Exploring the Variability in Antibacterial Testing of Resin Dental Composites among Investigators: A Narrative Review
Abstract
:1. Introduction
2. Methods for Testing the Antibacterial Properties of RDCs
2.1. Colony-Forming Units (CFU)
2.2. Spectrophotometry
2.3. Agar Diffusion Test (ADT)
2.4. XTT/MTT
2.5. Lactic Acid Production
2.6. Confocal Laser Scanning Microscope
3. Pre-Testing Protocols: Incubation Time and Sterilization
3.1. 70% Ethanol
3.2. Ethylene Oxide
3.3. Gamma Radiation
3.4. UV Light
3.5. Incubation Time/Biofilm Maturity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, D. Dental caries: The most common disease worldwide and preventive strategies. Int. J. Biol. 2013, 5, 55. [Google Scholar] [CrossRef]
- Rajendra, R.; Sivapathasundharam, B. Shafer’s Textbook of Oral Pathology; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Rodolpho, P.A.D.R.; Rodolfo, B.; Collares, K.; Correa, M.B.; Demarco, F.F.; Opdam, N.J.; Cenci, M.S.; Moraes, R.R. Clinical performance of posterior resin composite restorations after up to 33 years. Dent. Mater. 2022, 38, 680–688. [Google Scholar] [CrossRef]
- Pallesen, U.; van Dijken, J.W. A randomized controlled 27 years follow up of three resin composites in Class II restorations. J. Dent. 2015, 43, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- German, M.J. Developments in resin-based composites. Br. Dent. J. 2022, 232, 638–643. [Google Scholar] [CrossRef]
- Opdam, N.J.; Van De Sande, F.H.; Bronkhorst, E.; Cenci, M.S.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.C.; Van Dijken, J.W. Longevity of posterior composite restorations: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 943–949. [Google Scholar] [CrossRef]
- Lin, N.J. Biofilm over teeth and restorations: What do we need to know? Dent. Mater. 2017, 33, 667–680. [Google Scholar] [CrossRef]
- Ali, S.; Sangi, L.; Kumar, N.; Kumar, B.; Khurshid, Z.; Zafar, M.S. Evaluating antibacterial and surface mechanical properties of chitosan modified dental resin composites. Technol. Health Care 2020, 28, 165–173. [Google Scholar] [CrossRef]
- Ali, S.; Sangi, L.; Kumar, N. Exploring antibacterial activity and hydrolytic stability of resin dental composite restorative materials containing chitosan. Technol. Health Care 2017, 25, 11–18. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, L.; Bai, R.; Zhuang, Z.; Zhang, Y.; Yu, T.; Peng, L.; Xin, T.; Chen, S.; Han, B. Recent progress in antimicrobial strategies for resin-based restoratives. Polymers 2021, 13, 1590. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, Y.; He, G.X.; Katagori, N.; Chen, H. A comparison of conventional methods for the quantification of bacterial cells after exposure to metal oxide nanoparticles. BMC Microbiol. 2014, 14, 222. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gavilan, A.; de Castro, J.V.; Arana, A.; Merino, S.; Retolaza, A.; Alves, S.A.; Francone, A.; Kehagias, N.; Sotomayor-Torres, C.M.; Cocina, D.; et al. Antibacterial activity testing methods for hydrophobic patterned surfaces. Sci. Rep. 2021, 11, 6675. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Kregiel, D.; Mahady, G.; Sharifi-Rad, J.; Martins, N.; Rodrigues, C.F. Management of Streptococcus mutans-Candida spp. oral biofilms’ infections: Paving the way for effective clinical interventions. J. Clin. Med. 2020, 9, 517. [Google Scholar] [CrossRef] [PubMed]
- Mira, P.; Yeh, P.; Hall, B.G. Estimating microbial population data from optical density. PLoS ONE 2022, 17, e0276040. [Google Scholar] [CrossRef] [PubMed]
