Viral Enteritis in Cattle: To Well Known Viruses and Beyond
Abstract
:1. Introduction
2. Diarrhea in Cattle
2.1. Virus and the Disease
2.2. Neonatal Calf Diarrhea Syndrome
2.3. Diarrhea in Adult Cattle
3. An Iconic Case: Rinderpest
4. Rotavirus
5. Coronavirus
6. Norovirus
7. Torovirus
8. Astrovirus
9. Nebovirus
10. Pestivirus
11. Kobuvirus
12. Bocaparvovirus
13. Enterovirus
14. Orthobunyavirus
15. General Characteristics
15.1. Prevention and Treatment of Viral Enteritis
15.1.1. Vaccines
15.1.2. Treatment
15.2. Geographic Distribution
15.3. Interspecies Transmission
15.4. Viral Evolution
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sansoucy, R. Livestock—A Driving Force for Food Security and Sustainable Development. 1997. Available online: http://www.fao.org/3/v8180t/v8180t07.htm (accessed on 13 April 2021).
- National Institute of Food Agiculture, USA. Available online: https://nifa.usda.gov/topic/animal-production (accessed on 13 April 2021).
- Kaneene, J.B.; Hurd, H.S. The national animal health monitoring system in Michigan. III. Cost estimates of selected dairy cattle diseases. Prev. Vet. Med. 1990, 8, 127–140. [Google Scholar] [CrossRef]
- Selman, I.E. The care of young calves, neonatal calf diarrhea, the calf pneumonias. In Diseases of Cattle in the Tropics. Current Topics in Veterinary Medicine and Animal Science; Ristic, M., McIntyre, I., Eds.; Springer: Dordrecht, The Netherlands, 1981; Volume 6. [Google Scholar] [CrossRef]
- Blanchard, P.C. Diagnostics of dairy and beef cattle diarrhea. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 443–464. [Google Scholar] [CrossRef] [PubMed]
- Naylor, J.M. Neonatal Calf Diarrhea. Food Anim. Pract. 2009, 70–77. [Google Scholar] [CrossRef]
- Heller, M.C.; Chigerwe, M. Diagnosis and Treatment of Infectious Enteritis in Neonatal and Juvenile Ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.A.; Gibbs, E.P.J.; Horzinek, M.C.; Studdert, M.J. Veterinary Virology: The Third Edition; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Jor, E.; Myrmel, M.; Jonassen, C.M. SYBR Green based real-time RT-PCR assay for detection and genotype prediction of bovine noroviruses and assessment of clinical significance in Norway. J. Virol. Methods 2010, 169, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Archambault, D.; Morin, G.; Elazhary, Y.; Roy, R.S. Study of virus excretion in feces of diarrheic and asymptomatic calves infected with rotavirus. Zentralbl. Veterinarmed. B 1990, 37, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Woode, G.N.; Pohlenz, J.F.; Gourley, N.E.; Fagerland, J.A. Astrovirus and Breda virus infections of dome cell epithelium of bovine ileum. J. Clin. Microbiol. 1984, 19, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saif, L.J. Bovine respiratory coronavirus. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 349–364. [Google Scholar] [CrossRef]
- Cho, Y.I.; Yoon, K.J. An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J. Vet. Sci. 2014, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Maclachlan, N.J.; Dubovi, E.J.; Barthold, S.W.; Swayne, D.E.; Winton, J.R. Fenner’s Veterinary Virology: Fifth Edition; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Waltner-Toews, D.; Martin, S.W.; Meek, A.H. The effect of early calfhood health status on survivorship and age at first calving. Can. J. Vet. Res. 1986, 50, 314–317. [Google Scholar]
- Donovan, G.A.; Dohoo, I.R.; Montgomery, D.M.; Bennett, F.L. Calf and disease factors affecting growth in female Holstein calves in Florida, USA. Prev. Vet. Med. 1998, 33, 1–10. [Google Scholar] [CrossRef]
- Windeyer, M.C.; Leslie, K.E.; Godden, S.M.; Hodgins, D.C.; Lissemore, K.D.; LeBlanc, S.J. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev. Vet. Med. 2014, 113, 231–240. [Google Scholar] [CrossRef]
- United States Department of Agriculture, USA. Part II: Reference of 1997 Beef Cow-Calf Health & Health Management Practices. 1997. Available online: https://www.aphis.usda.gov/animal_health/nahms/beefcowcalf/downloads/beef97/Beef97_dr_PartII.pdf (accessed on 13 April 2021).
- Smith, G.W. Treatment of calf diarrhea: Oral fluid therapy. Vet. Clin. N. Am. Food Anim. Pract. 2009, 25, 55–72. [Google Scholar] [CrossRef]
- Smith, D.R. Field disease diagnostic investigation of neonatal calf diarrhea. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 465481. [Google Scholar] [CrossRef] [PubMed]
- Hur, T.Y.; Jung, Y.H.; Choe, C.Y.; Cho, Y.I.; Kang, S.J.; Lee, H.J.; Ki, K.S.; Baek, K.S.; Suh, G.H. The dairy calf mortality: The causes of calf death during ten years at a large dairy farm in Korea. Korean J. Vet. Res. 2013, 53, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Hötzel, M.J.; Longo, C.; Balcão, L.F.; Cardoso, C.S.; Costa, J.H. A survey of management practices that influence performance and welfare of dairy calves reared in southern Brazil. PLoS ONE 2014, 15, e114995. [Google Scholar] [CrossRef]
- Mõtus, K.; Viltrop, A.; Emanuelson, U. Reasons and risk factors for beef calf and youngstock on-farm mortality in extensive cow-calf herds. Animal 2018, 12, 1958–1966. [Google Scholar] [CrossRef]
- Urie, N.J.; Lombard, J.E.; Shivley, C.B.; Kopral, C.A.; Adams, A.E.; Earleywine, T.J.; Olson, J.D.; Garry, F.B. Preweaned heifer management on US dairy operations: Part, V. Factors associated with morbidity and mortality in preweaned dairy heifer calves. J. Dairy Sci. 2018, 101, 9229–9244. [Google Scholar] [CrossRef] [Green Version]
- Roche, S.M.; Von Massow, M.; Renaud, D.; Shock, D.A.; Jones-Bitton, A.; Kelton, D.F. Cost-benefit of implementing a participatory extension model for improving on-farm adoption of Johne’s disease control recommendations. J. Dairy Sci. 2020, 103, 451–472. [Google Scholar] [CrossRef] [Green Version]
- Abuelo, A.; Cullens, F.; Brester, J.L. Effect of preweaning disease on the reproductive performance and first-lactation milk production of heifers in a large dairy herd. J. Dairy Sci. 2021, 104, 7008–7017. [Google Scholar] [CrossRef] [PubMed]
- Saif, L.J. A review of evidence implicating bovine coronavirus in the etiology of winter dysentery in cows: An enigma resolved? Cornell Vet. 1990, 80, 303–311. [Google Scholar] [PubMed]
- Clark, M.A. Bovine coronavirus. Br. Vet. J. 1993, 149, 51–70. [Google Scholar] [CrossRef]
- Aita, T.; Kuwabara, M.; Murayama, K.; Sasagawa, Y.; Yabe, S.; Higuchi, R.; Tamura, T.; Miyazaki, A.; Tsunemitsu, H. Characterization of epidemic diarrhea outbreaks associated with bovine torovirus in adult cows. Arch. Virol. 2012, 157, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Constable, P.D.; Hinchcliff, K.W.; Done, S.H.; Grünberg, W. Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs, and Goats, 11th ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Van Kruiningen, H.J.; Castellano, V.P.; Koopmans, M.; Harris, L.L. A serologic investigation for coronavirus and Breda virus antibody in winter dysentery of dairy cattle in the northeastern United States. J. Vet. Diagn. Investig. 1992, 4, 450–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Organization for Animal Health (OIE). Declaration of Global Eradication of Rinderpest and Implementation of Follow-Up Measures to Maintain World Freedom from Rinderpest. 2011. Available online: http://www.oie.int/fileadmin/Home/eng/Media_Center/docs/pdf/RESO_18_EN.pdf (accessed on 16 April 2021).
