-Cause Mortality by Other Vaccines
9.5. Variable Responses to Influenza Vaccination
9.6. Pathogen Subversion of Antigen Presentation
9.7. Roles for Transcriptional Signatures and Small Noncoding RNAs (ncRNA) in Evaluation of the VE
- -
- Pre-vaccination transcriptional signatures that were associated with antibody responses revealed numerous new types of bio-regulatory molecules playing a significant role in host–pathogen interactions, including influenza infection.
- -
- miRNAs are present in numerous bodily fluids and are highly stable in these fluids. They have potential as minimally invasive disease markers. Blood, serum, saliva, and bronchial wash/lavage can be used as starting materials to detect differentially expressed miRNAs in response to influenza infection [287] what could be used in diagnostic tests and for the disease severity prognostication.
- -
- Differential expression profiles of host miRNAs, also called the miRNAome, have been reported in vitro and in vivo with various influenza strains [287].
- -
- Genes regulating antibody response behave differently in young and older adults [282].
9.8. Influenza Vaccination in Coinfection and Superinfection
- (1)
- The many pathogens that infect humans (e.g., viruses, bacteria, protozoa, fungal parasites, helminths) often co-occur within individuals. The true prevalence of coinfection likely exceeds one sixth of the global population.
- (2)
- Coinfections often involve less-common pathogens.
- (3)
- Coinfections involve a huge variety of pathogens, and most studies report negative effects on human health.
- (4)
- The overall consequence of reported coinfections was poorer host health and enhanced pathogen abundance, compared with single infections. This is strongly supported by significant statistical differences in the reported direction of effects (p < 0.001).
- (5)
- The long-term effects of coinfections can be varied and may include chronic inflammation, immunosuppression, liver fibrosis, meningitis, renal failure, rheumatic fever, etc. [293].
- (6)
- Improved understanding of coinfection prevalence is greatly needed, partly because coinfecting pathogens can interact either directly with one another or indirectly via the host’s resources or immune system [294].
- (7)
- (8)
- (9)
- (10)
- To date, most disease control programs typically adopt a vertical approach to intervention, dealing with each pathogen infection in isolation. If coinfecting pathogens generally interact to worsen human health, as suggested here, control measures may need to be more integrated [289].
9.9. Roles for Defective Interfering Particles (DIPs and DIGs)
9.10. Years in Which Specific and Nonspecific Effects of Influenza Vaccination Interact
9.11. The VE—Pathogen Interference Conundrum
10. Further Studies
11. Individual Risk
12. Recommendations
13. Conclusions
14. Epilogue
“many influenza researchers are hesitant to discuss problems with the vaccine because they’re afraid of being tainted with the antivaccine brush. That’s a mistake. This immunization program has been predicated on assumptions on top of assumptions. Unless we have these discussions, we’ll never have improved vaccine options. And I don’t think it’s antivaccine to want your vaccine program to be the best that it can be”Danuta Skowronski, Epidemiologist, BC Centre for Disease Control, Vancouver, Canada
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Jones, R. Excess winter mortality (EWM) as a dynamic forensic tool, where, when, which conditions, gender, ethnicity, and age. Int. J. Environ. Public Health 2021, 18, 2161. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Ponomarenko, A. Trends in excess winter mortality (EWM) from 1900/01 to 2019/20—Evidence for a complex system of multiple long-term trends. Int. J. Environ. Res. Public Health 2022, 19, 3407. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Ponomarenko, A. System complexity in influenza infection and vaccination: Effects upon excess winter mortality. Infect. Dis. Rep. 2022, 14, 287–309. [Google Scholar] [CrossRef] [PubMed]
- Nichol, K. Challenges in evaluating influenza vaccine effectiveness and the mortality benefits controversy. Vaccine 2009, 27, 6305–6311. [Google Scholar] [CrossRef]
- Lee, J.; Lam, G.; Shin, T.; Samson, S.; Greenberg, D.; Chit, A. Efficacy and effectiveness of high–dose influenza vaccine in older adults by circulating strain and antigenic match, An updated systematic review and meta–analysis. Vaccine 2021, 39 (Suppl. S1), A24–A35. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. CDC Seasonal Flu Vaccine Effectiveness Studies. Available online: https://www.cdc.gov/flu/vaccines-work/effectiveness-studies.htm (accessed on 11 November 2021).
- Torracchi, C.J.; Morel, M.A.; Tapia-Vázquez, I.; Castro-Sowinski, S.; Batista-García, R.; Yarzábal, R. Fighting plant pathogens with cold-active microorganisms: Biopesticide development and agriculture intensification in cold climates. Appl. Microbiol. Biotechnol. 2020, 104, 8243–8256. [Google Scholar] [CrossRef]
- Caragata, E.P.; Rezende, F.O.; Simões, T.C.; Moreira, L. Diet-induced nutritional stress and pathogen interference in Wolbachia-infected Aedes aegypti. PLoS Negl. Trop. Dis. 2016, 10, e0005158. [Google Scholar] [CrossRef]
- Salas-Benito, J.S.; De Nova-Ocampo, M. Viral interference and persistence in mosquito-borne flaviviruses. J. Immunol. Res. 2015, 2015, 873404. [Google Scholar] [CrossRef]
- Ellakany, H.; Gado, A.; Elbestawy, A.; Abd El-Hamid, H.; Hafez, H.; Abd El-Hack, M.; Swelum, A.; Al-Owaimer, A.; Saadeldin, I. Interaction between avian influenza subtype H9N2 and Newcastle disease virus vaccine strain (LaSota) in chickens. BMC Vet. Res. 2018, 14, 358. [Google Scholar] [CrossRef]
- Simón, R.; Docando, F.; Nuñez-Ortiz, N.; Tafalla, C.; Díaz-Rosales, P. Mechanisms used by probiotics to confer pathogen resistance to Teleost fish. Front. Immunol. 2021, 12, 653025. [Google Scholar] [CrossRef]
- Chan, K.; Carolan, L.; Konerko, D.; Druce, J.; McCaw, J.; Reading, P.; Barr, I.; Laurie, K. Investigating viral interference between Influenza A virus and human respiratory syncytial virus in a ferret model of infection. J. Infect. Dis. 2018, 218, 406–417. [Google Scholar] [CrossRef]
- Piret, J.; Boivin, G. Viral interference between respiratory viruses. Emerg. Infect. Dis. 2022, 28, 273–281. [Google Scholar] [CrossRef]
- Opatowski, L.; Baguelin, M.; Eggo, R. Influenza interaction with cocirculating pathogens and its impact on surveillance, pathogenesis, and epidemic profile: A key role for mathematical modelling. PLOS Pathog. 2018, 14, e1006770. [Google Scholar] [CrossRef]
- Berencsi, G.; Kapusinszky, B.; Rigó, Z.; Szomor, K. Interference among viruses circulating and administered in Hungary from 1931 to 2008. Acta Microbiol. Immunol. Hung. 2010, 57, 73–86. [Google Scholar] [CrossRef]
- Kumar, N.; Sharma, S.; Barua, S.; Tripathi, B.; Rouse, B. Virological and immunological outcomes of coinfections. Clin. Microbiol. Rev. 2018, 31, e00111-17. [Google Scholar] [CrossRef]
- Zeng, J.; Gupta, V.K.; Jiang, Y.; Yang, B.; Gong, L.; Zhu, H. Cross-kingdom small RNAs among animals, plants and microbes. Cells 2019, 8, 371. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Y.; Ding, S. Small RNA-based antimicrobial immunity. Nat. Rev. Immunol. 2019, 19, 31–44. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Wang, H.; Hu, P.; Hamby, R.; Jin, H. Small RNAs—Big players in plant-microbe interactions. Cell Host Microbe 2019, 26, 173–182. [Google Scholar] [CrossRef]
- Plaza, J. Small RNAs in cell-to-cell communications during bacterial infection. FEMS Microbiol. Lett. 2018, 365, fny024. [Google Scholar] [CrossRef]
- Morishita, A.; Oura, K.; Tadokoro, T.; Fujita, K.; Tani, J.; Masaki, T. MicroRNA interference in hepatic host-pathogen interactions. Int. J. Mol. Sci. 2021, 22, 3554. [Google Scholar] [CrossRef]
- Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 2019, 571, 489–499. [Google Scholar] [CrossRef]
- Dianzani, F. Viral interference and interferon. Ric. Clin. Lab. 1975, 5, 196–213. [Google Scholar] [CrossRef]
- Sharma, S.; Thomas, P. The two faces of heterologous immunity: Protection or immunopathology. J. Leukoc. Biol. 2014, 95, 405–416. [Google Scholar] [CrossRef]
- Ghedin, E.; Fitch, A.; Boyne, A.; Griesemer, S.; DePasse, J.; Bera, J.; Zhang, X.; Halpin, R.; Smit, M.; Jennings, L.; et al. Mixed infection and the genesis of influenza virus diversity. J. Virol. 2009, 83, 8832–8841. [Google Scholar] [CrossRef]
- Woolhouse, M.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef]
- Wardeh, M.; Risley, C.; McIntyre, M.; Setzkorn, C.; Baylis, M. Database of host-pathogen and related species interactions, and their global distribution. Sci. Data 2015, 2, 150049. [Google Scholar] [CrossRef]
- Woolhouse, M.; Scott, F.; Hudson, Z.; Howey, R.; Chase-Topping, M. Human viruses: Discovery and emergence. Phil. Trans. Roy Soc. Lond. Ser. B Biol. Sci. 2012, 367, 2864–2871. [Google Scholar] [CrossRef]
- Schlaberg, R.; Simmon, K.; Fisher, M. A systematic approach for discovering novel, clinically relevant bacteria. Emerg. Infect. Dis. 2012, 18, 422–430. [Google Scholar] [CrossRef]
- Danko, D.; Bezdan, D.; Afshin, E.; Ahsanuddin, S.; Bhattacharya, C.; Butler, D.; Chng, K.; Donnellan, D.; Hecht, J.; Jackson, K.; et al. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 2021, 184, 3376–3393. [Google Scholar] [CrossRef]
- Edgar, R.C.; Taylor, J.; Lin, V.; Altman, T.; Barbera, P.; Meleshko, D.; Lohr, D.; Novakovsky, G.; Buchfink, B.; Al-Shayeb, B.; et al. Petabase-scale sequence alignment catalyses viral discovery. Nature 2022, 602, 142–147. [Google Scholar] [CrossRef]
- Thakur, A.; Mikkelsen, H.; Jungersen, G. Intracellular pathogens: Host immunity and microbial persistence strategies. J. Immunol. Res 2019, 2019, 1356540. [Google Scholar] [CrossRef] [PubMed]
- Proal, A.; Marshall, T. Myalgic encephalomyelitis/chronic fatigue syndrome in the era of the human microbiome: Persistent pathogens drive chronic symptoms by interfering with host metabolism, gene expression, and immunity. Front. Pediatrics 2018, 6, 373. [Google Scholar] [CrossRef] [PubMed]
- Proal, A.; Marshall, T. Re-framing the theory of autoimmunity in the era of the microbiome: Persistent pathogens, autoantibodies, and molecular mimicry. Discov. Med. 2018, 25, 299–308. [Google Scholar] [PubMed]
- Simanek, A.; Zheng, C.; Yolken, R.; Haan, M.; Aiello, A. A Longitudinal study of the association between persistent pathogens and incident depression among older U.S. Latinos. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 634–641. [Google Scholar] [CrossRef]
- Gugliesi, F.; Pasquero, S.; Griffante, G.; Scutera, S.; Albano, C.; Pacheco, S.; Riva, G.; Dell’Oste, V.; Biolatti, M. Human cytomegalovirus and autoimmune diseases: Where are we? Viruses 2021, 13, 260. [Google Scholar] [CrossRef]
- Jones, R. Roles for cytomegalovirus in infection, inflammation and autoimmunity. In Infection and Autoimmunity, 2nd ed.; Shoenfeld, Y., Agmon-Levin, N., Rose, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Chapter 18; pp. 319–357. [Google Scholar] [CrossRef]
- Noppert, G.A.; Feinstein, L.; Dowd, J.B.; Stebbins, R.; Zang, E.; Needham, B.; Meier, H.; Simanek, A.; Aiello, A. Pathogen burden and leukocyte telomere length in the United States. Immun. Ageing 2020, 17, 36. [Google Scholar] [CrossRef]
- Humphreys, D.; ElGhazaly, M.; Frisan, T. Senescence and host–pathogen interactions. Cells 2020, 9, 1747. [Google Scholar] [CrossRef]
- Jergović, M.; Contreras, N.A.; Nikolich-Žugich, J. Impact of CMV upon immune aging: Facts and fiction. Med. Microbiol. Immunol. 2019, 208, 263–269. [Google Scholar] [CrossRef]
- Noppert, G.; Aiello, A.; O’Rand, A.; Cohen, H. Investigating pathogen burden in relation to a cumulative deficits index in a representative sample of US adults. Epidemiol. Infect. 2018, 146, 1968–1976. [Google Scholar] [CrossRef] [Green Version]
- Hodel, F.; Naret, O.; Bonnet, C.; Brenner, N.; Bender, N.; Waterboer, T.; Marques-Vidal, P.; Vollenweider, P.; Fellay, J. The combined impact of persistent infections and human genetic variation on C-reactive protein levels. medRxiv 2022, preprint. [Google Scholar] [CrossRef]
- Stebbins, R.; Noppert, G.; Aiello, A.; Cordoba, E.; Ward, J.; Feinstein, L. Persistent socioeconomic and racial and ethnic disparities in pathogen burden in the United States, 1999–2014. Epidemiol. Infect. 2019, 147, E301. [Google Scholar] [CrossRef]
- Wylie, K.; Mihindukulasuriya, K.; Zhou, Y.; Sodergren, E.; Storch, G.; Weinstock, G. Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol. 2014, 12, 71. [Google Scholar] [CrossRef]
- Picarda, G.; Benedict, C. Cytomegalovirus: Shape-shifting the immune system. J. Immunol. 2018, 200, 3881–3889. [Google Scholar] [CrossRef]
- Jones, R. Could cytomegalovirus be causing widespread outbreaks of chronic poor health? In Hypotheses in Clinical Medicine; Shoja, M., Agutter, P., Tubbs, S., Ghanei, M., Ghabili, K., Loukas, M., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2013; pp. 37–79. Available online: http://www.hcaf.biz/2013/CMV_Read.pdf (accessed on 1 April 2022).
