Inoculation, Growth and Bactericidal Effects of Three Kombucha Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Kombucha Cultures
2.1.1. Comparison of Inoculation Techniques
2.1.2. Carbon Sources, pH, and Wet and Dry Weights
2.1.3. Antibacterial Effects
3. Results
Inoculation of Whole and Macerated Pellicles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A review on Kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Frank, G.W. Kombucha-Healthy Beverage and Natural Remedy from the Far East, 9th ed.; Wilhelm Ennsthaler: Verlag, Austria, 1995; p. 150. [Google Scholar]
- Tietze, H. Kombucha-Miracle Fungus: The Essential Handbook; Gateway Books: Bath, UK, 1994. [Google Scholar]
- Watawana, M.I.; Jayawardena, N.; Gunawardhana, C.B.; Waisundara, V.Y. Health, Wellness, and Safety Aspects of the Consumption of Kombucha. J. Chem. 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Cabral, B.D.; Larrosa-Pérez, M.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; Gonzalez-Laredo, R.F.; Rutiaga-Quinones, J.G.; Gamboa-Gomez, C.I.; Rocha-Guzman, N.E. Oak Kombucha protects against oxidative stress and inflammatory processes. Chem. Biol. Interact. 2017, 272, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hoon, L.Y.; Choo, C.; Watawana, M.I.; Jayawardena, N.; Waisundara, V.Y. Kombucha ‘tea fungus’ enhances the tea polyphenol contents, antioxidant activity and alpha-amylase inhibitory activity of five commonly consumed teas. J. Funct. Foods. 2014, 14, 553–554. [Google Scholar] [CrossRef]
- Leal, J.M.; Suárez, J.V.; Jayabalan, R.; Oros, J.H.; Escalante-Aburto, A. A review on health benefits of kombucha nutritional compounds and metabolites. CyTA-J. Food 2018, 16, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Chakravorty, S.; Bhattacharya, S.; Bhattacharya, D.; Sarkar, S.; Gachhui, R. Kombucha: A Promising Functional Beverage Prepared From Tea. In Non-Alcoholic Beverages; Woodhead Publishin: Sawston, UK, 2019; Volume 6, pp. 285–327. Available online: https://www.sciencedirect.com/science/article/pii/B9780128152706000104 (accessed on 29 August 2021).
- Kapp, J.M.; Sumner, W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef]
- Hou, J.; Luo, R.; Ni, H.; Li, K.; Mgomi, F.C.; Fan, L.; Yuan, L. Antimicrobial potential of kombucha against foodborne pathogens: A review. Qual. Assur. Saf. Crops Foods 2021, 13, 3. [Google Scholar] [CrossRef]
- Toda, M.; Okubo, S.; Ohnishi, R.; Shimamura, T. Nihon saikingaku zasshi. Jpn. J. Bacteriol. 1989, 44, 669–672. [Google Scholar] [CrossRef]
- Landau, J.M.; Yang, C.S. The effect of tea on health. Chem. Ind. 1997, 22, 904–906. [Google Scholar]
- Diguță, C.F.; Nițoi, G.D.; Matei, F.; Luță, G.; Cornea, C.P. The Biotechnological Potential of Pediococcus spp. Isolated from Kombucha Microbial Consortium. Foods 2020, 9, 1780. [Google Scholar] [CrossRef]