- Normile, D. Driven to Extinction. Science 2008, 319, 1606–1609. [Google Scholar] [CrossRef]
- Butler, D. Sequence and destroy: The quest to eliminate the last stocks of deadly rinderpest virus. Nature 2019, 572, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, S.; Rajko-Nenow, P.; Ropiak, H.M.; Ribeca, P.; Batten, C.; Baron, M.D. Full genome sequencing of archived wild type and vaccine rinderpest virus isolates prior to their destruction. Sci. Rep. 2020, 10, 6563. [Google Scholar] [CrossRef] [Green Version]
- Roeder, P.L.; Rich, K. The Global Effort to Eradicate Rinderpest. 2009. Available online: http://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/29876/filename/29877.pdf (accessed on 16 April 2021).
- Mebus, C.A.; Underdahl, N.R.; Rhodes, M.B.; Twiehaus, M.J. Calf diarrhea (scours): Reproduced with a virus from a field outbreak. Bull. Neb. Agric Exp. Station 1969, 233, 1–16. [Google Scholar]
- Garaicoechea, L.; Bok, K.; Jones, L.R.; Combessies, G.; Odeón, A.; Fernandez, F.; Parreño, V. Molecular characterization of bovine rotavirus circulating in beef and dairy herds in Argentina during a 10-year period (1994–2003). Vet. Microbiol. 2006, 26, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Chauhan, R.S.; Mahendran, M.; Malik, S.V. Rotavirus diarrhea in bovines and other domestic animals. Vet. Res. Commun. 2009, 33, 1–23. [Google Scholar] [CrossRef]
- Estes, M.; Greenberg, H. Rotaviruses. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Cohen, J.I., Griffin, D.E., Lamb, R.A., Martin, M.A., Racaniello, V.R., Roizman, B., Eds.; Wolters Kluwer Business/Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Matthijnssens, J.; Ciarlet, M.; McDonald, S.M.; Attoui, H.; Bányai, K.; Brister, J.R.; Buesa, J.; Esona, M.D.; Estes, M.K.; Gentsch, J.R.; et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol. 2011, 156, 1397–1413. [Google Scholar] [CrossRef] [Green Version]
- Papp, H.; László, B.; Jakab, F.; Ganesh, B.; De Grazia, S.; Matthijnssens, J.; Ciarlet, M.; Martella, V.; Bányai, K. Review of group A rotavirus strains reported in swine and cattle. Vet. Microbiol. 2013, 30, 190–199. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Ciarlet, M.; Heiman, E.; Arijs, I.; Delbeke, T.; McDonald, S.M.; Palombo, E.A.; Iturriza-Gómara, M.; Maes, P.; Patton, J.T.; et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J. Virol. 2008, 82, 3204–3219. [Google Scholar] [CrossRef] [Green Version]
- Parreño, V.; Béjar, C.; Vagnozzi, A.; Barrandeguy, M.; Costantini, V.; Craig, M.I.; Yuan, L.; Hodgins, D.; Saif, L.; Fernández, F. Modulation by colostrum-acquired maternal antibodies of systemic and mucosal antibody responses to rotavirus in calves experimentally challenged with bovine rotavirus. Vet. Immunol. Immunopathol. 2004, 100, 7–24. [Google Scholar] [CrossRef]
- Castells, M.; Caffarena, R.D.; Casaux, M.L.; Schild, C.; Miño, S.; Castells, F.; Castells, D.; Victoria, M.; Riet-Correa, F.; Giannitti, F.; et al. Phylogenetic Analyses of Rotavirus A from Cattle in Uruguay Reveal the Circulation of Common and Uncommon Genotypes and Suggest Interspecies Transmission. Pathogens 2020, 14, 570. [Google Scholar] [CrossRef]
- Badaracco, A.; Garaicoechea, L.; Matthijnssens, J.; Louge Uriarte, E.; Odeón, A.; Bilbao, G.; Fernandez, F.; Parra, G.I.; Parreño, V. Phylogenetic analyses of typical bovine rotavirus genotypes G6, G10, P[5] and P[11] circulating in Argentinean beef and dairy herds. Infect. Genet. Evol. 2013, 18, 18–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stair, E.L.; Rhodes, M.B.; White, R.G.; Mebus, C.A. Neonatal calf diarrhea: Purification and electron microscopy of a coronavirus-like agent. Am. J. Vet. Res. 1972, 33, 1147–1156. [Google Scholar] [PubMed]
- Mebus, C.A.; Stair, E.L.; Rhodes, M.B.; Twiehaus, M.J. Pathology of neonatal calf diarrea induced by a coronavirus-like agent. Vet. Pathol. 1973, 10, 45–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res. 2006, 66, 193–292. [Google Scholar] [CrossRef]
- Casanova, L.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Survival of surrogate coronaviruses in water. Water Res. 2009, 43, 1893–1898. [Google Scholar] [CrossRef]
- Mullis, L.; Saif, L.J.; Zhang, Y.; Zhang, X.; Azevedo, M.S. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions. Food Microbiol. 2012, 30, 180–186. [Google Scholar] [CrossRef]
- Bok, M.; Alassia, M.; Frank, F.; Vega, C.G.; Wigdorovitz, A.; Parreño, V. Passive immunity to control Bovine coronavirus diarrhea in a dairy herd in Argentina. Rev. Argent. Microbiol. 2018, 50, 23–30. [Google Scholar] [CrossRef]
- Castells, M.; Giannitti, F.; Caffarena, R.D.; Casaux, M.L.; Schild, C.; Castells, D.; Riet-Correa, F.; Victoria, M.; Parreño, V.; Colina, R. Bovine coronavirus in Uruguay: Genetic diversity, risk factors and transboundary introductions from neighboring countries. Arch. Virol. 2019, 164, 2715–2724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woode, G.N.; Bridger, J.C. Isolation of small viruses resembling astroviruses and caliciviruses from acute enteritis of calves. J. Med. Microbiol. 1978, 11, 441–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Poel, W.H.; Vinjé, J.; van Der Heide, R.; Herrera, M.I.; Vivo, A.; Koopmans, M.P. Norwalk-like calicivirus genes in farm animals. Emerg. Infect. Dis. 2000, 6, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Batten, C.A.; Liu, B.L.; Lambden, P.R.; Elschner, M.; Günther, H.; Otto, P.; Schnürch, P.; Eichhorn, W.; Herbst, W.; et al. Studies of epidemiology and seroprevalence of bovine noroviruses in Germany. J. Clin. Microbiol. 2003, 41, 2300–2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Poel, W.H.; van der Heide, R.; Verschoor, F.; Gelderblom, H.; Vinjé, J.; Koopmans, M.P. Epidemiology of Norwalk-like virus infections in cattle in The Netherlands. Vet. Microbiol. 2003, 92, 297–309. [Google Scholar] [CrossRef]
