Comparative Assessment of Antimicrobial Efficacy of Seven Surface Disinfectants against Eight Bacterial Strains in Saudi Arabia: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Tested Bacterial Strains
2.3. Disinfectants
2.4. Culture Media
2.5. Preparation of Bacterial Suspension
2.6. Determination of the Contact Time of Each Disinfectant against Tested Bacterial Strains
2.7. Assessment of the Disinfection Efficacy of Each Disinfectant on Six Types of Contaminated Surfaces with a Mixture of Eight Bacterial Strains
3. Results
3.1. Effective Contact Time of Disinfectants against Tested Bacterial Strains
3.2. Determination of Quantitative Values of Disinfectant Efficacy against Eight Bacterial Strains within 20 Min of Contact Time
3.3. Assessment of the Disinfection Effectiveness of the Seven Disinfectants on Six Types of Contaminated Surfaces with a Mixture of Eight Bacterial Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quinn, M.M.; Henneberger, P.K.; Braun, B.; Delclos, G.L.; Fagan, K.; Huang, V.; Knaack, J.L.; Kusek, L.; Lee, S.-J.; Le Moual, N.; et al. Cleaning and disinfecting environmental surfaces in health care: Toward an integrated framework for infection and occupational illness prevention. Am. J. Infect. Control 2015, 43, 424–434. [Google Scholar] [CrossRef] [Green Version]
- Sartelli, M.; Mckimm, J.; Bakar, M. Health care-associated infections–an overview. Infect. Drug Resist. 2018, 11, 2321. [Google Scholar]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, A.; Borzykowski, T.; Tartari, E.; Kilpatrick, C.; Mai, S.H.C.; Allegranzi, B.; Pittet, D. “Clean Care for All-It’s in Your Hands”: The 5th of May 2019 World Health Organization SAVE LIVES: Clean Your Hands Campaign. J. Infect. Dis. 2019, 8, 1–3. [Google Scholar] [CrossRef]
- Vickery, K.; Deva, A.; Jacombs, A.; Allan, J.; Valente, P.; Gosbell, I. Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit. J. Hosp. Infect. 2012, 80, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.; Thomaidis, P.; Kotsantis, I.; Sgouros, K.; Samonis, G.; Karageorgopoulos, D. Airborne hydrogen peroxide for disinfection of the hospital environment and infection control: A systematic review. J. Hosp. Infect. 2011, 78, 171–177. [Google Scholar] [CrossRef]
- Wißmann, J.E.; Kirchhoff, L.; Brüggemann, Y.; Todt, D.; Steinmann, J.; Steinmann, E. Persistence of Pathogens on Inanimate Surfaces: A Narrative Review. Microorganisms 2021, 9, 343. [Google Scholar] [CrossRef]
- Gebel, J.; Exner, M.; French, G.; Chartier, Y.; Christiansen, B.; Gemein, S.; Goroncy-Bermes, P.; Hartemann, P.; Heudorf, U.; Kramer, A.; et al. The role of surface disinfection in infection prevention. GMS Hyg. Infect. Control 2013, 8, 1. [Google Scholar] [CrossRef]
- Kchaou, M.; Abuhasel, K.; Khadr, M.; Hosni, F.; Alquraish, M. Surface Disinfection to Protect against Microorganisms: Overview of Traditional Methods and Issues of Emergent Nanotechnologies. Appl. Sci. 2020, 10, 6040. [Google Scholar] [CrossRef]
- Tapouk, F.A.; Nabizadeh, R.; Mirzaei, N.; Jazani, N.H.; Yousefi, M.; Hasanloei, M.A.V. Comparative efficacy of hospital disinfectants against nosocomial infection pathogens. Antimicrob. Resist. Infect. Control 2020, 9, 115. [Google Scholar] [CrossRef]