- Forte, E.; Zhang, Z.; Thorp, E.B.; Hummel, M. Cytomegalovirus latency and reactivation: An intricate interplay with the host immune response. Front. Cell Infect. Microbiol. 2020, 31, 130. [Google Scholar] [CrossRef]
- Nguyen, C.; Kamil, J. Pathogen at the gates: Human cytomegalovirus entry and cell tropism. Viruses 2018, 10, 704. [Google Scholar] [CrossRef]
- Herbein, G. The Human cytomegalovirus, from oncomodulation to oncogenesis. Viruses 2018, 10, 408. [Google Scholar] [CrossRef]
- Jones, R. A Study of an unexplained and large increase in respiratory deaths in England and Wales: Is the pattern of diagnoses consistent with the potential involvement of cytomegalovirus? J. Adv. Med. Med. Res. 2014, 4, 5179–5192. [Google Scholar] [CrossRef]
- Söderberg–Nauclér, C. Does reactivation of cytomegalovirus contribute to severe COVID–19 disease? Immun. Ageing 2021, 18, 12. [Google Scholar] [CrossRef]
- Jones, R.; Goldeck, D. Unexpected and unexplained increase in death due to neurological disorders in 2012 in England and Wales: Is cytomegalovirus implicated? Med. Hypotheses 2014, 83, 25–31. [Google Scholar] [CrossRef]
- Jones, R. An unexpected increase in adult appendicitis in England (2000/01 to 2012/13): Could cytomegalovirus (CMV) be a risk factor? J. Adv. Med. Med. Res. 2015, 5, 579–603. [Google Scholar] [CrossRef]
- Jones, R. Is cytomegalovirus involved in recurring periods of higher than expected death and medical admissions, occurring as clustered outbreaks in the northern and southern hemispheres? J. Adv. Med. Med. Res. 2016, 11, 1–31. [Google Scholar] [CrossRef]
- Jones, R. Outbreaks of a presumed infectious agent associated with changes in fertility, stillbirth, congenital abnormalities and the gender ratio at birth. J. Adv. Med. Med. Res. 2017, 20, 1–36. [Google Scholar] [CrossRef]
- Chen, L.Y.; Hwang, A.C.; Huang, C.Y.; Chen, L.; Wang, F.; Chan, Y. CMV infection, CD19+ B cell depletion, and Lymphopenia as predictors for unexpected admission in the institutionalized elderly. Immun Ageing 2021, 18, 21. [Google Scholar] [CrossRef]
- Xie, M.; Xuan, B.; Shan, J.; Pan, D.; Sun, Y.; Shan, Z.; Zhang, J.; Yu, D.; Li, B.; Qian, Z. Human cytomegalovirus exploits interferon-induced transmembrane proteins to facilitate morphogenesis of the virion assembly compartment. J. Virol. 2015, 89, 3049–3061. [Google Scholar] [CrossRef]
- Agrawal, B. Heterologous immunity: Role in natural and vaccine-induced resistance to infections. Front. Immunol. 2019, 10, 2631. [Google Scholar] [CrossRef]
- Pusch, E.; Renz, H.; Skevaki, C. Respiratory virus-induced heterologous immunity: Part of the problem or part of the solution? Allergo J. 2018, 27, 28–45. [Google Scholar] [CrossRef]
- Kharchenko, E.P. The Coronavirus SARS-CoV-2: The characteristics of structural proteins, contagiousness, and possible immune collisions. Epidemiol. Vaccinal Prev. 2020, 19, 13–30. [Google Scholar] [CrossRef]
- Toptygina, A. Heterologous immune responses in health and disease. Russ. J. Infect. Immun. 2020, 10, 269–276. [Google Scholar] [CrossRef]
- Almeida, C.; van Miert, P.; O’Driscoll, K.; Zoet, Y.; Chopra, A.; Witt, C.; John, M.; Claas, F.; D’Orsogna, L. Virus-specific T-cell clonotypes might contribute to drug hypersensitivity reactions through heterologous immunity. J. Allergy Clin. Immunol. 2019, 144, 608–611. [Google Scholar] [CrossRef] [Green Version]
- Messina, N.; Zimmermann, P.; Curtis, N. The impact of vaccines on heterologous adaptive immunity. Clin. Microbiol. Infect. 2019, 25, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Balz, K.; Trassl, L.; Härtel, V.; Nelson, P.P.; Skevaki, C. Virus-induced T cell-mediated heterologous immunity and vaccine development. Front. Immunol. 2020, 11, 513. [Google Scholar] [CrossRef] [PubMed]
- Divangahi, M.; Aaby, P.; Khader, S.; Barreiro, L.; Bekkering, S.; Chavakis, T.; van Crevel, R.; Curtis, N.; DiNardo, A.; Dominguez-Andres, J.; et al. Trained immunity, tolerance, priming and differentiation: Distinct immunological processes. Nat. Immunol. 2021, 22, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Stacey, H.; Mullarkey, C.; Miller, M. Original antigenic sin: How first exposure shapes lifelong anti–influenza virus immune responses. J. Immunol. 2019, 202, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Kanduc, D.; Shoenfeld, Y. Inter-pathogen peptide sharing and the original antigenic sin: Solving a paradox. Open Immunol. J. 2018, 8, 16–27. [Google Scholar] [CrossRef]
- Brown, E.L.; Essigmann, H. Original antigenic sin: The downside of immunological memory and implications for COVID-19. MSphere 2021, 6, e00056-21. [Google Scholar] [CrossRef]
- Reina, J.; Iglesias, C. The role of “original antigenic sin” on influenza vaccine response. Vacunas 2022, 23, 46–54. [Google Scholar] [CrossRef]
- Bourke, C.; Berkley, J.; Prendergast, A. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol. 2016, 37, 386–398. [Google Scholar] [CrossRef]
- Liston, A.; Humblet-Baron, S.; Duffy, D.; Goris, A. Human immune diversity: From evolution to modernity. Nat. Immunol. 2021, 22, 1479–1489. [Google Scholar] [CrossRef]
- Azad, A.; Lloyd, C.; Sadee, W.; Schlesinger, L. Challenges of immune response diversity in the human population concerning new Tuberculosis diagnostics, therapies, and vaccines. Front. Cell. Infect. Microbiol. 2020, 10, 139. Available online: https://www.frontiersin.org/article/10.3389/fcimb.2020.00139 (accessed on 1 September 2022).
- Gao, Z.; Kang, Y.; Yu, J.; Ren, L. Human pharyngeal microbiome may play a protective role in respiratory tract infections. Genom. Proteom. Bioinform. 2014, 12, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Man, W.; de Steenhuijsen Piters, W.; Bogaert, D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef]
- Byrd, A.; Belkaid, Y.; Segre, J. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Schoenmakers, S.; Steegers-Theunissen, R.; Faas, M. The matter of the reproductive microbiome. Obstet. Med. 2019, 2, 107–115. [Google Scholar] [CrossRef]
- Thomann, A.; Mak, J.; Zhang, J.; Wuestenberg, T.; Ebert, M.; Sung, J.; Bernstein, Ç.; Reindl, W.; Ng, S. Review article: Bugs, inflammation and mood—A microbiota-based approach to psychiatric symptoms in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2020, 52, 247–266. [Google Scholar] [CrossRef]
- Al-Nasiry, S.; Ambrosino, E.; Schlaepfer, M.; Morré Servaas, A.; Wieten, L.; Voncken, J.; Spinelli, M.; Mueller, M.; Kramer, B. The interplay between reproductive tract microbiota and immunological system in human reproduction. Front. Immunol. 2020, 11, 378. [Google Scholar] [CrossRef]
- Salvucci, E. The human-microbiome superorganism and its modulation to restore health. Int. J. Food. Sci. Nutr. 2019, 70, 781–795. [Google Scholar] [CrossRef]
- Piewngam, P.; Zheng, Y.; Nguyen, T.; Dickey, S.; Joo, H.; Villaruz, A.E.; Glose, K.; Fisher, E.; Hunt, R.; Li, B.; et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 2018, 562, 532–537. [Google Scholar] [CrossRef]
- Campana, R.; van Hemert, S.; Baffone, W. Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut. Pathog. 2017, 9, 12. [Google Scholar] [CrossRef]
- Lee, K.; Gordon, A.; Shedden, K.; Kuan, G.; Ng, S.; Balmaseda, A.; Foxman, B. The respiratory microbiome and susceptibility to influenza virus infection. PLoS ONE 2019, 14, e0207898. [Google Scholar] [CrossRef]
- Tsang, T.; Lee, K.; Foxman, B.; Balmaseda, A.; Gresh, L.; Sanchez, N.; Ojeda, S.; Lopez, R.; Yang, Y.; Kuan, G.; et al. Association between the respiratory microbiome and susceptibility to influenza virus infection. Clin. Infect. Dis. 2020, 71, 1195–1203. [Google Scholar] [CrossRef]
- Lee, K.; Foxman, B.; Kuan, G.; López, R.; Shedden, K.; Ng, S.; Balmaseda, A.; Gordon, A. The respiratory microbiota: Associations with influenza symptomatology and viral shedding. Ann. Epidemiol. 2019, 37, 51–56. [Google Scholar] [CrossRef]
- Saint-Criq, V.; Lugo-Villarino, G.; Thomas, M. Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Res. Rev. 2021, 66, 101235. [Google Scholar] [CrossRef]
- Kortessis, N.; Simon, M.; Barfield, M.; Glass, G.; Singer, B.; Holt, R. The interplay of movement and spatiotemporal variation in transmission degrades pandemic control. Proc. Natl. Acad. Sci. USA 2020, 117, 30104–30106. [Google Scholar]
- Shanks, G.; Waller, M.; Smallman–Raynor, M. Spatiotemporal patterns of pandemic influenza–related deaths in Allied naval forces during 1918. Epidemiol. Infect. 2013, 141, 2205–2212. [Google Scholar] [CrossRef]
- Alonso, W.; Yu, C.; Viboud, C.; Richard, S.; Schuck-Paim, C.; Simonsen, L.; Mello, W.; Miller, M. A global map of hemispheric influenza vaccine recommendations based on local patterns of viral circulation. Sci. Rep. 2015, 5, 17214. [Google Scholar] [CrossRef]
- Hirve, S. Seasonal Influenza Vaccine Use in Low and Middle Income Countries in the Tropics and Subtropics. A Systematic Review. World Health Organisation. January 2015. Available online: https://apps.who.int/iris/bitstream/handle/10665/188785/9789241565097_eng.pdf;sequence=1 (accessed on 24 April 2022).