- Milnes, A.S.; Binns, S.H.; Oliver, S.L.; Bridger, J.C. Retrospective study of noroviruses in samples of diarrhoea from cattle, using the Veterinary Laboratories Agency’s Farmfile database. Vet. Rec. 2007, 160, 326–330. [Google Scholar] [CrossRef]
- Ferragut, F.; Vega, C.G.; Mauroy, A.; Conceição-Neto, N.; Zeller, M.; Heylen, E.; Uriarte, E.L.; Bilbao, G.; Bok, M.; Matthijnssens, J.; et al. Molecular detection of bovine Noroviruses in Argentinean dairy calves: Circulation of a tentative new genotype. Infect. Genet. Evol. 2016, 40, 144–150. [Google Scholar] [CrossRef]
- Cho, Y.I.; Han, J.I.; Wang, C.; Cooper, V.; Schwartz, K.; Engelken, T.; Yoon, K.J. Case-control study of microbiological etiology associated with calf diarrhea. Vet. Microbiol. 2013, 166, 375–385. [Google Scholar] [CrossRef]
- Castells, M.; Caffarena, R.D.; Casaux, M.L.; Schild, C.; Castells, F.; Castells, D.; Victoria, M.; Riet-Correa, F.; Giannitti, F.; Parreño, V.; et al. Detection, risk factors and molecular diversity of GIII norovirus in Uruguay. Infect. Genet. Evol. 2020, 3, 104613. [Google Scholar] [CrossRef]
- Prasad, B.V.; Hardy, M.E.; Dokland, T.; Bella, J.; Rossmann, M.G.; Estes, M.K. X-ray crystallographic structure of the Norwalk virus capsid. Science 1999, 286, 287–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scipioni, A.; Mauroy, A.; Vinjé, J.; Thiry, E. Animal noroviruses. Vet. J. 2008, 178, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Daughenbaugh, K.F.; Fraser, C.S.; Hershey, J.W.; Hardy, M.E. The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. EMBO J. 2003, 22, 2852–2859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodfellow, I.; Chaudhry, Y.; Gioldasi, I.; Gerondopoulos, A.; Natoni, A.; Labrie, L.; Laliberté, J.F.; Roberts, L. Calicivirus translation initiation requires an interaction between VPg and eIF 4 E. EMBO Rep. 2005, 6, 968–972. [Google Scholar] [CrossRef]
- Bull, R.A.; Tanaka, M.M.; White, P.A. Norovirus recombination. J. Gen. Virol. 2007, 88 Pt 12, 3347–3359. [Google Scholar] [CrossRef]
- Wang, Y.; Yue, H.; Tang, C. Prevalence and complete genome of bovine norovirus with novel VP1 genotype in calves in China. Sci. Rep. 2019, 9, 12023. [Google Scholar] [CrossRef]
- Otto, P.H.; Clarke, I.N.; Lambden, P.R.; Salim, O.; Reetz, J.; Liebler-Tenorio, E.M. Infection of calves with bovine norovirus GIII.1 strain Jena virus: An experimental model to study the pathogenesis of norovirus infection. J. Virol. 2011, 85, 12013–12021. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Scheuer, K.A.; Zhang, Z.; Wang, Q.; Saif, L.J. Pathogenesis of GIII.2 bovine norovirus, CV186-OH/00/US strain in gnotobiotic calves. Vet. Microbiol. 2014, 168, 202–207. [Google Scholar] [CrossRef]
- Sawyer, L.A.; Murphy, J.J.; Kaplan, J.E.; Pinsky, P.F.; Chacon, D.; Walmsley, S.; Schonberger, L.B.; Phillips, A.; Forward, K.; Goldman, C.; et al. 25- to 30-nm virus particle associated with a hospital outbreak of acute gastroenteritis with evidence for airborne transmission. Am. J. Epidemiol. 1988, 127, 1261–1271. [Google Scholar] [CrossRef]
- Duizer, E.; Bijkerk, P.; Rockx, B.; De Groot, A.; Twisk, F.; Koopmans, M. Inactivation of caliciviruses. Appl. Environ. Microbiol. 2004, 70, 4538–4543. [Google Scholar] [CrossRef] [Green Version]
- Rzezutka, A.; Cook, N. Survival of human enteric viruses in the environment and food. FEMS Microbiol. Rev. 2004, 28, 441–453. [Google Scholar] [CrossRef] [Green Version]
- Nims, R.; Plavsic, M. Inactivation of caliciviruses. Pharmaceuticals 2013, 6, 358–392. [Google Scholar] [CrossRef]
- Woode, G.N.; Reed, D.E.; Runnels, P.L.; Herrig, M.A.; Hill, H.T. Studies with an unclassified virus isolated from diarrheic calves. Vet. Microbiol. 1982, 7, 221–240. [Google Scholar] [CrossRef]
- Horzinek, M.C.; Flewett, T.H.; Saif, L.J.; Spaan, W.J.; Weiss, M.; Woode, G.N. A new family of vertebrate viruses: Toroviridae. Intervirology 1987, 27, 17–24. [Google Scholar] [CrossRef]
- Draker, R.; Roper, R.L.; Petric, M.; Tellier, R. The complete sequence of the bovine torovirus genome. Virus Res. 2006, 115, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Duckmanton, L.M.; Tellier, R.; Liu, P.; Petric, M. Bovine torovirus: Sequencing of the structural genes and expression of the nucleocapsid protein of Breda virus. Virus Res. 1998, 58, 83–96. [Google Scholar] [CrossRef]
- Cavanagh, D.; Horzinek, M.C. Genus Torovirus assigned to the Coronaviridae. Arch. Virol. 1993, 128, 395–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, J.M.; Gomez-Puertas, P.; Cavanagh, D.; Gorbalenya, A.E.; Enjuanes, L. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch. Virol. 2003, 148, 2207–2235. [Google Scholar] [CrossRef] [Green Version]