- Contou, D.; Claudinon, A.; Pajot, O.; Micaëlo, M.; Longuet Flandre, P.; Dubert, M.; Cally, R.; Logre, E.; Fraissé, M.; Mentec, H.; et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann. Intensive Care 2020, 10, 119. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Witt, L.S.; Howard-Anderson, J.R.; Jacob, J.T.; Gottlieb, L.B. The impact of COVID-19 on multidrug-resistant organisms causing healthcare-associated infections: A narrative review. JAC-Antimicrob. Resist. 2022, 5, dlac130. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Nimer, N.A. Nosocomial Infection and Antibiotic-Resistant Threat in the Middle East. Infect. Drug Resist. 2022, 15, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Alahdal, H.M.; AlYahya, S.; Ameen, F.; Sonbol, H.; Alomary, M.N. A review on Saudi Arabian wastewater treatment facilities and available disinfection methods: Implications to SARS-CoV-2 control. J. King Saud Univ.-Sci. 2021, 33, 101574. [Google Scholar] [CrossRef] [PubMed]
- Alajlan, A.A.; Mukhtar, L.E.; Almussallam, A.S.; Alnuqaydan, A.M.; Albakiri, N.S.; Almutari, T.F.; Bin Shehail, K.M.; Aldawsari, F.S.; Alajel, S.M. Assessment of disinfectant efficacy in reducing microbial growth. PLoS ONE 2022, 17, e0269850. [Google Scholar] [CrossRef]
- Alfy, M.M.; El Sayed, S.B.; El-Shokry, M. Assessing decontamination practices at a medical microbiology research laboratory. J. Biosaf. Biosecurity 2022, 4, 124–129. [Google Scholar] [CrossRef]
- Rozman, U.; Pušnik, M.; Kmetec, S.; Duh, D.; Turk, S. Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Microorganisms 2021, 9, 2550. [Google Scholar] [CrossRef] [PubMed]
- Vafina, G.; Zainutdinova, E.; Bulatov, E.; Filimonova, M.N. Endonuclease from Gram-Negative Bacteria Serratia marcescens Is as Effective as Pulmozyme in the Hydrolysis of DNA in Sputum. Front. Pharmacol. 2018, 9, 114. [Google Scholar] [CrossRef]
- Paliy, A.; Ishchenko, K.; Marchenko, M.; Dubin, R. Effectiveness of aldehyde disinfectant against the causative agents of tuberculosis in domestic animals and birds. Ukr. J. Ecol. 2018, 8, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Iñiguez-Moreno, M.; Avila-Novoa, M.G.; Gutiérrez-Lomelí, M. Resistance of pathogenic and spoilage microorganisms to disinfectants in the presence of organic matter and their residual effect on stainless steel and polypropylene. J. Glob. Antimicrob. Resist. 2018, 14, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Sydnor, E.R.M.; Perl, T.M. Hospital Epidemiology and Infection Control in Acute-Care Settings. Clin. Microbiol. Rev. 2011, 24, 141–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraro, M.J. Performance Standards for Antimicrobial Susceptibility Testing; NCCLS: Orlando, FL, USA, 2001. [Google Scholar]
- Tiwari, S.; Rajak, S.; Mondal, D.P.; Biswas, D. Sodium hypochlorite is more effective than 70% ethanol against biofilms of clinical isolates of Staphylococcus aureus. Am. J. Infect. Control 2018, 46, e37–e42. [Google Scholar] [CrossRef] [PubMed]