- Da Costa, A.; Codeço, C.; Krainski, E.; Gomes, M.; Nobre, A. Spatiotemporal diffusion of influenza A (H1N1), Starting point and risk factors. PLoS ONE 2018, 13, e0202832. [Google Scholar] [CrossRef]
- Tokars, J.; Olsen, S.; Reed, C. Seasonal incidence of symptomatic influenza in the United States. Clin. Infect. Dis. 2018, 66, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.; Rossier, C.; Enfield, K. The impact of weather on influenza and pneumonia mortality in New York City, 1975–2002, A retrospective study. PLoS ONE 2012, 7, e34091. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Tian, H.; Lin, X.; Gao, L.; Dai, X.; Zhang, X.; Chen, B.; Zhao, J.; Xu, J. Influence of extreme weather and meteorological anomalies on outbreaks of influenza A (H1N1). Chin. Sci. Bull. 2013, 58, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Lowen, A.; Steel, J. Roles of humidity and temperature in shaping influenza seasonality. J. Virol. 2014, 88, 7692–7695. [Google Scholar] [CrossRef] [PubMed]
- Oluwole, O. Seasonal influenza epidemics and El Niños. Front. Public Health 2015, 3, 250. [Google Scholar] [CrossRef] [Green Version]
- Hochman, A.; Alpert, P.; Negev, M.; Abdeen, Z.; Abdeen, A.; Pinto, J.; Levine, H. The relationship between cyclonic weather regimes and seasonal influenza over the Eastern Mediterranean. Sci. Total Environ. 2021, 750, 141686. [Google Scholar] [CrossRef]
- Liu, Q.; Tan, Z.-M.; Sun, J.; Hou, Y.; Fu, C.; Wu, Z. Changing rapid weather variability increases influenza epidemic risk in a warming climate. Environ. Res. Lett. 2020, 15, 044004. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Jiang, D.; Yan, D.; Guan, Z.; Zhou, Y.; Liu, X.; Huang, C.; Ding, C.; Lan, L.; et al. Associations between temperature and influenza activity, A national time series Study in China. Int. J. Environ. Public Health 2021, 18, 10846. [Google Scholar] [CrossRef]
- Jones, R. Multidisciplinary insights into health care financial risk and hospital surge capacity, Part 2: High population density is associated with enhanced year-to-year volatility in many aspects of poor health including health care worker sickness absence. J. Health Care Financ. 2021, 47, 1–50. [Google Scholar]
- Jones, R. Multidisciplinary insights into health care financial risk and hospital surge capacity, Part 3: Outbreaks of a new type or kind of disease create unique risk patterns and confounds traditional trend analysis. J. Health Care Financ. 2021, 47, 1–55. [Google Scholar]
- Jones, R. Unexpected and Disruptive Changes in Admissions Associated with an Infectious-like Event Experienced at a Hospital in Berkshire, England around May of 2012. J. Adv. Med. Med. Res. 2015, 6, 56–76. [Google Scholar] [CrossRef]
- Jones, R. The calendar year fallacy: The danger of reliance on calendar year data in end-of-life capacity and financial planning. Int. J. Health Plann. Manag. 2019, 334, e1533–e1543. [Google Scholar] [CrossRef]
- Brunstein, J.; Cline, C.; McKinney, S.; Thomas, E. Evidence from multiplex molecular assays for complex multipathogen interactions in acute respiratory infections. J. Clin. Micro. 2008, 46, 97–102. [Google Scholar] [CrossRef]
- Gu, W.; Deng, X.; Lee, M.; Sucu, Y.; Arevalo, S.; Stryke, D.; Federman, S.; Gopez, A.; Reyes, K.; Zorn, K.; et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat. Med. 2021, 27, 115–124. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, Y.; Lyu, J.; Ren, X.; Cheng, W. Development and application of a method to detect 27 respiratory pathogens using multiplex RT-PCR combined with MassARRAY technology. BMC Infect. Dis. 2021, 21, 870. [Google Scholar] [CrossRef]
- Tsang, N.; So, H.; Ng, K.; Cowling, B.; Leung, G.; Ip, D. Diagnostic performance of different sampling approaches for SARS-CoV-2 RT-PCR testing: A systematic review and meta-analysis. Lancet Infect. Dis. 2021, 21, 1233–1245. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, H.; Yao, M.; Li, X. Bacterial pathogens were detected from human exhaled breath using a novel protocol. J. Aerosol Sci. 2018, 117, 224–234. [Google Scholar] [CrossRef]
- Qavi, A.; McMullen, A.; Burnham, C.-A.; Anderson, N. Repeat Molecular Testing for Respiratory Pathogens: Diagnostic Gain or Diminishing Returns? J. Appl. Lab. Med. 2020, 5, 897–907. [Google Scholar] [CrossRef]
- Gadsby, N.; Russell, C.; McHugh, H.; Mark, H.; Morris, A.; Laurenson, I.; Hill, A.; Templeton, K. Comprehensive Molecular Testing for Respiratory Pathogens in Community-Acquired Pneumonia. Clin. Infect. Dis. 2016, 7, 817–823. [Google Scholar] [CrossRef]
- Hou, N.; Wang, K.; Zhang, H.; Bai, M.; Chen, H.; Song, W.; Jia, F.; Zhang, Y.; Han, S.; Xie, B. Comparison of detection rate of 16 sampling methods for respiratory viruses: A Bayesian network meta-analysis of clinical data and systematic review. BMJ Global Health 2020, 5, e003053. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, T.; Park, K.; Choi, S.; Kwak, Y.; Choo, E.; Chung, J.; Lee, M. Dual respiratory virus detection in adult patients with acute respiratory illness. BMC Infect. Dis. 2021, 21, 997. [Google Scholar] [CrossRef] [PubMed]
- Nickbakhsh, S.; Mair, C.; Matthews, L.; Reeve, R.; Johnson, P.; Thorburn, F.; von Wissmann, B.; Reynolds, A.; McMenamin, J.; Gunson, R.; et al. Virus–virus interactions impact the population dynamics of influenza and the common cold. Proc. Nat. Acad. Sci. USA 2019, 116, 27142–27150. [Google Scholar] [CrossRef]
- Burstein, R.; Althouse, B.M.; Adler, A.; Akullian, A.; Brandstetter, E.; Cho, S.; Emanuels, A.; Fay, K.; Gamboa, L.; Han, P.; et al. Interactions among 17 respiratory pathogens: A cross-sectional study using clinical and community surveillance data. medRxiv 2022, preprint. [Google Scholar] [CrossRef]
- Carrat, F.; Lavenu, A.; Cauchemez, S.; Deleger, S. Repeated influenza vaccination of healthy children and adults, borrow now, pay later? Epidemiol. Infect. 2006, 134, 63–70. [Google Scholar] [CrossRef]
- Our World in Data. How Many Die Each Year? Available online: https://ourworldindata.org/births-and-deaths (accessed on 7 May 2022).
- Office for National Statistics. Deaths in the UK from COVID Rather Than with COVID. Available online: https://www.ons.gov.uk/aboutus/transparencyandgovernance/freedomofinformationfoi/deathsintheukfromcovid19ratherthanwithcovid19 (accessed on 7 May 2022).
- Demicheli, V.; Jefferson, T.; Di Pietrantonj, C.; Ferroni, E.; Thorning, S.; Thomas, R.; Rivetti, A. Vaccines for preventing influenza in the elderly. Cochrane Database Syst. Rev. 2018, 2, CD004876. [Google Scholar] [CrossRef]
- Bollaerts, K.; Antoin, J.; Van Casteren, V.; Ducoffre, G.; Hens, N.; Quoilin, S. Contribution of respiratory pathogens to influenza–like illness consultations. Epidemiol. Infect. 2013, 141, 2196–2204. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, M.; Tempia, S.; Walarza, S.; Cohen, A.; Moyes, J.; Variava, E.; Dawood, H.; Seleka, M.; Hellferscee, O.; Treurnicht, F.; et al. The role of influenza, RSV and other common respiratory viruses in severe acute respiratory infections and influenza–like illness in a population with a high HIV sero–prevalence, South Africa 2012–2015. J. Clin. Virol. 2016, 75, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Mandelia, Y.; Procop, G.; Richter, S.; Worley, S.; Liu, W.; Esper, F. Dynamics and predisposition of respiratory viral co–infections in children and adults. Clin. Microbiol. Infect. 2021, 27, 631.e1–631.e6. [Google Scholar] [CrossRef]
- Pei, S.; Shaman, J. Aggregating forecasts of multiple respiratory pathogens supports more accurate forecasting of influenza–like illness. PLOS Comput. Biol. 2020, 16, e1008301. [Google Scholar] [CrossRef]
- Lamson, D.; Renwick, N.; Kapoor, V.; Liu, Z.; Palacios, G.; Ju, J.; Dean, A.; St George, K.; Briese, T.; Lipkin, W. MassTag Polymerase–Chain–Reaction detection of respiratory pathogens, including a new Rhinovirus genotype, that caused influenza–like illness in New York state during 2004–2005. J. Infect. Diss. 2006, 194, 1398–1402. [Google Scholar] [CrossRef]
- McLean, H.; Thompson, M.; Sundaram, M.; Meece, J.; McClure, D.; Friedrich, T.; Belongia, E. Impact of repeated vaccination on vaccine effectiveness against influenza A(H3N2) and B during 8 seasons. Clin. Infect. Dis. 2014, 59, 1375–1385. [Google Scholar] [CrossRef]
- Theo, A.; Liwewe, M.; Ndumba, I.; Mupila, Z.; Tambatamba, B.; Mutemba, C.; Somwe, S.; Mwinga, A.; Tempia, S.; Monze, M. Influenza surveillance in Zambia, 2008–2009. J. Infect. Dis. 2012, 206 (Suppl. S1), S173–S177. [Google Scholar] [CrossRef]
- Adisasmito, W.; Budayanti, S.; Aisyah, D.; Coker, R.; Andayani, A.; Smith, G.; Rudge, J. Surveillance and characterisation of influenza viruses among patients with influenza–like illness in Bali, Indonesia, July 2010–June 2014. BMC Infect. Dis. 2019, 19, 231. [Google Scholar] [CrossRef]
- Otomaru, H.; Kamigaki, T.; Tamaki, R.; Opinion, J.; Santo, A.; Daya, E.; Okamoto, M.; Saito, M.; Tallo, V.; Lupisan, S.; et al. Influenza and other respiratory viruses detected by influenza–like illness surveillance in Leyte Island, the Philippines, 2010–2013. PLoS ONE 2015, 10, e0123755. [Google Scholar] [CrossRef]
- Van Beek, J.; Veenhoven, R.; Bruin, J.; van Boxtel, R.; de Lange, M.; Meijer, A.; Sanders, E.; Rots, N.; Luytjes, W. Influenza–like illness incidence is not reduced by influenza vaccination in a cohort of older adults, despite effectively reducing laboratory–confirmed influenza virus infections. J. Infect. Dis. 2017, 216, 415–424. [Google Scholar] [CrossRef]
- Public Health England. Surveillance of Influenza and Other Respiratory Viruses in the United Kingdom, Winter 2013/14. June 2014. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/319670/Pre-release_access_list_Flu_2014.pdf (accessed on 25 February 2021).