- Hoet, A.E.; Saif, L.J. Bovine torovirus (Breda virus) revisited. Anim. Health Res. Rev. 2004, 5, 157–171. [Google Scholar] [CrossRef]
- Hoet, A.E.; Cho, K.O.; Chang, K.O.; Loerch, S.C.; Wittum, T.E.; Saif, L.J. Enteric and nasal shedding of bovine torovirus (Breda virus) in feedlot cattle. Am. J. Vet. Res. 2002, 63, 342–348. [Google Scholar] [CrossRef]
- Koopmans, M.; Horzinek, M.C. Toroviruses of animals and humans: A review. Adv. Virus Res. 1994, 43, 233–273. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.A. Comparative pathology of infection by novel diarrhoea viruses. Ciba Found. Symp. 1987, 128, 192–217. [Google Scholar] [CrossRef] [PubMed]
- Pohlenz, J.F.; Cheville, N.F.; Woode, G.N.; Mokresh, A.H. Cellular lesions in intestinal mucosa of gnotobiotic calves experimentally infected with a new unclassified bovine virus (Breda virus). Vet. Pathol. 1984, 21, 407–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, K.V. Enteric infections with coronaviruses and toroviruses. Novartis Found. Symp. 2001, 238, 258–275. [Google Scholar] [CrossRef] [Green Version]
- Tse, H.; Chan, W.M.; Tsoi, H.W.; Fan, R.Y.; Lau, C.C.; Lau, S.K.; Woo, P.C.; Yuen, K.Y. Rediscovery and genomic characterization of bovine astroviruses. J. Gen. Virol. 2011, 92 Pt 8, 1888–1898. [Google Scholar] [CrossRef]
- Donato, C.; Vijaykrishna, D. The broad host range and genetic diversity of mammalian and avian astroviruses. Viruses 2017, 9, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castells, M.; Bertoni, E.; Caffarena, R.D.; Casaux, M.L.; Schild, C.; Victoria, M.; Riet-Correa, F.; Giannitti, F.; Parreño, V.; Colina, R. Bovine Astrovirus Surveillance in Uruguay Reveals High Detection Rate of a Novel Mamastrovirus Species. Viruses 2019, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Woode, G.N.; Gourley, N.E.; Pohlenz, J.F.; Liebler, E.M.; Mathews, S.L.; Hutchinson, M.P. Serotypes of bovine astrovirus. J. Clin. Microbiol. 1985, 22, 668–670. [Google Scholar] [CrossRef] [Green Version]
- Oem, J.K.; An, D.J. Phylogenetic analysis of bovine astrovirus in Korean cattle. Virus Genes 2014, 48, 372–375. [Google Scholar] [CrossRef]
- Alfred, N.; Liu, H.; Li, M.L.; Hong, S.F.; Tang, H.B.; Wei, Z.Z.; Chen, Y.; Li, F.K.; Zhong, Y.Z.; Huang, W.J. Molecular epidemiology and phylogenetic analysis of diverse bovine astroviruses associated with diarrhea in cattle and water buffalo calves in China. J. Vet. Med. Sci. 2015, 77, 643–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, M.; Omatsu, T.; Aoki, H.; Otomaru, K.; Uto, T.; Koizumi, M.; Minami-Fukuda, F.; Takai, H.; Murakami, T.; Masuda, T.; et al. Full genome analysis of bovine astrovirus from fecal samples of cattle in Japan: Identification of possible interspecies transmission of bovine astrovirus. Arch. Virol. 2015, 160, 2491–2501. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Diab, S.; McGraw, S.; Barr, B.; Traslavina, R.; Higgins, R.; Talbot, T.; Blanchard, P.; Rimoldi, G.; Fahsbender, E.; et al. Divergent astrovirus associated with neurologic disease in cattle. Emerg. Infect. Dis. 2013, 19, 1385–1392. [Google Scholar] [CrossRef]
- Bouzalas, I.G.; Wüthrich, D.; Selimovic-Hamza, S.; Drögemüller, C.; Bruggmann, R.; Seuberlich, T. Full-genome based molecular characterization of encephalitis-associated bovine astroviruses. Infect. Genet. Evol. 2016, 44, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Bouzalas, I.G.; Wüthrich, D.; Walland, J.; Drögemüller, C.; Zurbriggen, A.; Vandevelde, M.; Oevermann, A.; Bruggmann, R.; Seuberlich, T. Neurotropic astrovirus in cattle with nonsuppurative encephalitis in Europe. J. Clin. Microbiol. 2014, 52, 3318–3324. [Google Scholar] [CrossRef] [Green Version]
- Schlottau, K.; Schulze, C.; Bilk, S.; Hanke, D.; Höper, D.; Beer, M.; Hoffmann, B. Detection of a Novel Bovine Astrovirus in a Cow with Encephalitis. Transbound. Emerg. Dis. 2016, 63, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Selimovic-Hamza, S.; Boujon, C.L.; Hilbe, M.; Oevermann, A.; Seuberlich, T. Frequency and Pathological Phenotype of Bovine Astrovirus CH13/NeuroS1 Infection in Neurologically-Diseased Cattle: Towards Assessment of Causality. Viruses 2017, 9, 12. [Google Scholar] [CrossRef]
- Hirashima, Y.; Okada, D.; Shibata, S.; Yoshida, S.; Fujisono, S.; Omatsu, T.; Mizutani, T.; Nagai, M. Whole genome analysis of a novel neurotropic bovine astrovirus detected in a Japanese black steer with non-suppurative encephalomyelitis in Japan. Arch. Virol. 2018, 163, 2805–2810. [Google Scholar] [CrossRef]
- Giannitti, F.; Caffarena, R.D.; Pesavento, P.; Uzal, F.A.; Maya, L.; Fraga, M.; Colina, R.; Castells, M. The first case of bovine astrovirus-associated encephalitis in the southern hemisphere (Uruguay) uncovers evidence of viral introduction to the Americas from Europe. Front. Microbiol. 2019, 10, 1240. [Google Scholar] [CrossRef] [Green Version]
- Ng, T.F.; Kondov, N.O.; Deng, X.; Van Eenennaam, A.; Neibergs, H.L.; Delwart, E. A metagenomics and case-control study to identify viruses associated with bovine respiratory disease. J. Virol. 2015, 89, 5340–5349. [Google Scholar] [CrossRef] [Green Version]