- Hadi, R.; Vickery, K.; Deva, A.; Charlton, T. Biofilm removal by medical device cleaners: Comparison of two bioreactor detection assays. J. Hosp. Infect. 2010, 74, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Singh, M.; Taneja, N.; Sharma, M.; Gupta, P.K.; Rana, J.K. Comparative efficacy evaluation of disinfectants routinely used in hospital practice: India. Indian J. Crit. Care Med. 2012, 16, 123–129. [Google Scholar] [CrossRef]
- Obi, C.; Muhammad, U.K.; Manga, S.B.; Atata, R.F.; Hauwa, T. Assessment of commonly used Hospital Disinfectants on Bacteria isolated from the Operating Theatre. J. Biosci. Biotechnol. Discov. 2016, 1, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Chaoui, L.; Mhand, R.; Mellouki, F.; Rhallabi, N. Contamination of the Surfaces of a Health Care Environment by Multidrug-Resistant (MDR) Bacteria. Int. J. Microbiol. 2019, 2019, 3236526. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, H.F.; Verbrugh, H.A. Resisting disinfectants. Commun. Med. 2022, 2, 6. [Google Scholar] [CrossRef]
- Russell, A. Bacterial resistance to disinfectants: Present knowledge and future problems. J. Hosp. Infect. 1999, 43, S57–S68. [Google Scholar] [CrossRef] [PubMed]
- West, A.M.; Teska, P.J.; Lineback, C.B.; Oliver, H.F. Strain, disinfectant, concentration, and contact time quantitatively impact disinfectant efficacy. Antimicrob. Resist. Infect. Control 2018, 7, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutala, W.A.; Weber, D.J.; HICPAC. Guideline for Disinfection and Sterilization in Healthcare Facilities. 2008. Available online: http://www.cdc.gov/ncidod/dhqp/pdf/guidelines/Disinfection_Nov_2008.pdf (accessed on 10 March 2023).
- Al-Said, H.M.; Ashgar, S.S. A comparison of antibacterial efficacy of some household detergents available in Makkah, Saudi Arabia, against 16 ATCC bacterial strains and clinical isolates. Afr. J. Microbiol. Res. 2020, 14, 388–394. [Google Scholar]
- Mohieldin, A.; Elbssir, K.; Nourain, H.; Sidg, N. Efficacy assessment for disinfection process in Buraidah Maternity Hospital–Saudi Arabia. Ann. Med. Biomed. Sci. 2018, 4, 11–13. [Google Scholar]
- Ramzi, A.; Oumokhtar, B.; Zoubi, Y.E.; Mouatassem, T.F.; Benboubker, M.; Lalami, A.E.O. Evaluation of Antibacterial Activity of Three Quaternary Ammonium Disinfectants on Different Germs Isolated from the Hospital Environment. BioMed Res. Int. 2020, 2020, 6509740. [Google Scholar] [CrossRef]
- Montagna, M.T.; Triggiano, F.; Barbuti, G.; Bartolomeo, N.; De Giglio, O.; Diella, G.; Lopuzzo, M.; Rutigliano, S.; Serio, G.; Caggiano, G. Study on the In Vitro Activity of Five Disinfectants against Nosocomial Bacteria. Int. J. Environ. Res. Public Health 2019, 16, 1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutala, W.A.; Weber, D.J. Best practices for disinfection of noncritical environmental surfaces and equipment in health care facilities: A bundle approach. Am. J. Infect. Control 2019, 47, A96–A105. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [Green Version]
- Delcour, A.H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2009, 1794, 808–816. [Google Scholar]