- Beal, J.; Farny, N.G.; Haddock-Angelli, T.; Selvarajah, V.; Baldwin, G.S.; Buckley-Taylor, R.; Gershater, M.; Kiga, D.; Marken, J.; Sanchania, V.; et al. Robust estimation of bacterial cell count from optical density. Commun. Biol. 2020, 3, 512. [Google Scholar] [CrossRef]
- McGoverin, C.; Steed, C.; Esan, A.; Robertson, J.; Swift, S.; Vanholsbeeck, F. Optical methods for bacterial detection and characterization. APL Photonics 2021, 6, 080903. [Google Scholar] [CrossRef]
- Singer, L.; Bierbaum, G.; Kehl, K.; Bourauel, C. Evaluation of the antimicrobial activity and compressive strength of a dental cement modified using plant extract mixture. J. Mater. Sci. Mater. Med. 2020, 31, 116. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Pratap, B.; Gupta, R.K.; Bhardwaj, B.; Nag, M. Resin based restorative dental materials: Characteristics and future perspectives. Jpn. Dent. Sci. Rev. 2019, 55, 126–138. [Google Scholar] [CrossRef]
- Reller, L.B.; Weinstein, M.; Jorgensen, J.H.; Ferraro, M.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar]
- Khan, Z.A.; Siddiqui, M.F.; Park, S. Current and emerging methods of antibiotic susceptibility testing. Diagnostics 2019, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.J.; Hong, J. Application of the MTT-based colorimetric method for evaluating bacterial growth using different solvent systems. LWT 2022, 153, 112565. [Google Scholar] [CrossRef]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef] [PubMed]
- Koban, I.; Matthes, R.; Hübner, N.O.; Welk, A.; Sietmann, R.; Lademann, J.; Kramer, A.; Kocher, T. XTT assay of ex vivo saliva biofilms to test antimicrobial influences. GMS Krankenhhyg. Interdiszip. 2012, 7, Doc06. [Google Scholar] [PubMed]
- Kamiloglu, S.; Sari, G.; Ozdal, T.; Capanoglu, E. Guidelines for cell viability assays. Food Front. 2020, 1, 332–349. [Google Scholar] [CrossRef]
- Ruby, J.; Goldner, M. Nature of symbiosis in oral disease. J. Dent. Res. 2007, 86, 8–11. [Google Scholar] [CrossRef]
- Patel, S.P.; Gujarathi, A.M.; Vanzara, P.B. Multi-criteria analysis of cell-recycle based continuous lactic acid production process. Mater. Manuf. Process. 2023, 17, 1932–1941. [Google Scholar] [CrossRef]
- He, Y.; Vasilev, K.; Zilm, P. pH-Responsive Biomaterials for the Treatment of Dental Caries—A Focussed and Critical Review. Pharmaceutics 2023, 15, 1837. [Google Scholar] [CrossRef]
- Han, Q.; Li, B.; Zhou, X.; Ge, Y.; Wang, S.; Li, M.; Ren, B.; Wang, H.; Zhang, K.; Xu, H.H.; et al. Anti-caries effects of dental adhesives containing quaternary ammonium methacrylates with different chain lengths. Materials 2017, 10, 643. [Google Scholar] [CrossRef]
- Mountcastle, S.E.; Vyas, N.; Villapun, V.M.; Cox, S.C.; Jabbari, S.; Sammons, R.L.; Shelton, R.M.; Walmsley, A.D.; Kuehne, S.A. Biofilm viability checker: An open-source tool for automated biofilm viability analysis from confocal microscopy images. NPJ Biofilms Microbiomes 2021, 7, 44. [Google Scholar] [CrossRef]
- Kurt, A.; Cilingir, A.; Bilmenoglu, C.; Topcuoglu, N.; Kulekci, G. Effect of different polishing techniques for composite resin materials on surface properties and bacterial biofilm formation. J. Dent. 2019, 90, 103199. [Google Scholar] [CrossRef]
- Bilgili, D.; Dündar, A.; Barutçugil, Ç.; Tayfun, D.; Özyurt, Ö.K. Surface properties and bacterial adhesion of bulk-fill composite resins. J. Dent. 2020, 95, 103317. [Google Scholar] [CrossRef]
