Using T-Cell Subsets to Better Characterize Immunoresiliency and Immunodeficiency in Patients with Recurrent Infections
Abstract
:1. Introduction
- (1)
- Significantly reduced total serum concentrations of IgG;
- (2)
- Low IgA and/or IgM;
- (3)
- Poor or absent response to vaccination;
- (4)
- The exclusion of other immunodeficiency states (protein losing states, HIV, immunosuppressant drugs, etc.).
Examples of Genetic Conditions Presenting as CVID
2. Discussion
3. Conclusions
4. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aggarwal, V.; Banday, A.Z.; Jindal, A.K.; Das, J.; Rawat, A. Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis. 2020, 7, 26–37. [Google Scholar] [CrossRef]
- Lee, G.C.; Restrepo, M.I.; Harper, N.; Manoharan, M.S.; Smith, A.M.; Meunier, J.A.; Sanchez-Reilly, S.; Ehsan, A.; Branum, A.P.; Winter, C.; et al. Immunologic resilience and COVID-19 survival advantage. J. Allergy Clin. Immunol. 2021, 148, 1176–1191. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, S.K.; Manoharan, M.S.; Lee, G.C.; McKinnon, L.R.; Meunier, J.A.; Steri, M.; Harper, N.; Fiorillo, E.; Smith, A.M.; Restrepo, M.I.; et al. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection. Nat. Commun. 2023, 14, 3286. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Villar, S.; Sainz, T.; Lee, S.A.; Hunt, P.W.; Sinclair, E.; Shacklett, B.L.; Ferre, A.L.; Hayes, T.L.; Somsouk, M.; Hsue, P.Y.; et al. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS Pathog. 2014, 10, e1004078. [Google Scholar] [CrossRef] [PubMed]
- Castilho, J.L.; Bian, A.; Jenkins, C.A.; Shepherd, B.E.; Sigel, K.; Gill, M.J.; Kitahata, M.M.; Silverberg, M.J.; Mayor, A.M.; Coburn, S.B.; et al. CD4/CD8 Ratio and Cancer Risk Among Adults With HIV. J. Natl. Cancer Inst. 2022, 114, 854–862. [Google Scholar] [CrossRef]
- Ron, R.; Moreno, E.; Martínez-Sanz, J.; Brañas, F.; Sainz, T.; Moreno, S.; Serrano-Villar, S. CD4/CD8 ratio during HIV treatment: Time for routine monitoring? Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2023, 76, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Lisco, A.; Ortega-Villa, A.M.; Mystakelis, H.; Anderson, M.V.; Mateja, A.; Laidlaw, E.; Manion, M.; Roby, G.; Higgins, J.; Kuriakose, S.; et al. Reappraisal of Idiopathic CD4 Lymphocytopenia at 30 Years. N. Engl. J. Med. 2023, 388, 1680–1691. [Google Scholar] [CrossRef] [PubMed]
- Caby, F.; Guiguet, M.; Weiss, L.; Winston, A.; Miro, J.M.; Konopnicki, D.; Le Moing, V.; Bonnet, F.; Reiss, P.; Mussini, C.; et al. CD4/CD8 Ratio and the Risk of Kaposi Sarcoma or Non-Hodgkin Lymphoma in the Context of Efficiently Treated Human Immunodeficiency Virus (HIV) Infection: A Collaborative Analysis of 20 European Cohort Studies. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 73, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.; Freeman, M.J.; Yang, Q.; Leverson, G.; Cherney-Stafford, L.; Striker, R.; Sanger, C.B. Duration of Time CD4/CD8 Ratio is Below 0.5 is Associated with Progression to Anal Cancer in Patients with HIV and High-Grade Dysplasia. Ann. Surg. Oncol. 2023, 30, 4737–4743. [Google Scholar] [CrossRef]