Trade Name | Manufacturer’s Description * | Category and Ingredients | Advantages | Disadvantages |
---|---|---|---|---|
BACTIL® | General disinfectant liquid, with a refreshing fragrance, that can eliminate virulent and multidrug-resistant strains. | Phenolic compounds [Essential oil components less than 5%] | -Good efficacy with organic material. -Effective over a large pH range. -Stable in storage. -Bactericidal and fungicidal action. | -Causes skin and eye irritation. -Unpleasant odor. -Effectiveness reduced by alkaline pH. |
HAMAYA® | Used for rapid disinfection of all hard surfaces. | Quaternary ammonium compounds (QACs). | -Non-irritating to skin. -Effective at high temperatures and high pH levels. -Stable in storage. -Rapid action. -Colorless, odorless, non-toxic, highly stable. | -Not effective on non-enveloped viruses, TB bacteria, and spores. -Effectiveness influenced by water hardness. |
DAC® | Disinfectant and cleaning product, its formula is developed to kill 99.9% of germs and bacteria. | QACs. [Alkyl benzyl dimethyl ammonium chloride < 5% Didecydimethyl ammonium chloride (8.5%)] | ||
AJAX® | Kills 99.9% of bacteria, can remove grease and limescale for shiny clean surfaces, and leaves a pleasant fragrance. | QACs. | ||
Jif® | Kills 99.9% of bacteria and germs. | QACs (Benzalkonium chloride) | ||
Mr. MUSCLE® | Can be used on all surfaces in bathrooms, living rooms, bedrooms; on walls, floors, and shelves. | Sodium hypochlorite (1.1% active chlorine). | -Broad spectrum. -Inexpensive. -Penetrates the cell wall quickly. -Kills a wide range of microorganisms. | -Inactivated by sunlight, some metals. -Irritating to mucous membranes, skin. -Tuberculocidal with extended contact time. -Organics may reduce activity. -An increase in alkalinity decreases bactericidal properties. |
CLOROX® | Can kill 99.9% of germs. | Sodium hypochlorite (6.0%). |
Tested Strains | Disinfectants | Contact Time (min ± SD) | Effective Contact Time (min) |
---|---|---|---|
Enterobacter aerogenes | HAMAYA | 2 ± 0.50 | 3 |
DAC | 2 ± 0.00 | 2 | |
AJAX | 15 ± 1.00 | 16 | |
Jif | 5 ± 0.50 | 6 | |
Mr. MUSCLE | 4 ± 1.00 | 5 | |
CLOROX | 10 ± 0.50 | 11 | |
BACTIL | 0.5 ± 0.00 | 30 s | |
Escherichia coli | HAMAYA | 2 ± 0.50 | 3 |
DAC | 3 ± 0.00 | 3 | |
AJAX | 15 ± 1.00 | 16 | |
Jif | 5 ± 0.00 | 5 | |
Mr. MUSCLE | 5 ± 0.50 | 6 | |
CLOROX | 10 ± 1.50 | 12 | |
BACTIL | 0.5 ± 0.00 | 30 s | |
Klebsiella pneumoniae | HAMAYA | 3 ± 0.50 | 4 |
DAC | 3 ± 1.00 | 4 | |
AJAX | 15 ± 0.50 | 16 | |
Jif | 5 ± 0.50 | 6 | |
Mr. MUSCLE | 5 ± 1.00 | 6 | |
CLOROX | 10 ± 1.50 | 12 | |
BACTIL | 0.5 ± 0.00 | 30 s | |
Acinetobacter baumannii | HAMAYA | 1.5 ± 0.50 | 2 |
DAC | 2 ± 0.00 | 2 | |
AJAX | 15 ± 1.00 | 16 | |
Jif | 5 ± 0.00 | 5 | |
Mr. MUSCLE | 5 ± 1.00 | 6 | |
CLOROX | 10 ± 0.50 | 11 | |
BACTIL | 0.5 ± 0.00 | 30 s | |
Serratia marcescens | HAMAYA | 2 ± 0.50 | 3 |
DAC | 2 ± 0.00 | 2 | |
AJAX | 15 ± 1.00 | 16 | |
Jif | 5 ± 0.00 | 5 | |
Mr. MUSCLE | 5 ± 1.00 | 6 | |
CLOROX | 10 ± 0.50 | 11 | |
BACTIL | 0.5 ± 0.00 | 30 s |
Tested Strains | Disinfectants | Contact Time (min ± SD) | Effective Contact Time (min) |
---|---|---|---|