- Farrugia, C.; Cassar, G.; Valdramidis, V.; Camilleri, J. Effect of sterilization techniques prior to antimicrobial testing on physical properties of dental restorative materials. J. Dent. 2015, 43, 703–714. [Google Scholar] [CrossRef] [PubMed]
- André, C.B.; Dos Santos, A.; Pfeifer, C.S.; Giannini, M.; Girotto, E.M.; Ferracane, J.L. Evaluation of three different decontamination techniques on biofilm formation, and on physical and chemical properties of resin composites. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Anjana, V.R.; Joseph, M.M.; Mahendran, N.A.; Baby, J.J.; Nazeer, N.; Sudeep, S. Biofilm in dental biomaterials: A review. J. Multidiscip. Res. 2020, 6, 33–40. [Google Scholar] [CrossRef]
- Engel, A.S.; Kranz, H.T.; Schneider, M.; Tietze, J.P.; Piwowarcyk, A.; Kuzius, T.; Arnold, W.; Naumova, E.A. Biofilm formation on different dental restorative materials in the oral cavity. BMC Oral Health 2020, 20, 162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Melo, M.A.; Weir, M.D.; Reynolds, M.A.; Bai, Y.; Xu, H.H. Do dental resin composites accumulate more oral biofilms and plaque than amalgam and glass ionomer materials? Materials 2016, 9, 888. [Google Scholar] [CrossRef]
- Liu, F.; Wang, R.; Shi, Y.; Jiang, X.; Sun, B.; Zhu, M. Novel Ag nanocrystals based dental resin composites with enhanced mechanical and antibacterial properties. Prog. Nat. Sci. Mater. Int. 2013, 23, 573–578. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Z.; Guo, Y.; Zhang, H.; Qiu, Y.; Li, J.; Ma, D.; Li, Z.; Zhen, P.; Liu, B.; et al. Novel core–shell CHX/ACP nanoparticles effectively improve the mechanical, antibacterial and remineralized properties of the dental resin composite. Dent. Mater. 2021, 37, 636–647. [Google Scholar] [CrossRef]
- Bai, X.; Lin, C.; Wang, Y.; Ma, J.; Wang, X.; Yao, X.; Tang, B. Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dent. Mater. 2020, 36, 794–807. [Google Scholar] [CrossRef]
- He, X.; Ye, L.; He, R.; He, J.; Ouyang, S.; Zhang, J. Antibacterial dental resin composites (DRCs) with synthesized bis-quaternary ammonium monomethacrylates as antibacterial agents. J. Mech. Behav. Biomed. Mater. 2022, 135, 105487. [Google Scholar] [CrossRef] [PubMed]
- Alansy, A.S.; Saeed, T.A.; Al-Attab, R.; Guo, Y.; Yang, Y.; Liu, B.; Fan, Z. Boron nitride nanosheets modified with zinc oxide nanoparticles as novel fillers of dental resin composite. Dent. Mater. 2022, 38, e266–e274. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Yao, S.; Meng, W.; Zhang, J.; Shi, R.; Zhou, C.; Wu, J. Novel antibacterial dental resin containing silanized hydroxyapatite nanofibers with remineralization capability. Dent. Mater. 2022, 38, 1989–2002. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Mohammadzadeh, I.; Derakhshani, A.; Saidi, K.; Sheibani, H. Synthesis of new dental monomers based on glycidyl methacrylate and their evaluation of cytotoxic and antibacterial activity. Polym. Test. 2023, 117, 107818. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Yu, Q.; Baker, S.N.; Li, H.; Larm, N.E.; Baker, G.A.; Chen, L.; Tan, J.; Chen, M. Incorporation of antibacterial agent derived deep eutectic solvent into an active dental composite. Dent. Mater. 2017, 33, 1445–1455. [Google Scholar] [CrossRef]
- Boaro, L.C.; Campos, L.M.; Varca, G.H.; Dos Santos, T.M.; Marques, P.A.; Sugii, M.M.; Saldanha, N.R.; Cogo-Müller, K.; Brandt, W.C.; Braga, R.R.; et al. Antibacterial resin-based composite containing chlorhexidine for dental applications. Dent. Mater. 2019, 35, 909–918. [Google Scholar] [CrossRef]