- May, A.; Narayanan, S.; Alcock, J.; Varsani, A.; Maley, C.; Aktipis, A. Kombucha: A novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ Microbiol. 2019, 7, e7565. [Google Scholar] [CrossRef] [PubMed]
- Coton, M.; Pawtowski, A.; Taminiau, B.; Burgaud, G.; Deniel, F.; Coulloumme-Labarthe, L.; Fall, A.; Daube, G.; Coton, E. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol. Ecol. 2017, 93, 5. [Google Scholar] [CrossRef] [PubMed]
- Marsh, A.; O’Sullivan, O.; Hill, C.; Ross, R.P.; Cotter, P.D. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol. 2014, 38, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Taillandier, P. Understanding kombucha tea fermentation: A review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef]
- Gaggìa, F.; Baffoni, L.; Galiano, M.; Nielsen, D.S.; Jakobsen, R.R.; Castro-Meija, J.L.; Bosi, S.; Truzzi, F.; Musumeci, F.; Dinelli, G.; et al. Kombucha beverage from green, black and rooibos teas: A comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients 2018, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- De Filippis, F.; Troise, A.D.; Vitaglione, P.; Ercolini, D. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiol. 2018, 73, 11–16. [Google Scholar] [CrossRef]
- Çoşkun, F.; Kayışoğlu, S. Determination of some microbiological properties of kombucha produced from different herbal teas. Glob. J. Res. Eng. 2020, 20, 17–25. [Google Scholar]
- Jarrell, J.; Cal, T.; Bennett, J. The Kombucha consortia of yeasts and bacteria. Mycologist 2000, 14, 166–170. [Google Scholar] [CrossRef]
- Malbassa, R.; Loncar, E.; Djuric, M.; Dosenovic, I. Effect of Sucrose concentration on the products of Kombucha Fermentation on molasses. Food Chem. 2008, 108, 926–932. [Google Scholar] [CrossRef]
- Kanurić, K.G.; Milanović, S.D.; Ikonić, B.B.; Lončar, E.S.; Ilicic, M.D.; Vukic, V.R.; Vukic, D.V. Kinetics of lactose fermentation in milk with kombucha starter. J. Food Drug Anal. 2018, 26, 1229–1234. [Google Scholar] [CrossRef] [Green Version]
- Emiljanowicz, K.E.; Malinowska-Pańczyk, E. Kombucha from alternative raw materials. Crit. Rev. Food Sci. Nutr. 2019, 60, 3185–3194. [Google Scholar] [CrossRef] [PubMed]
- Fontana, J.D.; Franco, V.C.; de Souza, S.J.; Lyra, I.N.; de Souza, A.M. Nature of plant stimulators in the production of Acetobacter xylinum (“tea fungus”) biofilm used in skin therapy. Appl. Biochem. Biotechnol. 1991, 28, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, T.E.; Walia, K.; Farber, J.M. Safety aspects and guidance for consumers on the safe preparation, handling and storage of Kombucha—A fermented tea beverage. Food Prot. Trends 2018, 38, 329–337. [Google Scholar]
- Dufresne, C.; Farnworth, E. Tea, Kombucha, and health: A review. Food Res. Int. 2000, 33, 409–421. [Google Scholar] [CrossRef]
- Ernst, E. Kombucha: A systematic review of the clinical evidence. Complement. Med. Res. 2003, 10, 85–87. [Google Scholar] [CrossRef]