- Cordey, S.; Brito, F.; Vu, D.L.; Turin, L.; Kilowoko, M.; Kyungu, E.; Genton, B.; Zdobnov, E.M.; D’Acremont, V.; Kaiser, L. Astrovirus VA1 identified by next-generation sequencing in a nasopharyngeal specimen of a febrile Tanzanian child with acute respiratory disease of unknown etiology. Emerg. Microbes Infect. 2016, 6, e67. [Google Scholar]
- Padmanabhan, A.; Hause, B.M. Detection and characterization of a novel genotype of porcine astrovirus 4 from nasal swabs from pigs with acute respiratory disease. Arch. Virol. 2016, 161, 2575–2579. [Google Scholar] [CrossRef]
- Li, Y.; Khalafalla, A.I.; Paden, C.R.; Yusof, M.F.; Eltahir, Y.M.; Al Hammadi, Z.M.; Tao, Y.; Queen, K.; Hosani, F.A.; Gerber, S.I.; et al. Identification of diverse viruses in upper respiratory samples in dromedary camels from United Arab Emirates. PLoS ONE 2017, 13, e0184718. [Google Scholar] [CrossRef] [Green Version]
- Cordey, S.; Zanella, M.C.; Wagner, N.; Turin, L.; Kaiser, L. Novel human astroviruses in pediatric respiratory samples: A one-year survey in a Swiss tertiary care hospital. J. Med. Virol. 2018, 90, 1775–1778. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shen, H.; Zheng, Y.; Schumacher, L.; Li, G. Astrovirus in White-Tailed Deer, United States, 2018. Emerg. Infect. Dis. 2020, 26, 374–376. [Google Scholar] [CrossRef] [PubMed]
- Bridger, J.C.; Hall, G.A.; Brown, J.F. Characterization of a calici-like virus (Newbury agent) found in association with astrovirus in bovine diarrhea. Infect. Immun. 1984, 43, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smiley, J.R.; Chang, K.O.; Hayes, J.; Vinjé, J.; Saif, L.J. Characterization of an enteropathogenic bovine calicivirus representing a potentially new calicivirus genus. J. Virol. 2002, 76, 10089–10098. [Google Scholar] [CrossRef] [Green Version]
- Oliver, S.L.; Asobayire, E.; Dastjerdi, A.M.; Bridger, J.C. Genomic characterization of the unclassified bovine enteric virus Newbury agent-1 (Newbury1) endorses a new genus in the family Caliciviridae. Virology 2006, 20, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; He, Q.; Zhang, B.; Yue, H.; Tang, C. First detection of neboviruses in yak (Bos grunniens) and identification of a novel neboviruses based on complete genome. Vet. Microbiol. 2019, 236, 108388. [Google Scholar] [CrossRef]
- D’Mello, F.; Jervis, S.M.; Edwards, P.M.; Oliver, S.L.; Bridger, J.C. Heterogeneity in the capsid protein of bovine enteric caliciviruses belonging to a new genus. Virology 2009, 25, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, B.; Di Profio, F.; Martella, V.; Ceci, C.; Marsilio, F. Evidence for recombination in neboviruses. Vet. Microbiol. 2011, 15, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; He, Q.; Yue, H.; Zhang, B.; Tang, C. Genomic characterization of a RdRp-recombinat nebovirus strain with a novel VP1 genotype. Virus Res. 2018, 2, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; He, Q.; Zhang, B.; Yue, H.; Tang, C. Detection and molecular characteristics of neboviruses in dairy cows in China. J. Gen. Virol. 2019, 100, 35–45. [Google Scholar] [CrossRef]
- Karayel-Hacioglu, I.; Alkan, F. Molecular characterization of bovine noroviruses and neboviruses in Turkey: Detection of recombinant strains. Arch. Virol. 2019, 164, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.A.; Bridger, J.C.; Brooker, B.E.; Parsons, K.R.; Ormerod, E. Lesions of gnotobiotic calves experimentally infected with a calicivirus-like (Newbury) agent. Vet. Pathol. 1984, 21, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Goens, S.D. The evolution of bovine viral diarrhea: A review. Can. Vet. J. 2002, 43, 946–954. [Google Scholar]
- Stalder, H.; Bachofen, C.; Schweizer, M.; Zanoni, R.; Sauerländer, D.; Peterhans, E. Traces of history conserved over 600 years in the geographic distribution of genetic variants of an RNA virus: Bovine viral diarrhea virus in Switzerland. PLoS ONE 2018, 5, e0207604. [Google Scholar] [CrossRef]
- Childs, T. X Disease of Cattle—Saskatchewan. Can. J. Comp. Med. Vet. Sci. 1946, 10, 316–319. [Google Scholar]
- Olafson, P.; MacCallum, A.D.; Fox, F.H. An apparently new transmissible disease of cattle. Cornell Vet. 1946, 36, 205–213. [Google Scholar]
- Olafson, P.; Rickard, C.G. Further observations on the virus diarrhea (new transmissible disease) of cattle. Cornell Vet. 1947, 37, 104–106. [Google Scholar]
- Gillespie, J.H.; Baker, J.A.; McEntee, K. A cytopathogenic strain of virus diarrhea virus. Cornell Vet. 1960, 50, 73–79. [Google Scholar]
- Maya, L.; Macías-Rioseco, M.; Silveira, C.; Giannitti, F.; Castells, M.; Salvo, M.; Rivero, R.; Cristina, J.; Gianneechini, E.; Puentes, R.; et al. An extensive field study reveals the circulation of new genetic variants of subtype 1a of bovine viral diarrhea virus in Uruguay. Arch. Virol. 2020, 165, 145–156. [Google Scholar] [CrossRef]
- Riitho, V.; Strong, R.; Larska, M.; Graham, S.P.; Steinbach, F. Bovine Pestivirus Heterogeneity and Its Potential Impact on Vaccination and Diagnosis. Viruses 2020, 6, 1134. [Google Scholar] [CrossRef]
- Baker, J.C. The clinical manifestations of bovine viral diarrhea infection. Vet. Clin. N. Am. Food Anim Pract. 1995, 11, 425–445. [Google Scholar] [CrossRef]
- Yamashita, T.; Ito, M.; Kabashima, Y.; Tsuzuki, H.; Fujiura, A.; Sakae, K. Isolation and characterization of a new species of kobuvirus associated with cattle. J. Gen. Virol. 2003, 84 Pt 11, 3069–3077. [Google Scholar] [CrossRef]