- Public Health England. Surveillance of Influenza and Other Respiratory Viruses in the United Kingdom, Winter 2015 to 2016. May 2016. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/526405/Flu_Annual_Report_2015_2016.pdf (accessed on 25 February 2021).
- Public Health England. Influenza Vaccine Effectiveness (VE) in Adults and Children in Primary Care in the United Kingdom (UK), Provisional End-of-Season Results 2016–2017. June 2017. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/779475/Influenza_vaccine_effectiveness_in_primary_care_2016_2017.pdf (accessed on 20 February 2021).
- Public Health England. Influenza Vaccine Effectiveness (VE) in Adults and Children in Primary Care in the United Kingdom (UK), Provisional End-of Season Results 2017–18. 18 July 2018. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/779474/Influenza_vaccine_effectiveness_in_primary_care_2017_2018.pdf (accessed on 25 February 2021).
- Public Health England. Surveillance of Influenza and Other Respiratory Viruses in the UK Winter 2018 to 2019. May 2019. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/839350/Surveillance_of_influenza_and_other_respiratory_viruses_in_the_UK_2018_to_2019-FINAL.pdf (accessed on 25 February 2021).
- Public Health England. Surveillance of Influenza and Other Respiratory Viruses in the UK Winter 2019 to 2020. June 2020. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/895233/Surveillance_Influenza_and_other_respiratory_viruses_in_the_UK_2019_to_2020_FINAL.pdf (accessed on 25 February 2021).
- Thomas, R. Is influenza–like illness a useful concept and an appropriate test of influenza vaccine effectiveness? Vaccine 2014, 32, 2143–2149. [Google Scholar] [CrossRef]
- Lee, N.; Smith, S.; Zelyas, N.; Klarenbach, S.; Zapernick, L.; Bekking, C.; So, H.; Yip, L.; Tipples, G.; Mubareka, S. Burden of noninfluenza respiratory viral infections in adults admitted to hospital: Analysis of a multiyear Canadian surveillance cohort from 2 centres. CMAJ 2021, 193, E439–E446. [Google Scholar] [CrossRef]
- Wikipedia. Interferon. Available online: https://en.wikipedia.org/wiki/Interferon (accessed on 3 June 2021).
- Feng, S.; Fowlkes, A.; Steffens, A.; Finelli, L.; Cowling, B. Assessment of virus interference in a test–negative study of influenza vaccine effectiveness. Epidemiology 2017, 28, 514–524. [Google Scholar] [CrossRef]
- Chen, A.; Stacey, H.; Marzok, A.; Singh, P.; Ang, J.; Miller, M.; Loeb, M. Effect of inactivated influenza vaccination on human coronavirus infection, Secondary analysis of a randomized trial in Hutterite colonies. Vaccine 2021, 39, 7058–7065. [Google Scholar] [CrossRef]
- Huang, K.; Lin, S.; Sheng, W.; Wang, C. Influenza vaccination and the risk of COVID–19 infection and severe illness in older adults in the United States. Sci. Rep. 2021, 11, 11025. [Google Scholar] [CrossRef]
- Conlon, A.; Ashur, C.; Washer, L.; Eagle, K.; Hofmann Bowman, M. Impact of the influenza vaccine on COVID–19 infection rates and severity. Am. J. Infect. Control 2021, 49, 694–700. [Google Scholar] [CrossRef]
- Cowling, B.; Fang, V.; Nishiura, H.; Chan, K.; Ng, S.; Ip, D.; Chiu, S.; Leung, G.; Peiris, J. Increased risk of noninfluenza respiratory virus infections associated with receipt of inactivated influenza vaccine. Clin. Infect. Dis. 2012, 54, 1778–1783. [Google Scholar] [CrossRef]
- Rikin, S.; Jia, H.; Vargas, C.; Castellanos de Belliard, Y.; Reed, C.; LaRussa, P.; Larson, E.; Saiman, L.; Stockwell, M. Assessment of temporally–related acute respiratory illness following influenza vaccination. Vaccine 2018, 36, 1958–1964. [Google Scholar] [CrossRef]
- Wolff, G. Influenza vaccination and respiratory virus interference among Department of Defense personnel during the 2017–2018 influenza season. Vaccine 2020, 38, 350–354. [Google Scholar] [CrossRef]
- Wang, Z.; Malanoski, A.P.; Lin, B.; Long, N.; Leski, T.; Blaney, K.; Hansen, C.; Brown, J.; Broderick, M.; Stenger, D.; et al. Broad spectrum respiratory pathogen analysis of throat swabs from military recruits Reveals Interference Between Rhinoviruses and Adenoviruses. Microb. Ecol. 2010, 59, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Williams, S.; Restrick, L.; Cullinan, P.; Hopkinson, N.; London Respiratory Network. Healthcare worker influenza vaccination and sickness absence—An ecological study. Clin. Med. 2017, 17, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Zaffina, S.; Gilardi, F.; Rizzo, C.; Sannino, S.; Brugaletta, R.; Santoro, A.; Castelli Gattinara, G.; Ciofi Degli Atti, M.; Raponi, M.; Vinci, M. Seasonal influenza vaccination and absenteeism in health–care workers in two subsequent influenza seasons (2016/17 and 2017/18) in an Italian pediatric hospital. Expert Rev. Vaccines 2019, 18, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Brown, F.; Cummings, A.; Gaydos, C.; Gibert, C.; Gorse, G.; Los, J.; Nyquist, A.; Perl, T.; Price, C.; Radonovich, L.; et al. Protecting healthcare personnel in outpatient settings, The influence of mandatory versus nonmandatory influenza vaccination policies on workplace absenteeism during multiple respiratory virus seasons. Infect. Cont. Hosp. Epidemiol. 2018, 39, 452–461. [Google Scholar] [CrossRef]
- Bloom–Feshbach, K.; Alonso, W.; Charu, V.; Tamerius, J.; Simonsen, L.; Miller, M.; Viboud, C. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV), A global comparative review. PLoS ONE 2013, 8, e54445. [Google Scholar] [CrossRef]
- Baker, R.; Mahmud, A.; Wagner, C.; Yang, W.; Pitzer, V.; Viboud, C.; Vecchi, G.; Metcalf, C.; Grenfell, B. Epidemic dynamics of respiratory syncytial virus in current and future climates. Nat. Commun. 2019, 10, 5512. [Google Scholar] [CrossRef]
- Waterlow, N.; Flasche, S.; Minter, A.; Eggo, R. Competition between RSV and influenza, limits of modelling inference from surveillance data. Epidemics 2021, 35, 100460. [Google Scholar] [CrossRef]
- Velasco–Hernández, J.; Núñez–López, M.; Comas–García, A.; Cherpitel, D.; Ocampo, M. Superinfection between influenza and RSV alternating patterns in San Luis Potosí State, México. PLoS ONE 2015, 10, e0115674. [Google Scholar] [CrossRef]
- Linde, A.; Rotzen–Ostlund, M.; Zweygberg–Wirgart, B.; Rubinova, S.; Brytting, M. Does viral interference affect spread of influenza? Eurosurveillance. 2009. Available online: http//www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19354 (accessed on 18 February 2022).
- Anestada, G.; Nordbo, S. Virus interference. Did rhinoviruses activity hamper the progress of the 2009 influenza A (H1N1) pandemic in Norway? Med. Hypotheses 2011, 77, 1132–1134. [Google Scholar] [CrossRef]
- Casalegno, J.; Ottmann, M.; Duchamp, M.; Escuret, V.; Billaud, G.; Frobert, E.; Morfin, F.; Lina, B. Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France. Clin. Microbiol. Infect. 2010, 16, 326–329. [Google Scholar] [CrossRef]
- Essaidi–Laziosi, M.; Geiser, J.; Huang, S.; Constant, S.; Kaiser, L.; Tapparel, C. Interferon–dependent and respiratory virus–specific interference in dual infections of airway epithelia. Sci. Rep. 2020, 10, 10246. [Google Scholar] [CrossRef]
- Fleming, D.; Cross, K. Respiratory syncytial virus or influenza? Lancet 1993, 342, 1507–1510. [Google Scholar] [CrossRef]
- Kwon, Y.; Park, S.; Kim, M.; Kim, H.; Park, J.; Lee, M.; Lee, C.; Dauti, S.; Choi, W. Risk of mortality associated with respiratory syncytial virus and influenza infection in adults. BMC Infect. Dis. 2017, 17, 785. [Google Scholar] [CrossRef] [Green Version]
- Aman, A.; Wibawa, T.; Kosasih, H.; Asdie, R.; Safitri, I.; Intansari, U.; Mawarti, Y.; Sudarmono, P.; Arif, M.; Puspitasari, D.; et al. Etiologies of severe acute respiratory infection (SARI) and misdiagnosis of influenza in Indonesia, 2013–2016. Influenza Other Respir. Viruses 2021, 15, 34–44. [Google Scholar] [CrossRef]
- AP News. China Reports 1st Death from New Type of Coronavirus. Available online: https://apnews.com/article/c0e87e089a89fa5579e1c63acded7d46 (accessed on 27 February 2022).
- Institute for Government. Timeline for UK Government Lockdowns and Restrictions. Available online: https://www.instituteforgovernment.org.uk/sites/default/files/timeline-coronavirus-lockdown-december-2021.pdf (accessed on 14 May 2022).
- Li, H.; Ling, F.; Zhang, S.; Liu, Y.; Wang, C.; Lin, H.; Sun, J.; Wu, Y. Comparison of 19 major infectious diseases during COVID-19 epidemic and previous years in Zhejiang, implications for prevention measures. BMC Infect. Dis. 2022, 22, 296. [Google Scholar] [CrossRef]
- UK Health Security Organization. Notifiable Diseases Weekly Reports. Available online: https://www.gov.uk/government/publications/notifiable-diseases-weekly-reports-for-2017 (accessed on 16 August 2022).
- Visca, D.; Ong, C.; Tiberi, S.; Centis, R.; D’Ambrosio, L.; Chen, B.; Mueller, J.; Mueller, P.; Duarte, R.; Dalcolmo, M.; et al. Tuberculosis and COVID-19 interaction: A review of biological, clinical and public health effects. Pulmonology 2021, 27, 151–165. [Google Scholar] [CrossRef]
- ITV News. Covid Lockdown Fuels UK’s Appetite for Takeaways. Available online: https://www.itv.com/news/2020-10-14/covid-lockdown-fuels-uks-appetite-for-takeaways-but-whos-eating-what-and-where (accessed on 14 May 2022).
- Spruijt, I.T.; Lang, M.; de Dijkstra, F.; Donker, G.; van der Hoek, W. Long–term correlation between influenza vaccination coverage and incidence of influenza–like illness in 14 European Countries. PLoS ONE 2016, 11, e0163508. [Google Scholar] [CrossRef]
- Simonsen, L.; Reichert, T.; Viboud, C.; Blackwelder, W.; Taylor, R.; Miller, M. Impact of influenza vaccination on seasonal mortality in the US elderly population. Arch. Intern. Med. 2005, 165, 265–272. [Google Scholar] [CrossRef]
- Rizzo, C.; Viboud, C.; Montomoli, E.; Simonsen, L.; Miller, M. Influenza–related mortality in the Italian elderly, no decline associated with increasing vaccination coverage. Vaccine 2006, 24, 6468–6475. [Google Scholar] [CrossRef]
- Fireman, B.; Lee, J.; Lewis, N.; Bembom, O.; van der Laan, M.; Baxter, R. Influenza vaccination and mortality, Differentiating vaccine effects from bias. Am. J. Epidemiol. 2009, 170, 650–656. [Google Scholar] [CrossRef]
- Sundaram, M.; McClure, D.; Van Wormer, J.; Friedrich, T.; Meece, J.; Belongia, E. Influenza vaccination is not associated with detection of noninfluenza respiratory viruses in seasonal studies of influenza vaccine effectiveness. Clin. Infect. Dis. 2013, 57, 789–793. [Google Scholar] [CrossRef] [PubMed]
- CDC. Types of Influenza. Available online: https://www.cdc.gov/flu/about/viruses/types.htm (accessed on 16 May 2022).