- Hesseltine, C.W. A Millennium of Fungi, Food, and Fermentation. Mycologia 1965, 57, 149–197. [Google Scholar] [CrossRef]
- Steinkraus, K.H.; Shapiro, K.B.; Hotchkiss, J.H.; Mortlock, R.P. Investigations into the antibiotic activity of tea fungus/kombucha beverage. Acta Biotechnol. 1996, 16, 199–205. [Google Scholar] [CrossRef]
- Velićanski, A.S.; Cvetković, D.D.; Markov, S.L.; Šaponjac, V.T.; Vulic, J.J. Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm (Melissa officinalis L.) Tea with Symbiotic Consortium of Bacteria and Yeasts. Food Technol. Biotechnol. 2014, 52, 420–429. [Google Scholar] [CrossRef]
- Silva, K.A.; Uekane, T.M.; de Miranda, J.F.; Ruiz, L.F.; Brum de Motta, J.C.; Silva, C.B.; deSouza Pitangui, N.; Martins Gonzalez, A.G.; Fernandes, F.F.; Lima, A.L. Kombucha beverage from non-conventional edible plant infusion and green tea: Characterization, toxicity, antioxidant activities and antimicrobial properties. Biocatal. Agric. Biotechnol. 2021, 34, 102032. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Unexplained severe illness possibly associated with consumption of kombucha tea–Iowa. Morb. Mortal. Wkly. Rep. 1995, 44, 892–900. [Google Scholar]
- Dutta, H.; Paul, S.K. Kombucha Drink: Production, Quality, and Safety Aspects. In Production and Management of Beverages; Woodhead Publishing: Sawston, UK, 2019; Volume 1, pp. 259–288. [Google Scholar] [CrossRef]
- Nummer, B.A. Kombucha brewing under the Food and Drug Administration model Food Code: Risk analysis and processing guidance. J. Environ. Health 2013, 76, 8–11. [Google Scholar] [PubMed]
- Domínguez Díaz, L.; Fernández-Ruiz, V.; Cámara, M. An international regulatory review of food health-related claims in functional food products labeling. J. Funct. Foods 2020, 68, 103896. [Google Scholar] [CrossRef]
Inoculum | Type | Weight (g) | ||
---|---|---|---|---|
Weight | 8 days (wet) | 15 days (wet) | 15 days (dry) | |
4 g | Whole | 7.6 ± 2.1 c | 20.3 ± 1.7 abc | 0.95 ± 0.17 f |
Macerated | 12.8 ± 3.5 d | 22.0 ± 6.5 ab | 0.97 ± 2.1 f | |
6 g | Whole | 5.0 ± 1.2 ef | 18.7 ± 3.2 bc | 0.80 ± 0.14 f |
Macerated | 17.3 ± 3.3 c | 19.4 ± 2.8 abc | 0.86 ± 0.14 f | |
8 g | Whole | 6.7 ± 1.8 c | 23.6 ± 4.9 abc | 0.96 ± 0.21 f |
Macerated | 18.4 ± 2.9 c | 20.6 ± 1.6 a | 0.93 ± 0.07 f |
Carbon Source | Kombucha Consortium | Number of Contaminated Cultures a | Weight (g) b | ||
---|---|---|---|---|---|
8 days (wet) | 15 days (wet) | 15 days (dry) | |||
Water control | Fritz | 0 | 2.8 ± 1.8 | 3.9 ± 2.6 | 0.04 ± 0.01 |
Toby | 0 | 2.2 ± 1.0 | 5.4 ± 4.1 | 0.01 ± 0.01 | |
Olinka | 0 | 2.0 ± 1.4 | 4.5 ± 2.7 | 0.02 ± 0.01 | |
Tea control ab | Fritz | 1 | 4.0 ± 0.8 | 5.7 ± 1.6 | 0.08 ± 0.02 |
Toby | 2 | 3.3 ± 0.9 | 6.9 ± 2.4 | 0.06 ± 0.03 | |
Olinka | 2 | 2.7 ± 1.3 | 5.3 ± 2.0 | 0.07 ± 0.03 | |