- Adriaensen, W.; Derhovanessian, E.; Vaes, B.; Van Pottelbergh, G.; Degryse, J.-M.; Pawelec, G.; Hamprecht, K.; Theeten, H.; Matheï, C. CD4:8 Ratio >5 Is Associated with a Dominant Naive T-Cell Phenotype and Impaired Physical Functioning in CMV-Seropositive Very Elderly People: Results from the BELFRAIL Study. J. Gerontol. Ser. A 2015, 70, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Mutoh, Y.; Nishijima, T.; Inaba, Y.; Tanaka, N.; Kikuchi, Y.; Gatanaga, H.; Oka, S. Incomplete Recovery of CD4 Cell Count, CD4 Percentage, and CD4/CD8 Ratio in Patients with Human Immunodeficiency Virus Infection and Suppressed Viremia During Long-term Antiretroviral Therapy. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2018, 67, 927–933. [Google Scholar] [CrossRef]
- Moyes, J.; Walaza, S.; Pretorius, M.; Groome, M.; von Gottberg, A.; Wolter, N.; Haffejee, S.; Variava, E.; Cohen, A.L.; Tempia, S.; et al. Respiratory syncytial virus in adults with severe acute respiratory illness in a high HIV prevalence setting. J. Infect. 2017, 75, 346–355. [Google Scholar] [CrossRef]
- Janeway, C.A.; Apt, L.; Gitlin, D. Agammaglobulinemia. Trans. Assoc. Am. Physicians 1953, 66, 200–202. [Google Scholar] [PubMed]
- Giovannetti, A.; Pierdominici, M.; Mazzetta, F.; Marziali, M.; Renzi, C.; Mileo, A.M.; De Felice, M.; Mora, B.; Esposito, A.; Carello, R.; et al. Unravelling the complexity of T cell abnormalities in common variable immunodeficiency. J. Immunol. 2007, 178, 3932–3943. [Google Scholar] [CrossRef]
- Cunningham-Rundles, C.; Bodian, C. Common Variable Immunodeficiency: Clinical and Immunological Features of 248 Patients. Clin. Immunol. 1999, 92, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Resnick, E.S.; Moshier, E.L.; Godbold, J.H.; Cunningham-Rundles, C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood 2012, 119, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Rae, W. Indications to Epigenetic Dysfunction in the Pathogenesis of Common Variable Immunodeficiency. Arch. Immunol. Ther. Exp. 2017, 65, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.T.; Cowan, J.; Condino-Neto, A.; Levy, D.; Prusty, S. Health-related quality of life in primary immunodeficiencies: Impact of delayed diagnosis and treatment burden. Clin. Immunol. 2022, 236, 108931. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.P.; Cunningham-Rundles, C. The Importance of Primary Immune Deficiency Registries. Immunol. Allergy Clin. N. Am. 2020, 40, 385–402. [Google Scholar] [CrossRef]
- Ballow, M. Primary immunodeficiency disorders: Antibody deficiency. J Allergy Clin Immunol. 2002, 109, 581–591. [Google Scholar] [CrossRef] [PubMed]
- USIDNET. Available online: https://usidnet.org/ (accessed on 9 May 2023).
- Rodríguez-Borlado, L.; Barber, D.F.; Hernández, C.; Rodríguez-Marcos, M.A.; Sánchez, A.; Hirsch, E.; Wymann, M.; Carrera, A.C. Phosphatidylinositol 3-Kinase Regulates the CD4/CD8 T Cell Differentiation Ratio. J. Immunol. 2003, 170, 4475–4482. [Google Scholar] [CrossRef] [PubMed]
- Shelyakin, P.V.; Lupyr, K.R.; Egorov, E.S.; Kofiadi, I.A.; Staroverov, D.B.; Kasatskaya, S.A.; Kriukova, V.V.; Shagina, I.A.; Merzlyak, E.M.; Nakonechnaya, T.O.; et al. Naïve Regulatory T Cell Subset Is Altered in X-Linked Agammaglobulinemia. Front. Immunol. 2021, 12, 697307. [Google Scholar] [CrossRef]
- Hanna, S.; Etzioni, A. MHC class I and II deficiencies. J. Allergy Clin. Immunol. 2014, 134, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska-Leonik, N.; Piątosa, B.; Słomińska, E.; Bohynikova, N.; Bernat-Sitarz, K.; Bernatowska, E.; Wolska-Kuśnierz, B.; Kałwak, K.; Kołtan, S.; Dąbrowska, A.; et al. National experience with adenosine deaminase deficiency related SCID in Polish children. Front. Immunol. 2022, 13, 1058623. [Google Scholar] [CrossRef]