- Turner, N.; Pierse, N.; Huang, Q.; Radke, S.; Bissielo, A.; Thompson, M.; Kelly, H.; on behalf of the SHIVERS investigation team Collective. Interim estimates of the effectiveness of seasonal trivalent inactivated influenza vaccine in presenting influenza hospitalizations and primary care visits in Auckland, New Zealand, in 2014. Eurosurveillance 2014, 19, 20934. [Google Scholar] [CrossRef]
- Turner, N.; Pierse, N.; Bissielo, A.; Huang, Q.; Radke, S.; Baker, M.; Widdowson, M.; Kelly, H.; SHIVERS investigation team. Effectiveness of seasonal trivalent inactivated influenza vaccine in preventing hospitalisations and primary care visits in Auckland, New Zealand, in 2013. Eurosurveillance 2014, 19, 20884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.; Madden, T.; Schäffer, A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. Gapped BLAST and PSI–BLAST, a new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Lang, P.; Mendes, A.; Socquet, J.; Assir, N.; Govind, S.; Aspinall, R. Effectiveness of influenza vaccine in aging and older adults: Comprehensive analysis of the evidence. Clin. Interv. Aging 2012, 7, 55–64. [Google Scholar] [CrossRef]
- Thomas, R. Are influenza–associated morbidity and mortality estimates for those ≥ 65 in statistical databases accurate, and an appropriate test of influenza vaccine effectiveness? Vaccine 2014, 32, 6884–6901. [Google Scholar] [CrossRef]
- Simonsen, L.; Taylor, R.; Viboud, C.; Miller, M.; Jackson, L. Mortality benefits of influenza vaccination in elderly people: An ongoing controversy. Lancet Infect. Dis 2007, 7, 658–666. [Google Scholar] [CrossRef]
- Jefferson, T.; Di Pietrantonj, C.; Al-Ansary, L.; Ferroni, E.; Thorning, S.; Thomas, R. Vaccines for preventing influenza in the elderly. Cochrane Database Syst. Rev. 2010, 2, CD004876. [Google Scholar] [CrossRef]
- Anderson, M.; Dobkin, C.; Gorry, D. The effect of influenza vaccination for the elderly on hospitalization and mortality. Ann. Intern. Med. 2020, 172, 445–452. [Google Scholar] [CrossRef]
- McLean, H.; Thompson, M.; Sundaram, M.; Kieke, B.; Gaglani, M.; Murthy, K.; Piedra, P.; Zimmerman, R.; Nowalk, M.; Raviotta, J.; et al. Influenza vaccine effectiveness in the United States during 2012–2013: Variable protection by age and virus type. J. Infect. Dis. 2015, 211, 1529–1540. [Google Scholar] [CrossRef]
- Stein, Y.; Mandelboim, M.; Sefty, H.; Pando, R.; Mendelson, E.; Shohat, T.; Glatman-Freedman, A.; Israeli Influenza Surveillance Network (IISN). Seasonal influenza vaccine effectiveness in preventing laboratory-confirmed influenza in primary care in Israel, 2016–2017 season: Insights into novel age-specific analysis. Clin. Infect. Dis. 2018, 66, 1383–1391. [Google Scholar] [CrossRef]
- Rizzo, C.; Bella, A.; Alfonsi, V.; Puzelli, S.; Palmieri, A.; Chironna, M.; Pariani, E.; Piatti, A.; Tiberti, D.; Ghisetti, V.; et al. Influenza vaccine effectiveness in Italy: Age, subtype-specific and vaccine type estimates 2014/15 season. Vaccine 2016, 34, 3102–3108. [Google Scholar] [CrossRef]
- Simpson, C.; Ritchie, C.; Robertson, C.; Sheikh, A.; McMenamin, J. Effectiveness of H1N1 vaccine for prevention of pandemic influenza in Scotland, UK, a retrospective observational cohort study. Lancet Infect. Dis. 2012, 12, 696–702. [Google Scholar] [CrossRef]
- Belongia, E.; Kieke, B.; Donahue, J.; Greenlee, R.; Balish, A.; Foust, A.; Lindstrom, S.; Shay, D.; Marshfield Influenza Study Group. Effectiveness of inactivated influenza vaccines varied substantially with antigenic match from the 2004–2005 season to the 2006–2007 season. J. Infect. Dis. 2009, 199, 159–167. [Google Scholar] [CrossRef]
- Belongia, E.; Kieke, B.; Donahue, J.; Coleman, L.; Irving, S.; Meece, J.; Vandermause, M.; Lindstrom, S.; Gargiullo, P.; Shay, D. Influenza vaccine effectiveness in Wisconsin during the 2007–08 season, comparison of interim and final results. Vaccine 2011, 29, 6558–6563. [Google Scholar] [CrossRef]
- Bonmarin, I.; Belchior, E.; Le Strat, Y.; Lévy-Bruhl, D. First estimates of influenza vaccine effectiveness among severe influenza cases, France, 2011/12. Eurosurveillance 2012, 17, 20163. [Google Scholar] [CrossRef]
- Castilla, J.; Martínez-Baz, I.; Martínez-Artola, V.; Fernandez-Alonso, M.; Reina, G.; Guevara, M.; García Cenoz, M.; Elía, F.; Alvarez, N.; Barricarte, A.; et al. Early estimates of influenza vaccine effectiveness in Navarre, Spain: 2012/13 mid-season analysis. Eurosurveillance 2013, 18, 20404. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Summary of the 2009–2010 Influenza Season. 2010. Available online: https://www.cdc.gov/flu/pastseasons/0910season.htm (accessed on 23 February 2021).
- Dolan, S.; Nyquist, A.; Ordrejka, D.; Todd, J.; Gershman, K.; Alexander, J.; Bridges, C.; Copeland, J.; David, F.; Euler, G.; et al. Preliminary assessment of the effectiveness of the 2003–04 inactivated influenza vaccine. MMWR 2004, 53, 8–11. [Google Scholar]
- Gargiullo, P.; Shay, D.; Katz, J.; Bramley, A.; Nowell, M.; Michalove, J.; Kamimoto, K.; Singleton, J.; Lu, P.; Balluz, L.; et al. Effectiveness of 2008–09 Trivalent Influenza Vaccine Against 2009 Pandemic Influenza A (H1N1)—United States, May–June 2009. MMWR 2009, 58, 1241–1245. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5844a5.htm (accessed on 20 February 2022).
- Jiménez-Jorge, S.; de Mateo, S.; Pozo, F.; Casas, I.; García Cenoz, M.; Castilla, J.; Gallardo, V.; Perez, E.; Vega, T.; Rodriguez, C.; et al. Early estimates of the effectiveness of the 2011/12 influenza vaccine in the population targeted for vaccination in Spain, 25 December 2011 to 19 February 2012. Eurosurveillance 2012, 17, 20129. [Google Scholar] [CrossRef]
- Jiménez-Jorge, S.; Pozo, F.; de Mateo, S.; Delgado-Sanz, C.; Casas, I.; García-Cenoz, M.; Castilla, J.; Sancho, R.; Etxebarriarteun-Aranzabal, L.; Quiñones, C.; et al. Influenza vaccine effectiveness in Spain 2013/14: Subtype-specific early estimates using the cycEVA study. Eurosurveillance 2014, 19, 20727. [Google Scholar] [CrossRef] [PubMed]
- Kissling, E.; Valenciano, M.; Falcão, J.; Larrauri, A.; Widgren, K.; Pitigoi, D.; Oroszi, B.; Nunes, B.; Savulescu, C.; Mazick, A.; et al. “I-MOVE” towards monitoring seasonal and pandemic influenza vaccine effectiveness, lessons learnt from a pilot multi-centric case-control study in Europe, 2008–2009. Eurosurveillance 2009, 14, 19388. [Google Scholar] [CrossRef]
- Kissling, E.; Valenciano, M.; Cohen, J.; Oroszi, B.; Barret, A.; Rizzo, C.; Stefanoff, P.; Nunes, B.; Pitigoi, D.; Larrauri, A.; et al. I-MOVE multi-centre case control study 2010-11, overall and stratified estimates of influenza vaccine effectiveness in Europe. PLoS ONE 2011, 6, e27622. [Google Scholar] [CrossRef] [PubMed]
- Kissling, E.; Valenciano, M.; Larrauri, A.; Oroszi, B.; Cohen, J.; Nunes, B.; Pitigoi, D.; Rizzo, C.; Rebolledo, J.; Paradowska-Stankiewicz, I.; et al. Low and decreasing vaccine effectiveness against influenza A(H3) in 2011/12 among vaccination target groups in Europe, results from the I-MOVE multicentre case–control study. Eurosurveillance 2013, 18, 20390. [Google Scholar] [CrossRef] [PubMed]
- Kissling, E.; Valenciano, M.; Buchholz, U.; Larrauri, A.; Cohen, J.; Nunes, B.; Rogalska, J.; Pitigoi, D.; Paradowska-Stankiewicz, I.; Reuss, A.; et al. Influenza vaccine effectiveness estimates in Europe in a season with three influenza type/subtypes circulating, the I-MOVE multicentre case–control study, influenza season 2012/13. Eurosurveillance 2014, 19, 20701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissling, E.; Rose, A.; Emborg, H.-D.; Gherasim, A.; Gherasim, A.; Pebody, R.; Pozo, F.; Trebbien, R.; Mazagatos, C.; Whitaker, H.; et al. Interim 2018/19 influenza vaccine effectiveness, six European studies, October 2018 to January 2019. Eurosurveillance 2019, 24, 1900121. [Google Scholar] [CrossRef] [PubMed]
- Kwong, J.; Buchan, S.; Chung, H.; Campitelli, M.; Schwartz, K.; Crowcroft, N.; Jackson, M.; Karnauchow, T.; Katz, K.; McGeer, A.; et al. Can routinely collected laboratory and health administrative data be used to assess influenza vaccine effectiveness? Assessing the validity of the Flu and Other Respiratory Viruses Research (FOREVER) Cohort. Vaccine 2019, 37, 4392–4400. [Google Scholar] [CrossRef] [PubMed]
- Level, A.; Hergens, M.; Persson, K.; Örtqvist, Å. Real-time real-world analysis of seasonal influenza vaccine effectiveness: Method development and assessment of a population-based cohort in Stockholm County, Sweden, seasons 2011/12 to 2014/15. Eurosurveillance 2016, 21, 30381. [Google Scholar] [CrossRef]
- Lo, Y.; Chuang, J.; Kuo, H.; Huang, W.; Hsu, Y.; Liu, M.; Chen, C.; Huang, H.; Chang, C.; Chou, J.; et al. Surveillance and Vaccine Effectiveness of an Influenza Epidemic Predominated by Vaccine-Mismatched Influenza B/Yamagata-Lineage Viruses in Taiwan, 2011−12 Season. PLoS ONE 2013, 8, e58222. [Google Scholar] [CrossRef]
- McMenamin, J.; Andrews, N.; Robertson, C.; Fleming, D.; Durnall, H.; von Wissmann, B.; Ellis, J.; Lackenby, A.; Cottrell, S.; Smyth, B.; et al. Effectiveness of seasonal 2012/13 vaccine in preventing laboratory-confirmed influenza infection in primary care in the United Kingdom, mid-season analysis 2012/13. Eurosurveillance 2013, 18, 20393. [Google Scholar] [CrossRef]
- Orellano, P.; Reynoso, J.; Carlino, O.; Uez, O. Protection of trivalent inactivated influenza vaccine against hospitalizations among pandemic influenza A (H1N1) cases in Argentina. Vaccine 2010, 28, 5288–5291. [Google Scholar] [CrossRef]
- Pebody, R.; Andrews, N.; Fleming, D.; McMenamin, J.; Cottrell, S.; Smyth, B.; Durnall, H.; Robertson, C.; Carman, W.; Ellis, J.; et al. Age-specific vaccine effectiveness of seasonal 2010/2011 and pandemic influenza A(H1N1) 2009 vaccines in preventing influenza in the United Kingdom. Epidemiol. Infect. 2013, 141, 620–630. [Google Scholar] [CrossRef]
- Pebody, R.; Andrews, N.; McMenamin, J.; Durnall, H.; Ellis, J.; Thompson, C.; Robertson, C.; Cottrell, S.; Smyth, B.; Zambon, M.; et al. Vaccine effectiveness of 2011/12 trivalent seasonal influenza vaccine in preventing laboratory-confirmed influenza in primary care in the United Kingdom, evidence of waning intra-seasonal protection. Eurosurveillance 2013, 18, 20389. [Google Scholar] [CrossRef]
- Pebody, R.; Warburton, F.; Andrews, N.; Ellis, J.; von Wissmann, B.; Robertson, C.; Yonova, I.; Cottrell, S.; Gallagher, N.; Green, H.; et al. Effectiveness of seasonal influenza vaccine in preventing laboratory-confirmed influenza in primary care in the United Kingdom, 2014/15 end of season results. Eurosurveillance 2015, 20, 30013. [Google Scholar] [CrossRef]