- Hao, L.; Chen, C.; Bailey, K.; Wang, L. Bovine kobuvirus-A comprehensive review. Transbound. Emerg. Dis. 2020, 68, 1886–1894. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tang, C.; Yue, H. Molecular detection and genomic characteristics of bovine kobuvirus from dairy calves in China. Infect. Genet. Evol. 2019, 74, 103939. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fredrickson, R.; Duncan, M.; Samuelson, J.; Hsiao, S.H. Bovine Kobuvirus in Calves with Diarrhea, United States. Emerg. Infect. Dis. 2020, 26, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Candido, M.; Batinga, M.C.; Alencar, A.L.; de Almeida-Queiroz, S.R.; da Glória Buzinaro, M.; Livonesi, M.C.; Fernandes, A.M.; de Sousa, R.L. Molecular characterization and genetic diversity of bovine Kobuvirus, Brazil. Virus Genes 2017, 53, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Khamrin, P.; Maneekarn, N.; Peerakome, S.; Okitsu, S.; Mizuguchi, M.; Ushijima, H. Bovine kobuviruses from cattle with diarrhea. Emerg. Infect. Dis. 2008, 14, 985–986. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kim, H.K.; Song, D.S.; Moon, H.J.; Park, B.K. Molecular detection and genetic characterization of kobuviruses in fecal samples collected from diarrheic cattle in Korea. Infect. Genet. Evol. 2011, 11, 1178–1182. [Google Scholar] [CrossRef]
- Jeoung, H.Y.; Lim, J.A.; Jeong, W.; Oem, J.K.; An, D.J. Three clusters of bovine kobuvirus isolated in Korea, 2008–2010. Virus Genes 2011, 42, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.; Lorenzetti, E.; Júnior, J.C.R.; da Silva Medeiros, T.N.; Alfieri, A.F.; Alfieri, A.A. Phylogenetic analysis of VP1 and RdRP genes of Brazilian aichivirus B strains involved in a diarrhea outbreak in dairy calves. Arch. Virol. 2017, 162, 3691–3696. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.F.; Mansour, S.M.G.; Orabi, A.; El-Araby, I.E.; Ng, T.F.F.; Mor, S.K.; Goyal, S.M. Detection and genetic characterization of bovine kobuvirus from calves in Egypt. Arch. Virol. 2018, 163, 1439–1447. [Google Scholar] [CrossRef]
- Işidan, H.; Turan, T.; Atasoy, M.O.; Sözdutmaz, I.; Irehan, B. Detection and first molecular characterisation of three picornaviruses from diarrhoeic calves in Turkey. Acta Vet. Hung. 2019, 67, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Savard, C.; Ariel, O.; Fredrickson, R.; Wang, L.; Broes, A. Detection and genome characterization of bovine kobuvirus (BKV) in fecal samples from diarrheic calves in Quebec, Canada. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.S.; Raabis, S.M.; Graham, M.E.; Dreyfus, J.M.; Sibley, S.D.; Godhardt-Cooper, J.A.; Toohey-Kurth, K.L.; Goldberg, T.L.; Peek, S.F. Identification by next-generation sequencing of Aichivirus B in a calf with enterocolitis and neurologic signs. J. Vet. Diagn. Investig. 2017, 29, 208–211. [Google Scholar] [CrossRef]
- Abinanti, F.R.; Warfield, M.S. Recovery of a hemadsorbing virus (HADEN) from the gastrointestinal tract of calves. Virology 1961, 14, 288–289. [Google Scholar] [CrossRef]
- Spahn, G.J.; Smohanty, S.B.; Hetrick, F.M. Characteristics of hemadsorbing enteric (HADEN) virus. Can. J. Microbiol. 1966, 12, 653–661. [Google Scholar] [CrossRef]
- Bachmann, P.A. Properties of a Bovine Parvovirus (Brief Report). Zbl. Vet. Med. B 1971, 18, 80–85. [Google Scholar] [CrossRef]
- Manteufel, J.; Truyen, U. Animal bocaviruses: A brief review. Intervirology 2008, 51, 328–334. [Google Scholar] [CrossRef]
- Kailasan, S.; Halder, S.; Gurda, B.; Bladek, H.; Chipman, P.R.; McKenna, R.; Brown, K.; Agbandje-McKenna, M. Structure of an enteric pathogen, bovine parvovirus. J. Virol. 2015, 89, 2603–2614. [Google Scholar] [CrossRef] [Green Version]
- Mitra, N.; Cernicchiaro, N.; Torres, S.; Li, F.; Hause, B.M. Metagenomic characterization of the virome associated with bovine respiratory disease in feedlot cattle identified novel viruses and suggests an etiologic role for influenza D virus. J. Gen. Virol. 2016, 97, 1771–1784. [Google Scholar] [CrossRef]
- Allander, T.; Emerson, S.U.; Engle, R.E.; Purcell, R.H.; Bukh, J. A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc. Natl. Acad. Sci. USA 2001, 98, 11609–11614. [Google Scholar] [CrossRef] [Green Version]
- Inaba, Y.; Kurogi, H.; Omori, T.; Matumoto, M. A new serotype of bovine parvovirus. Jpn. J. Microbiol. 1973, 17, 85–86. [Google Scholar] [CrossRef] [PubMed]
- Spahn, G.J.; Mohanty, S.B.; Hetrick, F.M. Experimental infection of calves with hemadsorbing enteric (HADEN) virus. Cornell Vet. 1966, 56, 377–386. [Google Scholar]
- Durham, P.J.; Lax, A.; Johnson, R.H. Pathological and virological studies of experimental parvoviral enteritis in calves. Res. Vet. Sci. 1985, 38, 209–219. [Google Scholar] [CrossRef]
- McFerran, J.B. Bovine enteroviruses. Ann. N. Y. Acad. Sci. 1962, 101, 436–443. [Google Scholar] [CrossRef]
- Gomez, D.E.; Weese, J.S. Viral enteritis in calves. Can. Vet. J. 2017, 58, 1267–1274. [Google Scholar] [PubMed]