- Aluri, J.; Desai, M.; Gupta, M.; Dalvi, A.; Terance, A.; Rosenzweig, S.D.; Stoddard, J.L.; Niemela, J.E.; Tamankar, V.; Mhatre, S.; et al. Clinical, Immunological, and Molecular Findings in 57 Patients with Severe Combined Immunodeficiency (SCID) from India. Front. Immunol. 2019, 10, 23. [Google Scholar] [CrossRef] [PubMed]
- Schepp, J.; Chou, J.; Skrabl-Baumgartner, A.; Arkwright, P.D.; Engelhardt, K.R.; Hambleton, S.; Morio, T.; Röther, E.; Warnatz, K.; Geha, R.; et al. 14 Years after Discovery: Clinical Follow-up on 15 Patients with Inducible Co-Stimulator Deficiency. Front. Immunol. 2017, 8, 964. [Google Scholar] [CrossRef]
- Warnatz, K.; Bossaller, L.; Salzer, U.; Skrabl-Baumgartner, A.; Schwinger, W.; van der Burg, M.; van Dongen, J.J.M.; Orlowska-Volk, M.; Knoth, R.; Durandy, A.; et al. Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood 2006, 107, 3045–3052. [Google Scholar] [CrossRef]
- Schwab, C.; Gabrysch, A.; Olbrich, P.; Patiño, V.; Warnatz, K.; Wolff, D.; Hoshino, A.; Kobayashi, M.; Imai, K.; Takagi, M.; et al. Phenotype, penetrance, and treatment of 133 CTLA-4-insufficient subjects. J. Allergy Clin. Immunol. 2018, 142, 1932–1946. [Google Scholar] [CrossRef]
- Park, J.Y.; Kob, M.; Prodeus, A.P.; Rosen, F.S.; Shcherbina, A.; Remold-O’donnell, E. Early deficit of lymphocytes in Wiskott–Aldrich syndrome: Possible role of WASP in human lymphocyte maturation. Clin. Exp. Immunol. 2004, 136, 104–110. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, A.E.; Volpi, S.; Dobbs, K.; Fiorini, C.; Tsitsikov, E.; de Boer, H.; Barlan, I.B.; Despotovic, J.M.; Espinosa-Rosales, F.J.; Hanson, I.C.; et al. Next generation sequencing reveals skewing of the T and B cell receptor repertoires in patients with wiskott-Aldrich syndrome. Front. Immunol. 2014, 5, 340. [Google Scholar] [CrossRef]
- Watson, C.M.; Nadat, F.; Ahmed, S.; Crinnion, L.A.; O’riordan, S.; Carter, C.; Savic, S. Identification of a novel MAGT1 mutation supports a diagnosis of XMEN disease. Genes Immun. 2022, 23, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Schubert, R.; Reichenbach, J.; Zielen, S. Deficiencies in CD4+ and CD8+ T cell subsets in ataxia telangiectasia. Clin. Exp. Immunol. 2002, 129, 125–132. [Google Scholar] [CrossRef]
- Sharifinejad, N.; Jamee, M.; Zaki-Dizaji, M.; Lo, B.; Shaghaghi, M.; Mohammadi, H.; Jadidi-Niaragh, F.; Shaghaghi, S.; Yazdani, R.; Abolhassani, H.; et al. Clinical, Immunological, and Genetic Features in 49 Patients with ZAP-70 Deficiency: A Systematic Review. Front. Immunol. 2020, 11, 831. [Google Scholar] [CrossRef] [PubMed]
- Grimbacher, B.; Hutloff, A.; Schlesier, M.; Glocker, E.; Warnatz, K.; Dräger, R.; Eibel, H.; Fischer, B.; Schäffer, A.A.; Mages, H.W.; et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 2003, 4, 261–268. [Google Scholar] [CrossRef]
- Shaheen, Z.R.; Williams, S.J.A.; Binstadt, B.A. Case Report: A Novel TNFAIP3 Mutation Causing Haploinsufficiency of A20 With a Lupus-Like Phenotype. Front. Immunol. 2021, 12, 629457. [Google Scholar] [CrossRef]
- Tollerud, D.J.; Clark, J.W.; Brown, L.M.; Neuland, C.Y.; Mann, D.L.; Pankiw-Trost, L.K.; Blattner, W.A.; Hoover, R.N. The effects of cigarette smoking on t cell subsets: A population-based survey of healthy caucasians. Am. Rev. Respir. Dis. 1989, 139, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Calopa, M.; Bas, J.; Mestre, M.; Arbizu, T.; Peres, J.; Buendia, E. T cell subsets in multiple sclerosis: A serial study. Acta Neurol. Scand. 1995, 92, 361–368. [Google Scholar] [CrossRef]