- Pebody, R.; Warburton, F.; Ellis, J.; Andrews, N.; Potts, A.; Cottrell, S.; Johnston, J.; Reynolds, A.; Gunson, R.; Thompson, C.; et al. Effectiveness of seasonal influenza vaccine for adults and children in preventing laboratory-confirmed influenza in primary care in the United Kingdom, 2015/16 end-of-season results. Eurosurveillance 2016, 21, 30348. [Google Scholar] [CrossRef] [Green Version]
- Pierse, N.; Kelly, H.; Thompson, M.; Bissielo, A.; Radke, S.; Huang, Q.; Baker, M.; Turner, N.; SHIVERS investigation team. Influenza vaccine effectiveness for hospital and community patients using control groups with and without non-influenza respiratory viruses detected, Auckland, New Zealand 2014. Vaccine 2016, 34, 503–509. [Google Scholar] [CrossRef]
- Seki, Y.; Oonishi, H.; Onose, A.; Sugaya, N. Effectiveness of Influenza Vaccine in Adults Using A Test-negative, Case-control Design—2013/2014 and 2014/2015 Seasons―Kansenshogaku zasshi. J. Jap. Assoc. Infect. Dis. 2016, 90, 486–492. [Google Scholar] [PubMed]
- Skowronski, D.; Janjua, N.; De Serres, G.; Dickinson, J.; Winter, A.; Mahmud, S.; Sabaiduc, S.; Gubbay, J.; Charest, H.; Petric, M.; et al. Interim estimates of influenza vaccine effectiveness in 2012/13 from Canada’s sentinel surveillance network, January 2013. Eurosurveillance 2013, 18, 20394. [Google Scholar] [CrossRef]
- Skowronski, D.; Janjua, N.; De Serres, G.; Sabaiduc, S.; Eshaghi, A.; Dickinson, J.; Fonseca, K.; Winter, A.; Gubbay, J.; Krajden, M.; et al. Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses. PLoS ONE 2014, 9, e92153. [Google Scholar] [CrossRef]
- Skowronski, D.; Zou, M.; Sabaiduc, S.; Murti, M.; Olsha, R.; Dickinson, J.; Gubbay, J.; Croxen, M.; Charest, H.; Jassem, A.; et al. Interim estimates of 2019/20 vaccine effectiveness during early-season co-circulation of influenza A and B viruses, Canada, February 2020. Eurosurveillance 2020, 25, 2000103. [Google Scholar] [CrossRef]
- Valenciano, M.; Kissling, E.; Cohen, J.-M.; Oroszi, B.; Barret, A.; Rizzo, C.; Nunes, B.; Pitigoi, D.; Cámara, A.L.; Mosnier, A.; et al. Estimates of pandemic influenza vaccine effectiveness in Europe, 2009–2010, Results of influenza monitoring vaccine effectiveness in Europe (I-MOVE) Multicentre Case-Control Study. PLoS Med. 2011, 8, e1000388. [Google Scholar] [CrossRef]
- Valenciano, M.; Kissling, E.; Reuss, A.; Rizzo, C.; Gherasim, A.; Horváth, J.; Domegan, L.; Pitigoi, D.; Machado, A.; Paradowska-Stankiewicz, I.; et al. Vaccine effectiveness in preventing laboratory–confirmed influenza in primary care patients in a season of co–circulation of influenza A(H1N1)pdm09, B and drifted A(H3N2), I–MOVE Multicentre Case–Control Study, Europe 2014/15. Eurosurveillance 2016, 21, 30139. [Google Scholar] [CrossRef]
- Valenciano, M.; Kissling, E.; Reuss, A.; Jiménez-Jorge, S.; Horváth, J.; Donnell, J.; Pitigoi, D.; Machado, A.; Pozo, F.; I-MOVE Multicentre Case Control Study Team. The European I–MOVE multicentre 2013–2014 case–control Study. Homogeneous moderate influenza vaccine effectiveness against A(H1N1)pdm09 and heterogenous results by country against A(H3N2). Vaccine 2015, 33, 2813–2822. [Google Scholar] [CrossRef]
- Souty, C.; Blanchon, T.; Bonmarin, I.; Lévy-Bruhl, D.; Behillil, S.; Enouf, V.; Valette, M.; Bouscambert, M.; Turbelin, C.; Capai, L.; et al. Early estimates of 2014/15 seasonal influenza vaccine effectiveness in preventing influenza-like illness in general practice using the screening method in France. Hum. Vaccines Immunother. 2015, 11, 1621–1625. [Google Scholar] [CrossRef]
- Yuki, S.; Akira, O.; Norio, S. Influenza vaccine effectiveness in adults based on the rapid influenza diagnostic test results, during the 2015/16 season. J. Infect. Chemother. 2017, 23, 615–620. [Google Scholar] [CrossRef]
- Office for National Statistics. Deaths by Single Year of Age Tables. Available online: https://www.gov.uk/government/statistics/deaths-by-single-year-of-age-tables-uk-2020 (accessed on 15 May 2022).
- Reichert, T.; Chowell, G.; McCullers, J. The age distribution of mortality due to influenza, pandemic and peri–pandemic. BMC Med. 2012, 10, 162. [Google Scholar] [CrossRef]
- Office for National Statistics. Population Estimates Tool. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesanalysistool (accessed on 15 May 2022).
- Jones, R. Did austerity cause the rise in deaths seen in England and Wales in 2015? Br. J. Healthc. Manag. 2017, 23, 418–424. [Google Scholar] [CrossRef]
- Ponomarenko, A. Method for Rapid Evaluation of Influenza Viruses Circulation in a Specific Human Population with Determination of Antigenic Structure of the Circulating Viruses. Ukraine Application Patent No. 33047A, 2001. [Google Scholar]
- Hearn, M. Negative vaccine effectiveness isn’t a new phenomenon—It turned up in the Swine flu vaccine. The Daily Sceptic. 2021. Available online: https://dailysceptic.org/2021/11/15/negative-vaccine-efficacy-isnt-a-new-phenomenon-it-turned-up-in-the-swine-flu-vaccine/ (accessed on 3 May 2022).
- Ohmit, S.; Petrie, J.; Malosh, R.; Cowling, B.; Thompson, B.; Shay, D.; Monto, A. Influenza vaccine effectiveness in the community and the household. Clin. Infect. Dis. 2013, 56, 1363–1369. [Google Scholar] [CrossRef]
- Office for National Statistics. Highest number of excess winter deaths since 1999/2000. Published 25 November 2015. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/highestnumberofexcesswinterdeathssince19992000/2015-11-25 (accessed on 24 May 2022).
- Jones, R. Year-to-year variation in deaths in English Output Areas (OA), and the interaction between a presumed infectious agent and influenza in 2015. SMU Med. J. 2017, 4, 37–69. [Google Scholar]
- Fulop, T.; Larbi, A.; Pawelec, G.; Cohen, A.; Provost, G.; Khalil, A.; Lacombe, G.; Rodrigues, S.; Desroches, M.; Hirokawa, K.; et al. Immunosenescence and altered vaccine efficiency in older subjects: A myth difficult to change. Vaccines 2022, 10, 607. [Google Scholar] [CrossRef]
- Jones, R. Unexpected single-year-of-age changes in the elderly mortality rate in 2012 in England and Wales. J. Adv. Med. Med. Res. 2014, 4, 3196–3207. [Google Scholar] [CrossRef]
- Doshi, P. Trends in recorded influenza mortality: United States, 1900–2004. Am. J. Public Health 2008, 98, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Francis, T. On the doctrine of antigenic original sin. Proc. Am. Philos. Soc. 1960, 104, 572–578. [Google Scholar]
- Nicholl, J. Case-mix adjustment in non-randomised observational evaluations: The constant risk fallacy. J. Epidemiol. Community Health 2007, 61, 1010–1013. [Google Scholar] [CrossRef]
- Kolodziejczyk, C. The effect of time to death on health care expenditures: Taking into account the endogeneity and right censoring of time to death. Eur. J. Health Econ. 2020, 21, 945–962. [Google Scholar] [CrossRef]
- Covinsky, K.; Eng, C.; Lui, L.-Y.; Sands, L.; Yaffe, K. The last 2 years of life: Functional trajectories of frail older people. J. Am. Geriatr. Soc. 2003, 51, 492–498. [Google Scholar] [CrossRef]
- Stow, D.; Matthews, F.; Hanratty, B. Frailty trajectories to identify end of life: A longitudinal population-based study. BMC Med. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Gill, T.; Gahbauer, E.; Han, L.; Allore, H. Trajectories of disability in the last year of life. N. Engl. J. Med. 2010, 362, 1173–1180. [Google Scholar] [CrossRef]
- Hanlon, P.; Walsh, D.; Whyte, B.; Scott, S.; Lightbody, P.; Gilhooly, M. Hospital use by an ageing cohort: An investigation into the association between biological, behavioural and social risk markers and subsequent hospital utilization. J. Public Health Med. 1998, 20, 467–476. [Google Scholar] [CrossRef]
- Jones, R.; Sleet, G.; Pearce, O.; Wetherill, M. Complex changes in blood biochemistry revealed by a composite score derived from Principal Component Analysis: Effects of age, patient acuity, end of life, day-of week, and potential insights into the issues surrounding the ‘weekend’ effect in hospital mortality. J. Adv. Med. Med. Res. 2016, 18, 1–28. [Google Scholar] [CrossRef]
- Diaz-Decaro, J.; Launer, B.; Mckinnell, J.; Singh, R.; Dutciuc, T.; Green, N.; Bolaris, M.; Huang, S.; Miller, L. Bayesian evidence and epidemiological implications of environmental contamination from acute respiratory infection in long-term care facilities. Epidemiol. Infect. 2018, 146, 832–838. [Google Scholar] [CrossRef]
- Jackson, L.; Nelson, J.; Benson, P.; Neuzil, K.; Reid, R.; Psaty, B.; Heckbert, S.; Larson, E.; Weiss, N. Functional status is a confounder of the association of influenza vaccine and risk of all cause mortality in seniors. Int. J. Epid. 2006, 35, 345–352. [Google Scholar] [CrossRef]
- Van Ourti, T.; Bouckaert, N. The Dutch influenza vaccination policy and medication use, outpatient visits, hospitalization and mortality at age 65. Eur. J. Public Health 2020, 30, 275–280. [Google Scholar] [CrossRef]
- Murtas, R.; Russo, A. Effects of pollution, low temperature and influenza syndrome on the excess mortality risk in winter 2016–2017. BMC Public Health 2019, 19, 1445. [Google Scholar] [CrossRef]
- Shaw Stewart, P.; Bach, J. Temperature dependent viral tropism, understanding viral seasonality and pathogenicity as applied to the avoidance and treatment of endemic viral respiratory illnesses. Rev. Med. Virol. 2021, 32, e2241. [Google Scholar] [CrossRef]
- Alonso, W.; Viboud, C.; Simonsen, L.; Hirano, E.; Daufenbach, L.; Miller, M. Seasonality of influenza in Brazil: A traveling wave from the Amazon to the subtropics. Am. J. Epidemiol. 2007, 165, 1434–1442. [Google Scholar] [CrossRef]
- Cashdan, E. Biogeography of human infectious diseases: A global historical analysis. PLoS ONE 2014, 9, e106752. [Google Scholar] [CrossRef]
- Goldinger, A.; Shakhbazov, K.; Henders, A.; McRae, A.; Montgomery, G.; Powell, J. Seasonal effects on gene expression. PLoS ONE 2015, 10, e0126995. [Google Scholar] [CrossRef]
- Wyse, C.; O’Malley, G.; Coogan, A.; McConkey, S.; Smith, D. Seasonal and daytime variation in multiple immune parameters in humans: Evidence from 329,261 participants of the UK Biobank cohort. iScience 2021, 24, 102255. [Google Scholar] [CrossRef]
- Ludwig, N.; Hecksteden, A.; Kahraman, M.; Fehlmann, T.; Laufer, T.; Kern, F.; Meyer, T.; Meese, E.; Keller, A.; Backes, C. Spring is in the air: Seasonal profiles indicate vernal change of miRNA activity. RNA Biol. 2019, 16, 1034–1043. [Google Scholar] [CrossRef]
- Hamidou, S.; Carlsten, C. Air pollution and the respiratory microbiome. J. Allergy Clin. Immunol. 2021, 148, 67–69. [Google Scholar] [CrossRef]
- Haber, N. Respiratory syncytial virus infection in the elderly. Med. Mal. Infect. 2018, 48, 377–382. [Google Scholar] [CrossRef]
- National Foundation for Infectious Diseases. Respiratory Syncytial Virus in Older Adults, A Hidden Annual Epidemic. Published September 2016. Available online: https://www.nfid.org/wp-content/uploads/2019/08/rsv-report.pdf (accessed on 20 May 2021).