- Ahangaran, F.; Navarchian, A.H. Towards the development of self-healing and antibacterial dental nanocomposites via incorporation of novel acrylic microcapsules. Dent. Mater. 2022, 38, 858–873. [Google Scholar] [CrossRef]
- Yao, S.; Qin, L.; Wang, Z.; Zhu, L.; Zhou, C.; Wu, J. Novel nanoparticle-modified multifunctional microcapsules with self-healing and antibacterial activities for dental applications. Dent. Mater. 2022, 38, 1301–1315. [Google Scholar] [CrossRef]
- Tong, H.; Yu, X.; Shi, Z.; Liu, F.; Yu, Y.; Deng, F.; He, J. Physicochemical properties, bond strength and dual-species biofilm inhibition effect of dental resin composites with branched silicone methacrylate. J. Mech. Behav. Biomed. Mater. 2021, 116, 104368. [Google Scholar] [CrossRef]
- Zheng, L.; Li, K.; Ning, C.; Sun, J. Study on antibacterial and fluoride-releasing properties of a novel composite resin with fluorine-doped nano-zirconia fillers. J. Dent. 2021, 113, 103772. [Google Scholar] [CrossRef]
- Mitwalli, H.; AlSahafi, R.; Albeshir, E.G.; Dai, Q.; Sun, J.; Oates, T.W.; Melo, M.A.; Xu, H.H.; Weir, M.D. Novel nano calcium fluoride remineralizing and antibacterial dental composites. J. Dent. 2021, 113, 103789. [Google Scholar] [CrossRef]
- Usul, S.K.; Aslan, A.; Lüleci, H.B.; Ergüden, B.; Çöpoğlu, M.T.; Oflaz, H.; Soydan, A.M.; Özçimen, D. Investigation of antimicrobial and mechanical effects of functional nanoparticles in novel dental resin composites. J. Dent. 2022, 123, 104180. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xu, H.; Xie, W.; Wang, M.; Wang, C.; Gao, C.; Gu, F.; Liu, J.; Fu, J. Study on a novel antibacterial light-cured resin composite containing nano-MgO. Colloids Surf. B 2020, 188, 110774. [Google Scholar] [CrossRef] [PubMed]
- Almousa, R.; Wen, X.; Anderson, G.G.; Xie, D. An improved dental composite with potent antibacterial function. Saudi. Dent. J. 2019, 31, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Barot, T.; Rawtani, D.; Kulkarni, P.; Hussain, C.M.; Akkireddy, S. Physicochemical and biological assessment of flowable resin composites incorporated with farnesol loaded halloysite nanotubes for dental applications. J. Mech. Behav. Biomed. Mater. 2020, 104, 103675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liao, M.; Liu, F.; Huang, X.; Mai, S.; He, J. Preparation of Bis-GMA free dental resin composites with anti-adhesion effect against Streptococcus mutans using synthesized fluorine-containing methacrylate (DFMA). J. Mech. Behav. Biomed. Mater. 2022, 131, 105263. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Huang, S.; Liang, X.; Qin, W.; Liu, F.; Lin, Z.; He, J. The antibacterial, cytotoxic, and flexural properties of a composite resin containing a quaternary ammonium monomer. J. Prosthet. Dent. 2018, 120, 609–616. [Google Scholar] [CrossRef]
- Hojati, S.T.; Alaghemand, H.; Hamze, F.; Babaki, F.A.; Rajab-Nia, R.; Rezvani, M.B.; Kaviani, M.; Atai, M. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent. Mater. 2013, 29, 495–505. [Google Scholar] [CrossRef]
- Cherchali, F.Z.; Mouzali, M.; Tommasino, J.B.; Decoret, D.; Attik, N.; Aboulleil, H.; Seux, D.; Grosgogeat, B. Effectiveness of the DHMAI monomer in the development of an antibacterial dental composite. Dent. Mater. 2017, 33, 1381–1391. [Google Scholar] [CrossRef]