Methicillin-resistant Staphylococcus aureus ATCC 43300 | HAMAYA | 2 ± 1.00 | 3 |
DAC | 2 ± 0.50 | 3 | |
AJAX | 14 ± 1.00 | 15 | |
Jif | 5 ± 0.50 | 6 | |
Mr. MUSCLE | 4 ± 0.50 | 5 | |
CLOROX | 9 ± 0.50 | 10 | |
BACTIL | 0.5 ± 0.00 | 30 s | |
Vancomycin-resistant Enterococcus faecalis ATCC 51299 | HAMAYA | 1 ± 0.50 | 2 |
DAC | 2 ± 1.00 | 3 | |
AJAX | 13 ± 2.00 | 15 | |
Jif | 4 ± 1.00 | 5 | |
Mr. MUSCLE | 4 ± 1.00 | 5 | |
CLOROX | 8 ± 1.50 | 10 | |
BACTIL | 0.5 ± 0.00 | 30 s | |
Pseudomonas aeruginosa ATCC 1544 | HAMAYA | 3 ± 1.00 | 4 |
DAC | 4 ± 0.50 | 5 | |
AJAX | 17 ± 2.00 | 19 | |
Jif | 5 ± 1.00 | 6 | |
Mr. MUSCLE | 6 ± 0.50 | 7 | |
CLOROX | 12 ± 1.50 | 14 | |
BACTIL | 1 ± 0.00 | 1 |
Tested Strains | Quaternary Ammonium Compounds | Sodium Hypochlorite | Phenolic Compounds | ||||
---|---|---|---|---|---|---|---|
HAMAYA | DAC | Jif | AJAX | Mr. MUSCLE | CLOROX | BACTIL | |
E. aerogenes | 3 min | 2 min | 16 min | 6 min | 5 min | 11 min | 30 s |
E. coli | 3 min | 3 min | 16 min | 5 min | 6 min | 12 min | 30 s |
K. pneumoniae | 4 min | 4 min | 16 min | 6 min | 6 min | 12 min | 30 s |
A. baumannii | 2 min | 2 min | 16 min | 5 min | 6 min | 11 min | 30 s |
S. marcescens | 3 min | 2 min | 16 min | 5 min | 6 min | 11 min | 30 s |
P. aeruginosa-ATCC 1544 | 4 min | 5 min | 19 min | 6 min | 7 min | 14 min | 1 min |
MRSA-ATCC 43300 | 3 min | 3 min | 15 min | 6 min | 5 min | 10 min | 30 s |
VRE-51299 | 2 min | 3 min | 15 min | 5 min | 5 min | 10 min | 30 s |
Effective Contact Time | 4 min | 5 min | 19 min | 6 min | 7 min | 14 min | 1 min |
Contact Time/min | Efficacy Rate (%) | ||||||
---|---|---|---|---|---|---|---|
HAMAYA | DAC | Jif | AJAX | Mr. MUSCLE | CLOROX | BACTIL | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 100% |
2 | 30% | 30% | 0 | 0 | 0 | 0 | 100% |
3 | 62.5% | 62.5% | 0 | 0 | 0 | 0 | 100% |
4 | 100% | 75% | 0 | 0 | 0 | 0 | 100% |
5 | 100% | 100% | 37.5% | 0 | 37.5% | 0 | 100% |
6 | 100% | 100% | 100% | 0 | 87.5% | 0 | 100% |
7 | 100% | 100% | 100% | 0 | 100% | 0 | 100% |
8 | 100% | 100% | 100% | 0 | 100% | 0 | 100% |
9 | 100% | 100% | 100% | 0 | 100% | 0 | 100% |
10 | 100% | 100% | 100% | 0 | 100% | 25% | 100% |
11 | 100% | 100% | 100% | 0 | 100% | 62.5% | 100% |
12 | 100% | 100% | 100% | 0 | 100% | 87.50% | 100% |
13 | 100% | 100% | 100% | 0 | 100% | 87.50% | 100% |
14 | 100% | 100% | 100% | 0 | 100% | 100% | 100% |
15 | 100% | 100% | 100% | 25% | 100% | 100% | 100% |
16 | 100% | 100% | 100% | 87.5% | 100% | 100% | 100% |
17 | 100% | 100% | 100% | 87.5% | 100% | 100% | 100% |
18 | 100% | 100% | 100% | 87.5% | 100% | 100% | 100% |
19 | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
20 | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
Disinfectants | Contact Time/min | Type of Contaminated Surface | |||||
---|---|---|---|---|---|---|---|
Glass | Wood | Marble | Plastic | Leather | Stainless Steel | ||
HAMAYA | 2 min | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective |
4 min | Effective | Effective | Effective | Effective | Effective | Effective | |
6 min | Effective | Effective | Effective | Effective | Effective | Effective | |