- Van Asten, L.; van den Wijngaard, C.; van Pelt, W.; van de Kassteele, J.; Meijer, A.; van der Hoek, W.; Kretzschmar, M.; Koopmans, M. Mortality attributable to 9 common infections, Significant effect of influenza A, respiratory syncytial virus, influenza B, norovirus, and parainfluenza in elderly persons. J. Infect. Dis. 2012, 206, 628–639. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhao, J.; Xiong, Z.; Fan, Y.; Zhang, W.; Zou, X.; Wang, C.; Han, J.; Li, B.; et al. Severity and mortality of respiratory syncytial virus vs influenza A infection in hospitalized adults in China. Influenza Other Respir. Viruses 2020, 5, 483–490. [Google Scholar] [CrossRef]
- Metersky, M.; Masterton, R.; Lode, H.; File, T.; Babinchak, T. Epidemiology, microbiology, and treatment considerations for bacterial pneumonia complicating influenza. Int. J. Infect. Dis. 2012, 16, e321–e331. [Google Scholar] [CrossRef]
- Morens, D.; Taubenberger, J.; Fauci, A. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness. J. Infect. Dis. 2008, 198, 962–970. [Google Scholar] [CrossRef]
- Rommel, M.; Milde, C.; Eberle, R.; Schulze, H.; Modlich, U. Endothelial–platelet interactions in influenza-induced pneumonia: A potential therapeutic target. Anat. Histol. Embryol. 2020, 49, 606–619. [Google Scholar] [CrossRef] [Green Version]
- Scheiblauer, H.; Reinacher, M.; Tashiro, M.; Rott, R. Interactions between bacteria and Influenza A Virus in the development of influenza pneumonia. J. Infect. Dis. 1992, 166, 783–791. [Google Scholar] [CrossRef]
- Shrestha, S.; Foxman, B.; Berus, J.; van Panhuis, W.; Steiner, C.; Viboud, C.; Rohani, P. The role of influenza in the epidemiology of pneumonia. Sci. Rep. 2015, 5, 15314. [Google Scholar] [CrossRef]
- Hanada, S.; Pirzadeh, M.; Carver, K.; Deng, J. Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Front. Immunol. 2018, 9, 2640. [Google Scholar] [CrossRef]
- Plotkin, S. History of vaccination. Proc. Nat. Acad. Sci. USA 2014, 111, 12283–12287. [Google Scholar] [CrossRef] [PubMed]
- Rueckert, C.; Guzmán, C. Vaccines: From empirical development to rational design. PLOS Pathog. 2012, 8, e1003001. [Google Scholar] [CrossRef]
- Pulendran, B.; Ahmed, R. Immunological mechanisms of vaccination. Nat. Immunol. 2011, 12, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Beverley, P. Immunology of vaccination. Br. Med. Bull. 2002, 62, 15–28. [Google Scholar] [CrossRef]
- Barberis, I.; Myles, P.; Ault, S.; Bragazzi, N.; Martini, M. History and evolution of influenza control through vaccination, from the first monovalent vaccine to universal vaccines. J. Prev. Med. Hyg. 2016, 57, E115–E120. [Google Scholar] [PubMed]
- Henry, C.; Palm, A.-K.; Krammer, F.; Wilson, P. From original antigenic sin to the universal influenza virus vaccine. Trends Immunol. 2018, 39, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Kandeil, W.; Savic, M.; Ceregido, M.; Guignard, A.; Kuznetsova, A.; Mukherjee, P. Immune interference (blunting) in the context of maternal immunization with Tdap-containing vaccines: Is it a class effect? Expert Rev. Vaccines 2020, 19, 341–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plebanski, M.; Lee, E.; Hannan, C.; Flanagan, K.; Gilbert, S.; Gravenor, M.; Hill, A. Altered peptide ligands narrow the repertoire of cellular immune responses by interfering with T-cell priming. Nat. Med. 1999, 5, 565–571. [Google Scholar] [CrossRef]
- Brodin, P.; Davis, M.M. Human immune system variation. Nat. Rev. Immunol. 2017, 17, 21–29. [Google Scholar] [CrossRef]
- Boahen, C.; Joosten, L.; Netea, M.; Kumar, V. Conceptualization of population-specific human functional immune-genomics projects to identify factors that contribute to variability in immune and infectious diseases. Heliyon 2021, 7, e06755. [Google Scholar] [CrossRef]
- Kaczorowski, K.; Shekhar, K.; Nkulikiyimfura, D.; Dekker, C.; Maecker, H.; Davis, M.; Chakraborty, A.; Brodin, P. Immunotypes describe human immune variation. Proc. Nat. Acad. Sci. USA 2017, 114, E6097–E6106. [Google Scholar] [CrossRef]
- Galanti, M.; Birger, R.; Ud-Dean, M.; Filip, I.; Morita, H.; Comito, D.; Anthony, S.; Freyer, G.; Ibrahim, S.; Lane, B.; et al. Rates of asymptomatic respiratory virus infection across age groups. Epidemiol. Infect. 2019, 147, e176. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Z.; Wang, J.; Zhao, S.; Wong, M.; Chong, K.; He, D.; Li, J. Ratio of asymptomatic COVID-19 cases among ascertained SARS-CoV-2 infections in different regions and population groups in 2020, a systematic review and meta-analysis including 130 123 infections from 241 studies. BMJ Open 2021, 11, e049752. [Google Scholar] [CrossRef]
- Birger, R.; Morita, H.; Comito, D.; Filip, I.; Galanti, M.; Lane, B.; Ligon, C.; Rosenbloom, D.; Shittu, A.; Ud-Dean, M.; et al. Asymptomatic Shedding of Respiratory Virus among an Ambulatory Population across Seasons. mSphere 2018, 3, e00249-18. [Google Scholar] [CrossRef]
- Hsieh, Y.; Tsai, C.; Lin, C.; Chen, L.-H.; King, C.-C.; Chao, D.-Y.; Cheng, K.-F.; CIDER Research Team. Asymptomatic ratio for seasonal H1N1 influenza infection among schoolchildren in Taiwan. BMC Infect. Dis. 2014, 14, 80. [Google Scholar] [CrossRef]
- Ponomarenko, A.; Skripchenko, G.; Rybakova, T. Correlation between virions’ molecular structure and peculiarities of influenza infection. FASEB J. 1997, 11, A1438. [Google Scholar]
- Skripchenko, G.; Vlasova, A.; Rybakova, T. Effect of the host on the phase transformations of an influenza virus population. Vestn. Akad. Meditsinskikh Nauk. SSSR 1983, 5, 28–34. (In Russian) [Google Scholar]
- Skripchenko, G.; Slepushkin, A. Precursors of influenza epidemics and their practical applications. Sov. Med. Rev. Sect. E Virol. Rev. 1990, 3, 79–95. [Google Scholar]
- Ponomarenko, A.; Shilov, A.; Chaǐka, O.; Rybakova, T.; Skripchenko, G. Differences in the structure of the hemagglutinin gene in variants of the influenza A (H3N2) virus, differing in immunogenic activity. Mol. Genet. Mikrobiol. Virusol. 1990, 11, 7–9. (In Russian) [Google Scholar]
- Zaporozhan, V.; Ponomarenko, A. Evidences of Regulatory and Signaling Role of Electromagnetic Fields in Biological Objects (Review of Literature and Own Studies). Available online: http://www.wseas.us/e-library/conferences/2008/tenerife/CD-BC/paper/BC07.pdf (accessed on 7 June 2022).
- Pullamsetti, S.; Savai, R.; Janssen, W.; Dahal, B.; Seeger, W.; Grimminger, F.; Ghofrani, H.; Weissmann, N.; Schermuly, R. Inflammation, immunological reaction and role of infection in pulmonary hypertension. Clin. Microbiol. Infect. 2011, 17, 7–14. [Google Scholar] [CrossRef]
- O’Brien, W.; Grovit-Ferbas, K.; Namazi, A.; Ovcak-Derzic, S.; Wang, H.; Park, J.; Yeramian, C.; Mao, S.; Zack, J. Immunodeficiency virus-type 1 replication can be increased in peripheral blood of seropositive patients after influenza vaccination. Blood 1995, 86, 1082–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bree, L.; Koeken, V.; Joosten, L.; Aaby, P.; Stabell Benn, C.; van Crevel, R.; Netea, M. Non-specific effects of vaccines: Current evidence and potential implications. Semin. Immunol. 2018, 39, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Walk, J.; de Bree, L.; Graumans, W.; Stoter, R.; van Gemert, G.; van de Vegte-Bolmer, M.; Teelen, K.; Hermsen, C.; Arts, R.; Behet, M.; et al. Outcomes of controlled human malaria infection after BCG vaccination. Nat. Commun. 2019, 10, 874. [Google Scholar] [CrossRef] [PubMed]
- Aaby, P.; Benn, C.; Flanagan, K.; Klein, S.; Kollmann, T.; Lynn, D.; Shann, F. The non-specific and sex-differential effects of vaccines. Nat. Rev. Immunol. 2020, 20, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Avey, S.; Mohanty, S.; Chawla, D.; Meng, H.; Bandaranayake, T.; Ueda, I.; Zapata, H.; Park, K.; Blevins, T.; Tsang, S.; et al. Seasonal variability and shared molecular signatures of inactivated influenza vaccination in young and older adults. J. Immunol. 2020, 204, 1661–1673. [Google Scholar] [CrossRef] [PubMed]
- Nakaya, H.; Hagan, T.; Duraisingham, S.; Lee, E.; Kwissa, M.; Rouphael, N.; Frasca, D.; Gersten, M.; Mehta, A.; Gaujoux, R.; et al. Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures. Immunity 2015, 43, 1186–1198. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, F.; Lem, L.; Solache, A.; Bennett, E. Human pathogen subversion of antigen presentation. Immunol. Rev. 1999, 168, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Zajac, A.; Harrington, L. Immune response to viruses: Cell-mediated immunity. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780128012383. [Google Scholar] [CrossRef]
- American Society for Microbiology. Commercial T Cell Test Reveals Factors Correlated with Diminished T Cell Responses to SARS-CoV-2 in Clinical Study Subjects. Available online: https://asm.org/Press-Releases/2022/June/Commercial-T-Cell-Test-Reveals-Factors-Correlated (accessed on 7 July 2022).