- Blas-Machado, U.; Saliki, J.T.; Boileau, M.J.; Goens, S.D.; Caseltine, S.L.; Duffy, J.C.; Welsh, R.D. Fatal ulcerative and hemorrhagic typhlocolitis in a pregnant heifer associated with natural bovine enterovirus type-1 infection. Vet. Pathol. 2007, 44, 110–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todd, D.; Martin, S.J. Studies of the replication of a bovine enterovirus RNA. J. Gen. Virol. 1979, 43, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Earle, J.A.; Skuce, R.A.; Fleming, C.S.; Hoey, E.M.; Martin, S.J. The complete nucleotide sequence of a bovine enterovirus. J. Gen. Virol. 1988, 69 Pt 2, 253–263. [Google Scholar] [CrossRef]
- Sobhy, N.M.; Mor, S.K.; Mohammed, M.E.; Bastawecy, I.M.; Fakhry, H.M.; Youssef, C.R.; Abouzeid, N.Z.; Goyal, S.M. Isolation and molecular characterization of bovine enteroviruses in Egypt. Vet. J. 2015, 206, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiaka, S.; Rahpaya, S.S.; Otomaru, K.; Aoki, H.; Kishimoto, M.; Naoi, Y.; Omatsu, T.; Sano, K.; Okazaki-Terashima, S.; Katayama, Y.; et al. Identification of a novel bovine enterovirus possessing highly divergent amino acid sequences in capsid protein. BMC Microbiol. 2017, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Zell, R.; Krumbholz, A.; Dauber, M.; Hoey, E.; Wutzler, P. Molecular-based reclassification of the bovine enteroviruses. J. Gen. Virol. 2006, 87 Pt 2, 375–385. [Google Scholar] [CrossRef]
- Knowles, N.J.; Barnett, I.T. A serological classification of bovine enteroviruses. Arch. Virol. 1985, 83, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Blas-Machado, U.; Saliki, J.T.; Sánchez, S.; Brown, C.C.; Zhang, J.; Keys, D.; Woolums, A.; Harvey, S.B. Pathogenesis of a bovine enterovirus-1 isolate in experimentally infected calves. Vet. Pathol. 2011, 48, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Scheuch, M.; Höper, D.; Jungblut, R.; Holsteg, M.; Schirrmeier, H.; Eschbaumer, M.; Goller, K.V.; Wernike, K.; Fischer, M.; et al. Novel orthobunyavirus in Cattle, Europe, 2011. Emerg. Infect. Dis. 2012, 18, 469–472. [Google Scholar] [CrossRef]
- Wernike, K.; Beer, M. Re-circulation of Schmallenberg virus, Germany, 2019. Transbound. Emerg. Dis. 2020, 67, 2290–2295. [Google Scholar] [CrossRef]
- Wernike, K.; Eschbaumer, M.; Breithaupt, A.; Hoffmann, B.; Beer, M. Schmallenberg virus challenge models in cattle: Infectious serum or culture-grown virus? Vet. Res. 2012, 43, 84. [Google Scholar] [CrossRef] [Green Version]
- Lechner, I.; Wüthrich, M.; Meylan, M.; van den Borne, B.H.P.; Schüpbach-Regula, G. Association of clinical signs after acute Schmallenberg virus infection with milk production and fertility in Swiss dairy cows. Prev. Vet. Med. 2017, 146, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Barreiros, M.A.; Alfieri, A.F.; Médici, K.C.; Leite, J.P.; Alfieri, A.A. G and P genotypes of group A rotavirus from diarrhoeic calves born to cows vaccinated against the NCDV (P[1],G6) rotavirus strain. J. Vet. Med. B Infect. Dis. Vet. Public Health 2004, 51, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Medeiros, T.N.; Lorenzetti, E.; Alfieri, A.F.; Alfieri, A.A. Phylogenetic analysis of a G6P[5] bovine rotavirus strain isolated in a neonatal diarrhea outbreak in a beef cattle herd vaccinated with G6P[1] and G10P[11] genotypes. Arch. Virol. 2015, 160, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Karayel, I.; Fehér, E.; Marton, S.; Coskun, N.; Bányai, K.; Alkan, F. Putative vaccine breakthrough event associated with heterotypic rotavirus infection in newborn calves, Turkey, 2015. Vet. Microbiol. 2017, 201, 7–13. [Google Scholar] [CrossRef]
- Gonzalez, D.D.; Mozgovoj, M.V.; Bellido, D.; Rodriguez, D.V.; Fernandez, F.M.; Wigdorovitz, A.; Parreño, V.G.; Dus Santos, M.J. Evaluation of a bovine rotavirus VP6 vaccine efficacy in the calf model of infection and disease. Vet. Immunol. Immunopathol. 2010, 15, 155–160. [Google Scholar] [CrossRef]
- Ikemori, Y.; Ohta, M.; Umeda, K.; Icatlo, F.C., Jr.; Kuroki, M.; Yokoyama, H.; Kodama, Y. Passive protection of neonatal calves against bovine coronavirus-induced diarrhea by administration of egg yolk or colostrum antibody powder. Vet. Microbiol. 1997, 58, 105–111. [Google Scholar] [CrossRef]
- Vega, C.; Bok, M.; Chacana, P.; Saif, L.; Fernandez, F.; Parreño, V. Egg yolk IgY: Protection against rotavirus induced diarrhea and modulatory effect on the systemic and mucosal antibody responses in newborn calves. Vet. Immunol. Immunopathol. 2011, 15, 156–169. [Google Scholar] [CrossRef] [Green Version]
- Vega, C.G.; Bok, M.; Ebinger, M.; Rocha, L.A.; Rivolta, A.A.; González Thomas, V.; Muntadas, P.; D’Aloia, R.; Pinto, V.; Parreño, V.; et al. A new passive immune strategy based on IgY antibodies as a key element to control neonatal calf diarrhea in dairy farms. BMC Vet. Res. 2020, 29, 264. [Google Scholar] [CrossRef]
- Vlasova, A.N.; Saif, L.J. Bovine Coronavirus and the Associated Diseases. Front. Vet. Sci. 2021, 31, 643220. [Google Scholar] [CrossRef]
- Lee, M.H.; Jeoung, H.Y.; Lim, J.A.; Song, J.Y.; Song, D.S.; An, D.J. Kobuvirus in South Korean black goats. Virus Genes 2012, 45, 186–189. [Google Scholar] [CrossRef]
- Braun, U.; Hilbe, M.; Peterhans, E.; Schweizer, M. Border disease in cattle. Vet. J. 2019, 246, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Gür, S.; Yapkiç, O.; Yilmaz, A. Serological survey of bovine enterovirus type 1 in different mammalian species in Turkey. Zoonoses Public Health 2008, 55, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Gür, S.; Gürçay, M.; Seyrek, A. A study regarding bovine enterovirus type 1 infection in domestic animals and humans: An evaluation from the zoonotic aspect. J. Vet. Med. Sci. 2019, 26, 1824–1828. [Google Scholar] [CrossRef] [PubMed]