- Gupta, J.; Chattopadhaya, D.; Bhadoria, D.P.; Qadar Pasha, M.A.; Gupta, V.K.; Kumar, M.; Dabur, R.; Yadav, V.; Sharma, G.L. T lymphocyte subset profile and serum alpha-1-antitrypsin in pathogenesis of chronic obstructive lung disease. Clin. Exp. Immunol. 2007, 149, 463–469. [Google Scholar] [CrossRef]
IHG Class | CD4/CD8 Ratio | CD4+ Level |
---|---|---|
I | ≥1.0 | ≥800 |
II | ≥1.0 | <800 |
III | <1.0 | ≥800 |
IV | <1.0 | <800 |
Disease | CD4/CD8 Ratio | Estimated IHG Class | Genetic Defect and Inheritance | Associated Features | Reference |
---|---|---|---|---|---|
1a. CD4/CD8 < 1.0 | |||||
X-linked Bruton Type Agammaglobulinemia | Ratio < 1 from age 8 to 14 N = 10 | III/IV | Bruton’s kinase X-linked | Slow growth, immunodeficiency | [23] |
MHC Class II Deficiency | Ratio < 1 N = not reported | III/IV | CIITA, RFX5, RFXAP, FRXANK Autosomal recessive | Recurrent, severe infection, GI infection, failure to thrive | [24] |
Adenosine Deaminase Deficiency (those presenting as SCID) | Ratio 0.39 (range 0.1–7.0) N = 7 | II-IV | ADA Autosomal recessive | Opportunistic infection, failure to thrive, developmental delay | [25,26] |
1b. CD4: CD8: 1–2 | |||||
CVID | Ratio 1–2 Overall (6 with ratio <1.0) Ref [27] N = 15 Ref [28] N = 9 | III-IV | ICOS deficiency Autosomal recessive | Viral infections, opportunistic infection, increased cancer risk | [27,28] |
CVID | Ratio 1–2 * N = 66 | Unable to determine | CTLA4 Autosomal dominant | Hypogammaglobulinemia, respiratory infection, GI infection | [29] |
1c. CD4/CD8 > 2 | |||||
Wiskott–Aldrich | Ratio > 20 N = 27 | Unable to determine | WAS X-linked | Bleeding, autoimmunity, B-cell lymphoma | [30,31] |
Disease | CD4/CD8 Ratio | Estimated IHG Class | Genetic Defect and Inheritance | Associated Features | Reference |
---|---|---|---|---|---|
2a. CD4/CD8 < 1 | |||||
Mag T1 Deficiency | Ratio < 1 in 10/15 N = 15 | III-IV | MAGT1 X-linked | Severe EBV, lymphoma, respiratory and GI infection | [32] |
2b. CD4/CD8 1–2 | |||||
Ataxia–telangiectasia | Ratio 1–2 * | I-II | 11q22-23 Autosomal recessive | Sinopulmonary infection, cerebellar ataxia, telangiectasias | [33] |
2c. CD4/CD8 > 2 | Ratio > 2 N = 32 | Unable to determine | Zap70 Autosomal recessive | Autoimmunity | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, J.; Vonasek, B.; Rosenberg, D.; Vo, T.; Striker, R. Using T-Cell Subsets to Better Characterize Immunoresiliency and Immunodeficiency in Patients with Recurrent Infections. Infect. Dis. Rep. 2024, 16, 1230-1239. https://doi.org/10.3390/idr16060097
Hung J, Vonasek B, Rosenberg D, Vo T, Striker R. Using T-Cell Subsets to Better Characterize Immunoresiliency and Immunodeficiency in Patients with Recurrent Infections. Infectious Disease Reports. 2024; 16(6):1230-1239. https://doi.org/10.3390/idr16060097
Chicago/Turabian StyleHung, Justine, Bryan Vonasek, Daniel Rosenberg, Tri Vo, and Rob Striker. 2024. "Using T-Cell Subsets to Better Characterize Immunoresiliency and Immunodeficiency in Patients with Recurrent Infections" Infectious Disease Reports 16, no. 6: 1230-1239. https://doi.org/10.3390/idr16060097
APA StyleHung, J., Vonasek, B., Rosenberg, D., Vo, T., & Striker, R. (2024). Using T-Cell Subsets to Better Characterize Immunoresiliency and Immunodeficiency in Patients with Recurrent Infections. Infectious Disease Reports, 16(6), 1230-1239. https://doi.org/10.3390/idr16060097