Mannose ab | Fritz | 1 | 2.6 ± 0.4 | 6.8 ± 2.9 | 0.3 ± 0.07 |
Toby | 1 | 2.8 ± 1.3 | 7.3 ± 3.1 | 0.3 ± 0.08 | |
Olinka | 0 | 2.9 ± 1.4 | 8.0 ± 1.2 | 0.25 ± 0.14 | |
Galactose b | Fritz | 1 | 5.1 ± 1.7 | ±2.9 | 0.59 ± 0.11 |
Toby | 0 | 4.0 ± 0.9 | 7.0 ± 1.8 | 0.19 ± 0.14 | |
Olinka | 3 | 6.3 ± 3.6 | 8.3 ± 2.9 | 0.47 ± 0.18 | |
Glucose c | Fritz | 1 | 7.1 ± 2.1 | 19.9 ± 4.6 | 0.64 ± 0.33 |
Toby | 0 | 3.6 ± 1.2 | 13.4 ± 6.2 | 0.63 ± 0.30 | |
Olinka | 0 | 5.8 ± 4.9 | 8.5 ± 7.6 | 0.38 ± 0.27 | |
Fructose c | Fritz | 0 | 5.0 ± 1.3 | 13.4 ± 1.7 | 0.53 ± 0.35 |
Toby | 0 | 6.8 ± 0.8 | 9.2 ± 1.0 | 0.40 ± 0.10 | |
Olinka | 0 | 8.4 ± 3.8 | 15.2 ± 5.3 | 0.37 ± 0.06 | |
Maltose b | Fritz | 2 | 7.1 ± 0.9 | 9.0 ± 3.8 | 0.55 ± 0.19 |
Toby | 2 | 4.1 ± 0.57 | 7.1 ± 4.0 | 0.45 ± 0.21 | |
Olinka | 4 | 5.9 ± 4.1 | 6.2 ± 4.2 | 0.26 ± 0.08 | |
Lactose b | Fritz | 2 | 5.5 ± 1.6 | 6.0 ± 4.9 | 0.40 ± 0.17 |
Toby | 1 | 6.3 ± 1.8 | 8.9 ± 1.0 | 0.64 ± 0.15 | |
Olinka | 1 | 4.6 ± 2.0 | 6.4 ± 2.1 | 0.34 ± 0.17 | |
Sucrose d | Fritz | 1 | 13.0 ± 4.0 | 23.1 ± 8.4 | 0.84 ± 0.33 |
Toby | 0 | 6.7 ± 1.0 | 15.5 ± 6.0 | 0.73 ± 0.08 | |
Olinka | 0 | 9.5 ± 6.2 | 15.9 ± 8.9 | 0.53 ± 0.24 |
Substance Tested | Concentration | pH Neutralized | Staphylococcus epidermis | Escherichia coli DH 5 α | ||
---|---|---|---|---|---|---|
“Fritz” | ||||||
(10 day) | 10x | No | ++ | +++ | ||
10x | Yes | + | ++ | |||
“Toby” | ||||||
(10 day) | 10x | No | ++ | ++++ | ||
10x | Yes | + | ++ | |||
“Olinka” | ||||||
(10 day) | 10x | No | ++ | ++ | ||
10x | Yes | - | ++ | |||
Tea | 10x | No | - | ++ | ||
10x | Yes | + | + | |||
Sucrose | 10x | no | - | - | ||
10x | yes | + | - | |||
Tea + sucrose | 10x | no | + | ++ | ||
(=STM) | 10x | yes | + | ++ | ||
Usnic acid | 10−1 | - | ++ | ++ | ||
10−2 | - | +++ | + | |||
10−3–10−4 | - | ++ | + | |||
Acetone | 1 | - | + | - | ||
Vinegar | 1 | - | ++ | ++ | ||
Water | 1 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarrell, J.A.; Walia, N.; Nemergut, D.; Agadi, A.; Bennett, J.W. Inoculation, Growth and Bactericidal Effects of Three Kombucha Cultures. Microbiol. Res. 2022, 13, 128-136. https://doi.org/10.3390/microbiolres13010010
Jarrell JA, Walia N, Nemergut D, Agadi A, Bennett JW. Inoculation, Growth and Bactericidal Effects of Three Kombucha Cultures. Microbiology Research. 2022; 13(1):128-136. https://doi.org/10.3390/microbiolres13010010
Chicago/Turabian StyleJarrell, Jill Ann, Namrata Walia, Diana Nemergut, Amar Agadi, and Joan W. Bennett. 2022. "Inoculation, Growth and Bactericidal Effects of Three Kombucha Cultures" Microbiology Research 13, no. 1: 128-136. https://doi.org/10.3390/microbiolres13010010
APA StyleJarrell, J. A., Walia, N., Nemergut, D., Agadi, A., & Bennett, J. W. (2022). Inoculation, Growth and Bactericidal Effects of Three Kombucha Cultures. Microbiology Research, 13(1), 128-136. https://doi.org/10.3390/microbiolres13010010