- Bamunuarachchi, G.; Pushparaj, S.; Liu, L. Interplay between host non-coding RNAs and influenza viruses. RNA Biol. 2021, 18, 767–784. [Google Scholar] [CrossRef]
- Perez, J.; Varble, A.; Sachidanandam, R.; Zlatev, I.; Manoharan, M.; García-Sastre, A.; tenOever, B. Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proc. Natl. Acad. Sci. USA 2010, 107, 11525–11530. [Google Scholar] [CrossRef]
- Griffiths, E.; Pedersen, A.; Fenton, A.; Petchey, O. The nature and consequences of coinfection in humans. J. Infect. 2011, 63, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Why Flu Vaccines so Often Fail. Science. 20 September 2017. Available online: https://www.science.org/content/article/why-flu-vaccines-so-often-fail (accessed on 18 August 2022).
- Tarabichi, Y.; Li, K.; Hu, S.; Nguyan, G.; Wang, X.; Elashoff, D.; Saira, K.; Frank, B.; Bihan, M.; Ghedin, E.; et al. The administration of intranasal live attenuated influenza vaccine induces changes in the nasal microbiota and nasal epithelium gene expression profiles. Microbiome 2015, 3, 74. [Google Scholar] [CrossRef]
- Thors, V.; Christensen, H.; Morales-Aza, B.; Vipond, I.; Muir, P.; Finn, A. The Effects of Live Attenuated Influenza Vaccine on Nasopharyngeal Bacteria in Healthy 2 to 4 Year Olds. A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2016, 193, 1401–1409. [Google Scholar] [CrossRef]
- Fratamico, P.; Smith, J.; Brogden, K. Sequelae and Long-Term Consequences of Infectious Diseases; ASM Press: Washington, DC, USA, 2009; ISBN 9781683671329. Available online: https://onlinelibrary.wiley.com/doi/book/10.1128/9781555815486 (accessed on 17 September 2022).
- Cox, F. Concomitant infections, parasites and immune responses. Parasitology 2001, 122, S23–S38. [Google Scholar] [CrossRef]
- Pedersen, A.; Fenton, A. Emphasizing the ecology in parasite community ecology. Trends Ecol. Evol. 2007, 22, 133–139. [Google Scholar] [CrossRef]
- Fenton, A. Worms and germs: The population dynamic consequences of microparasite-macroparasite co-infection. Parasitology 2008, 135, 1545–1560. [Google Scholar] [CrossRef]
- Brooker, S.; Utzinger, J. Integrated disease mapping in a polyparasitic world. Geospat. Health 2007, 2, 141–146. [Google Scholar] [CrossRef]
- Pullan, R.; Brooker, S. The health impact of polyparasitism in humans: Are we under-estimating the burden of parasitic diseases? Parasitology 2008, 135, 783–794. [Google Scholar] [CrossRef]
- Petney, T.; Andrews, R. Multiparasite communities in animals and humans: Frequency, structure and pathogenic significance. Int. J. Parasitol. 1998, 28, 377–393. [Google Scholar] [CrossRef]
- Davidson, I.; Silva, R. Creation of diversity in the animal virus world by inter-species and intra-species recombinations: Lessons learned from poultry viruses. Virus Genes 2008, 36, 1–9. [Google Scholar] [CrossRef]
- Alcaide, C.; Rabadán, M.; Moreno-Pérez, M.; Gómez, P. Chapter Five—Implications of mixed viral infections on plant disease ecology and evolution. In Advances in Virus Research; Kielian, M., Mettenleiter, T.C., Marilyn, J., Roossinck, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 106, pp. 145–169. [Google Scholar] [CrossRef]
- Vignuzzi, M.; López, B. Defective viral genomes are key drivers of the virus-host interaction. Nat. Microbiol. 2019, 4, 1075–1087. [Google Scholar] [CrossRef]
- Pelz, L.; Rüdiger, D.; Dogra, T.; Alnaji, F.; Genzel, Y.; Brooke, C.; Kupke, S.; Reichl, U. Semi-continuous propagation of influenza A virus and its defective interfering particles: Analyzing the dynamic competition to select candidates for antiviral therapy. J. Virol. 2021, 95, e0117421. [Google Scholar] [CrossRef]
- Mann, A.; Marriott, A.; Balasingam, S.; Lambkin, R.; Oxford, J.; Dimmock, N. Interfering vaccine (defective interfering influenza A virus) protects ferrets from influenza, and allows them to develop solid immunity to reinfection. Vaccine 2006, 24, 4290–4296. [Google Scholar] [CrossRef]
- Dimmock, N.; Easton, A. Defective interfering influenza virus RNAs: Time to reevaluate their clinical potential as broad-spectrum antivirals. J. Virol. 2014, 88, 5217–5227. [Google Scholar] [CrossRef]
- Kupke, S.; Riede, L.D.; Frensing, T.; Zmora, P.; Reichl, U. A novel type of influenza Avirus-derived defective interfering particle with nucleotide substitutions in its genome. J. Virol. 2019, 93, e01786-18. [Google Scholar] [CrossRef]
- Alemayehu, R. Defective Interfering Particles and Their Role in Disease Progression and Persistence. Arch. Microbiol. Immunol. 2017, 1, 65–72. [Google Scholar]
- Manzoni, T.; López, C. Defective (interfering) viral genomes re-explored: Impact on antiviral immunity and virus persistence. Future Virol. 2018, 13, 493–503. [Google Scholar] [CrossRef]
- Gould, P.; Easton, A.; Dimmock, N. Live attenuated influenza vaccine contains substantial and unexpected amounts of defective viral genomic RNA. Viruses 2017, 9, 269. [Google Scholar] [CrossRef]
- Singanayagam, A.; Zambon, M.; Lalvani, A.; Barclay, W. Can defective interfering RNAs affect the live attenuated influenza vaccine?—Authors’ reply. Lancet Infect. Dis. Corresp. 2017, 17, P1235–P1236. [Google Scholar] [CrossRef]
- Bdeir, N.; Arora, P.; Gärtner, S.; Pohlmann, S.; Winkler, M. Evidence that two instead of one defective interfering RNA in influenza A virus-derived defective interfering particles (DIPs) does not enhance antiviral activity. Sci. Rep. 2021, 11, 20477. [Google Scholar] [CrossRef]
- Ayaz, S.; Dibben, O.; Chapman, D. Presence of defective viral genes in H1N1 live attenuated influenza vaccine strains is not associated with reduced human cell fitness or vaccine effectiveness. Vaccine 2021, 39, 6735–6745. [Google Scholar] [CrossRef]
- Barrat, F.; Crow, M.; Ivashkiv, L. Interferon target-gene expression and epigenomic signatures in health and disease. Nat. Immunol. 2019, 20, 1574–1583. [Google Scholar] [CrossRef] [PubMed]
- Mehrbod, P.; Eybpoosh, S.; Farahmand, B.; Fotouhi, F.; Khanzadeh Alishahi, M. Association of the host genetic factors, hypercholesterolemia and diabetes with mild influenza in an Iranian population. Virol. J. 2021, 18, 64. [Google Scholar] [CrossRef] [PubMed]
- Duffy, D. Understanding immune variation for improved translational medicine. Cur. Opin. Immunol. 2020, 65, 83–88. [Google Scholar] [CrossRef]
- Jenkins, B.; Hunter, J.; Cross, M.; Acevedo, A.; Pressman, S. When is affect variability bad for health? The association between affect variability and immune response to the influenza vaccination. J. Psychosom. Res. 2018, 104, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, D.; Katkar, G.; Khandelwal, S.; Behroozikhah, M.; Claire, A.; Castillo, V.; Tindle, C.; Fuller, M.; Taheri, S.; Rogers, T.; et al. AI-guided discovery of the invariant host response to viral pandemics. eBioMedicine 2021, 68, 103390. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ji, M.; Yu, T.; Zaugg, J.; Anesio, A.; Zhang, Z.; Hu, S.; Hugenholtz, P.; Liu, K.; Liu, P.; et al. A genome and gene catalog of glacier microbiomes. Nat. Biotechnol. 2022, ahead of print. [Google Scholar] [CrossRef]
Pathogen Type | In 2005 | In 2012 | 7-Year Increase | Potential by 2022 |
---|---|---|---|---|
Bacteria | 538 | 1003 | 465 (86%) | >1600 |
Fungi | 317 | 447 | 130 (41%) | 540 |
Helminthes | 287 | 301 | 14 (5%) | 305 |
Virus | 208 | 274 | 66 (32%) | 350 |
Protozoa | 57 | 82 | 25 (44%) | 100 |
Total | 1407 | 2107 | 700 (50%) | >2895 |
Pathogen | Prevalence (%) | Enhances Infection by | Diminishes Infection by |
---|---|---|---|
Neisseria meningitidis | <1% | Influenza B | – |
Mycoplasma pneumophilia | 1% | – | – |
Adenovirus (ADV 3; 4; 7; 21) | 1% | – | S. pneumoniae; HINF 1; hMPV |
Parainfluenza virus(PIV) | 5% | – | S. pneumoniae; Influenza A; Rhinovirus |
Influenza A | 6% | – | RSV B; CVEV; Rhinovirus |
Influenza B | 7% | N. meningitidis; HINF 1 | RSV A + B; CVEV; Rhinovirus |
Rhinovirus | 8% | CVEV | hMPV; Influenza A + B |
Respiratory syncytial virus A (RSV A) | 10% | S. pneumoniae | RSV B; Influenza B; hMPV |
Respiratory syncytial virus B (RSV B) | 10% | – | RSV A; hMPV; Influenza A + B |
Human metapneumovirus (hMPV) | 11% | – | RSV A + B; CVEV; Rhinovirus; PIV 3 |
Coxsackie/echovirus family(CVEV) | 13% | Rhinovirus | Influenza A + B;PIV 1 + 3; hMPV |
Haemophilis influenzae (HINF 1; 2; 3) | 16% | S. pneumoniae; Influenza B | – |
Streptococcus pneumoniae | 20% | HINF 1 + 3 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, R.P.; Ponomarenko, A. Roles for Pathogen Interference in Influenza Vaccination, with Implications to Vaccine Effectiveness (VE) and Attribution of Influenza Deaths. Infect. Dis. Rep. 2022, 14, 710-758. https://doi.org/10.3390/idr14050076
Jones RP, Ponomarenko A. Roles for Pathogen Interference in Influenza Vaccination, with Implications to Vaccine Effectiveness (VE) and Attribution of Influenza Deaths. Infectious Disease Reports. 2022; 14(5):710-758. https://doi.org/10.3390/idr14050076
Chicago/Turabian StyleJones, Rodney P., and Andrey Ponomarenko. 2022. "Roles for Pathogen Interference in Influenza Vaccination, with Implications to Vaccine Effectiveness (VE) and Attribution of Influenza Deaths" Infectious Disease Reports 14, no. 5: 710-758. https://doi.org/10.3390/idr14050076
APA StyleJones, R. P., & Ponomarenko, A. (2022). Roles for Pathogen Interference in Influenza Vaccination, with Implications to Vaccine Effectiveness (VE) and Attribution of Influenza Deaths. Infectious Disease Reports, 14(5), 710-758. https://doi.org/10.3390/idr14050076