- Kikuchi, L.N.; Freitas, S.R.; Amorim, A.F.; Delechiave, G.; Catalani, L.H.; Braga, R.R.; Moreira, M.S.; Boaro, L.C.; Gonçalves, F. Effects of the crosslinking of chitosan/DCPA particles in the antimicrobial and mechanical properties of dental restorative composites. Dent. Mater. 2022, 38, 1482–1491. [Google Scholar] [CrossRef]
- Zhang, N.; Ma, J.; Melo, M.A.; Weir, M.D.; Bai, Y.; Xu, H.H. Protein-repellent and antibacterial dental composite to inhibit biofilms and caries. J. Dent. 2015, 43, 225–234. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Söderling, E.; Lassila, L.V.; Vallittu, P.K. Preparation of antibacterial and radio-opaque dental resin with new polymerizable quaternary ammonium monomer. Dent. Mater. 2015, 31, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Larissa, P.; Gambrill, B.; de Carvalho, R.D.; Dal Picolo, M.Z.; Cavalli, V.; Boaro, L.C.; Prokopovich, P.; Cogo-Müller, K. Development, characterization and antimicrobial activity of multilayer silica nanoparticles with chlorhexidine incorporated into dental composites. Dent. Mater. 2023, 39, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Pasha, M.; Muhammad, N.; Nayyer, M.; Bokhari, J.H.; Ashraf, H.; Safi, S.Z.; Kaleem, M. Synthesis of an anti-cariogenic experimental dental composite containing novel drug-decorated copper particles. Mater. Sci. Eng. C 2020, 114, 111040. [Google Scholar] [CrossRef] [PubMed]
- Ardestani, S.S.; Bonan, R.F.; Mota, M.F.; da Costa Farias, R.M.; Menezes, R.R.; Bonan, P.R.; Maciel, P.P.; de Moraes Ramos-Perez, F.M.; Batista, A.U.; da Cruz Perez, D.E. Effect of the incorporation of silica blow spun nanofibers containing silver nanoparticles (SiO2/Ag) on the mechanical, physicochemical, and biological properties of a low-viscosity bulk-fill composite resin. Dent. Mater. 2021, 37, 1615–1629. [Google Scholar] [CrossRef]
- Shvero, D.K.; Zatlsman, N.; Hazan, R.; Weiss, E.I.; Beyth, N. Characterisation of the antibacterial effect of polyethyleneimine nanoparticles in relation to particle distribution in resin composite. J. Dent. 2015, 43, 287–294. [Google Scholar] [CrossRef]
- Eskandarizadeh, A.; Mohammadzadeh, I.; Shahravan, A.; Bavafa, M.; Kakooei, S.; Torabi, M. Prevention of secondary caries by a new antibacterial compound. Dent. Res. J. 2020, 17, 40. [Google Scholar]
- Farrugia, C.; Haider, J.; Camilleri, L.; Camilleri, J. Clinical relevance of antimicrobial testing results for dental restorative materials. J. Appl. Biomater. Funct. Mater. 2017, 15, 153–161. [Google Scholar] [CrossRef]
No. | Year | Pre-Testing Measures | Species Used | Performed Tests | References |
---|---|---|---|---|---|
1 | 2013 | Incubation = 12 h Sterilization = UV radiation | Escherichia coli, Staphylococcus aureus, Lactobacillus | Spectrophotometry Agar Disk Diffusion | [39] |
2 | 2021 | Incubation = 24 h Sterilization = UV radiation | Streptococcus mutans | Colony-Forming Unit (CFU) | [40] |
3 | 2020 | Incubation = 36 h Sterilization = ethanol | Streptococcus mutans | Colony-Forming Unit (CFU) LIVE/DEAD Assay- Confocal Laser Scanning Microscope | [41] |
4 | 2022 | Incubation = 24 h Sterilization = 75% alcohol | Streptococcus mutans | Colony-Forming Unit (CFU) | [42] |
5 | 2022 | Incubation = 24 h Sterilization = UV irradiation | Streptococcus mutans | Colony-Forming Unit (CFU) | [43] |
6 | 2022 | Incubation = 24 h Sterilization = ultraviolet light | Streptococcus mutans | Colony-Forming Unit (CFU) | [44] |
7 | 2022 | Incubation = 24, 48, 72, 96, and 120 h Sterilization = none | Streptococcus mutans | Colony-Forming Unit (CFU) Live/Dead Assay Fluorescent Microscope | [45] |