DAC | 3 min | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective |
5 min | Effective | Effective | Effective | Effective | Effective | Effective | |
7 min | Effective | Effective | Effective | Effective | Effective | Effective | |
Jif | 4 min | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective |
6 min | Effective | Effective | Effective | Effective | Effective | Effective | |
8 min | Effective | Effective | Effective | Effective | Effective | Effective | |
AJAX | 17 min | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective |
19 min | Effective | Effective | Effective | Effective | Effective | Effective | |
21 min | Effective | Effective | Effective | Effective | Effective | Effective | |
Mr. MUSCLE | 5 min | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective |
7 min | Effective | Effective | Effective | Effective | Effective | Effective | |
9 min | Effective | Effective | Effective | Effective | Effective | Effective | |
CLOROX | 12 min | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective |
14 min | Effective | Effective | Effective | Effective | Effective | Effective | |
16 min | Effective | Effective | Effective | Effective | Effective | Effective | |
BACTIL | 30 s | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective | Not Effective |
60 s | Effective | Effective | Effective | Effective | Effective | Effective | |
90 s | Effective | Effective | Effective | Effective | Effective | Effective |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalal, N.A.; Al-Atyyani, R.A.; Al-Said, H.M.; Ashgar, S.S.; Faidah, H.; Johargy, A.K.; Momenah, A.M.; Barhameen, A.A.; Hariri, S.H.; Bantun, F.; et al. Comparative Assessment of Antimicrobial Efficacy of Seven Surface Disinfectants against Eight Bacterial Strains in Saudi Arabia: An In Vitro Study. Microbiol. Res. 2023, 14, 819-830. https://doi.org/10.3390/microbiolres14030058
Jalal NA, Al-Atyyani RA, Al-Said HM, Ashgar SS, Faidah H, Johargy AK, Momenah AM, Barhameen AA, Hariri SH, Bantun F, et al. Comparative Assessment of Antimicrobial Efficacy of Seven Surface Disinfectants against Eight Bacterial Strains in Saudi Arabia: An In Vitro Study. Microbiology Research. 2023; 14(3):819-830. https://doi.org/10.3390/microbiolres14030058
Chicago/Turabian StyleJalal, Naif A., Rozan A. Al-Atyyani, Hamdi M. Al-Said, Sami S. Ashgar, Hani Faidah, Ayman K. Johargy, Aiman M. Momenah, Abeer A. Barhameen, Sumyya H. Hariri, Farkad Bantun, and et al. 2023. "Comparative Assessment of Antimicrobial Efficacy of Seven Surface Disinfectants against Eight Bacterial Strains in Saudi Arabia: An In Vitro Study" Microbiology Research 14, no. 3: 819-830. https://doi.org/10.3390/microbiolres14030058
APA StyleJalal, N. A., Al-Atyyani, R. A., Al-Said, H. M., Ashgar, S. S., Faidah, H., Johargy, A. K., Momenah, A. M., Barhameen, A. A., Hariri, S. H., Bantun, F., Qashqari, F. S., Khidir, E. B., & Althagafi, M. H. (2023). Comparative Assessment of Antimicrobial Efficacy of Seven Surface Disinfectants against Eight Bacterial Strains in Saudi Arabia: An In Vitro Study. Microbiology Research, 14(3), 819-830. https://doi.org/10.3390/microbiolres14030058