- Vijgen, L.; Keyaerts, E.; Moës, E.; Thoelen, I.; Wollants, E.; Lemey, P.; Vandamme, A.M.; Van Ranst, M. Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J. Virol. 2005, 79, 1595–15604. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.H.; Soliman, M.; Alfajaro, M.M.; Kim, J.Y.; Seo, J.Y.; Park, J.G.; Kim, D.S.; Baek, Y.B.; Kang, M.I.; Park, S.I.; et al. Bovine Nebovirus Interacts with a Wide Spectrum of Histo-Blood Group Antigens. J. Virol. 2018, 13, e02160-17. [Google Scholar] [CrossRef] [Green Version]
- Mauroy, A.; Scipioni, A.; Mathijs, E.; Ziant, D.; Daube, G.; Thiry, E. Genetic and evolutionary perspectives on genogroup III, genotype 2 bovine noroviruses. Arch. Virol. 2014, 159, 39–49. [Google Scholar] [CrossRef]
- Castells, M.; Cristina, J.; Colina, R. Evolutionary history and spatiotemporal dynamic of GIII norovirus: From emergence to classification in four genotypes. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef]
- Hamada, N.; Masunaga, K.; Ohtsu, Y.; Kato, H.; Tsuji, K.; Maeda, H.; Shingu, M.; Toyoda, T. Nucleotide sequence of the gene encoding the RNA polymerase and the 3′ non-coding region of a bovine enterovirus Japanese isolate: Rapid synonymous substitutions between European and Japanese strains. Arch. Virol. 1998, 143, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Padhi, A.; Ma, L. Time-dependent selection pressure on two arthropod-borne RNA viruses in the same serogroup. Infect. Genet. Evol. 2015, 32, 255–264. [Google Scholar] [CrossRef]
- Smits, S.L.; Lavazza, A.; Matiz, K.; Horzinek, M.C.; Koopmans, M.P.; de Groot, R.J. Phylogenetic and evolutionary relationships among torovirus field variants: Evidence for multiple intertypic recombination events. J. Virol. 2003, 77, 9567–9577. [Google Scholar] [CrossRef] [Green Version]
- Luzzago, C.; Ebranati, E.; Sassera, D.; Lo Presti, A.; Lauzi, S.; Gabanelli, E.; Ciccozzi, M.; Zehender, G. Spatial and temporal reconstruction of bovine viral diarrhea virus genotype 1 dispersion in Italy. Infect. Genet. Evol. 2012, 12, 324–331. [Google Scholar] [CrossRef]
- Chernick, A.; Godson, D.L.; van der Meer, F. Metadata beyond the sequence enables the phylodynamic inference of bovine viral diarrhea virus type 1a isolates from Western Canada. Infect. Genet. Evol. 2014, 28, 367–374. [Google Scholar] [CrossRef]
- Martínez, N.; Brandão, P.E.; de Souza, S.P.; Barrera, M.; Santana, N.; de Arce, H.D.; Pérez, L.J. Molecular and phylogenetic analysis of bovine coronavirus based on the spike glycoprotein gene. Infect. Genet. Evol. 2012, 12, 1870–1878. [Google Scholar] [CrossRef]
- Keha, A.; Xue, L.; Yan, S.; Yue, H.; Tang, C. Prevalence of a novel bovine coronavirus strain with a recombinant hemagglutinin/esterase gene in dairy calves in China. Transbound. Emerg. Dis. 2019, 66, 1971–1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colina, S.E.; Serena, M.S.; Echeverría, M.G.; Metz, G.E. Clinical and molecular aspects of veterinary coronaviruses. Virus Res. 2021, 297, 198382. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, J.; Yu, T.F. Identification of a recombinant isolate of ungulate copiparvovirus. Virus Genes 2018, 54, 596–598. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.N.; Streck, A.F.; Silveira, S.; Mósena, A.C.S.; da Silva, M.S.; Canal, C.W. Homologous recombination in pestiviruses: Identification of three putative novel events between different subtypes/genogroups. Infect. Genet. Evol. 2015, 30, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Goller, K.V.; Höper, D.; Schirrmeier, H.; Mettenleiter, T.C.; Beer, M. Schmallenberg virus as possible ancestor of Shamonda virus. Emerg. Infect. Dis. 2012, 18, 1644–1646. [Google Scholar] [CrossRef] [Green Version]
Virus Genus | Genome | Envelope | Virion Diameter (nm) |
---|---|---|---|
Rotavirus | dsRNA segmented | No | 100 |
Coronavirus | ssRNA (+) | Yes | 65–210 |
Norovirus | ssRNA (+) | No | 27–35 |
Torovirus | ssRNA (+) | Yes | 120–140 |
Astrovirus | ssRNA (+) | No | 28 |
Nebovirus | ssRNA (+) | No | 33 |
Pestivirus | ssRNA (+) | Yes | 40–60 |
Kobuvirus | ssRNA (+) | No | 30 |
Bocaparvovirus | ssDNA | No | 30 |
Enterovirus | ssRNA (+) | No | 30–32 |
Orthobunyavirus | ssRNA (−) segmented | Yes | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castells, M.; Colina, R. Viral Enteritis in Cattle: To Well Known Viruses and Beyond. Microbiol. Res. 2021, 12, 663-682. https://doi.org/10.3390/microbiolres12030048
Castells M, Colina R. Viral Enteritis in Cattle: To Well Known Viruses and Beyond. Microbiology Research. 2021; 12(3):663-682. https://doi.org/10.3390/microbiolres12030048
Chicago/Turabian StyleCastells, Matías, and Rodney Colina. 2021. "Viral Enteritis in Cattle: To Well Known Viruses and Beyond" Microbiology Research 12, no. 3: 663-682. https://doi.org/10.3390/microbiolres12030048
APA StyleCastells, M., & Colina, R. (2021). Viral Enteritis in Cattle: To Well Known Viruses and Beyond. Microbiology Research, 12(3), 663-682. https://doi.org/10.3390/microbiolres12030048