8 | 2017 | Incubation = 12 h of incubation for S. aureus and 72 h of incubation for S. mutans Sterilization = none | Streptococcus mutans Staphylococcus aureus | Agar Diffusion Test | [46] |
9 | 2019 | Incubation = 48 h Sterilization = none | Porphyromonas gingivalis, Streptococcus mutans, and Staphylococcus aureus for agar dilution method and Streptococcus mutans for the biofilm test | Agar Dilution Method Biofilm Formation | [47] |
10 | 2022 | Incubation = 24 h Sterilization = ultraviolet (UV) | Streptococcus mutans | Colony-Forming Unit (CFU) | [48] |
11 | 2022 | Incubation = 24 h Sterilization = ultraviolet (UV) irradiation | Streptococcus mutans | Colony-Forming Unit (CFU) | [49] |
12 | 2021 | Incubation = 48 h Sterilization = none | Streptococcus mutans and L. acidophilus | Biofilm Colony-Forming Unit (CFU) | [50] |
13 | 2021 | Incubation = 24 h Sterilization = ultraviolet light for 2 h | Streptococcus mutans | Colony-Forming Units (CFU) Metabolic Activity Test (CCK-8) | [51] |
14 | 2021 | Incubation = 48 h Sterilization = ethylene oxide for 24 h | Dental Plaque Microcosm Biofilm | Colony-Forming Units (CFU), Lactic Acid, And Metabolic Activity | [52] |
15 | 2022 | Incubation = 48 h Sterilization = none | Escherichia coli Pseudomonas aeruginosa E. faecalis | Colony-Forming Unit (CFU) | [53] |
16 | 2020 | Incubation = 24 h Sterilization = 70% ethanol solution | Streptococcus mutans | Colony-Forming Unit (CFU) | [54] |
17 | 2019 | Incubation = 48 h Sterilization = ethanol | Streptococcus mutans, Staphylococcus aureus, Pseudomonas aeruginosa | Live/Dead Assay Fluorescent Microscope | [55] |
18 | 2020 | Incubation = 24 h Sterilization = ethylene oxide gas | Streptococcus mutans | Disk Diffusion Assay | [56] |
19 | 2022 | Incubation = 24 h Sterilization = ultraviolet rays for 1 h | Streptococcus mutans | Colony-Forming Units (CFUs) | [57] |
20 | 2018 | Incubation = fresh samples, 1 week, 2 weeks Sterilization = ultraviolet light Saliva treatment | Streptococcus mutans | Colony-Forming Units (CFUs) | [58] |
21 | 2013 | Incubation = 24 h Sterilization = none | Streptococcus mutans | Agar Diffusion Test Colony-Forming Units (Cfus) | [59] |
22 | 2017 | Incubation = 96 h Sterilization = UV | Streptococcus mutans biofilm | Colony-Forming Unit (CFU), | [60] |
23 | 2022 | Incubation = 24 h Sterilization = none | Streptococcus mutans | Crystal Violet Biofilm Assay LIVE/DEAD Assay, Confocal Laser Scanning Microscope | [50] |
24 | 2021 | Incubation = 24 h Sterilization = none | Streptococcus Mutans Lactobacillus acidophilus | Colony-Forming Unit (CFU) | [61] |
25 | 2015 | Incubation = 24 h Sterilization = none | Streptococcus mutans, Total Streptococci, Total microorganisms | Colony-Forming Unit (CFU) Counts | [62] |
26 | 2015 | Incubation = 24 h | Streptococcus mutans | Biofilm Inhibition Test | [63] |
27 | 2023 | Incubation = 24 h Sterilization = 70° alcohol and UV light irradiation Incubation = 24–72 h | Streptococcus mutans, Streptococcus mitis, Streptococcus gordonii | Bacterial Sensitivity Test by Agar Diffusion Technique, Monospecies Biofilm Inhibition Assay | [64] |
28 | 2020 | Incubation = 48 h Incubation = 24 h | Streptococcus mutans | Disk Diffusion Test, Direct Contact Test | [65] |
29 | 2021 | Incubation = 24 h Sterilization = ethylene oxide | Streptococcus mutans | Agar Diffusion Test Colony-Forming Unit (CFU) Counts | [66] |
30 | 2015 | Incubation = 48 h | Enterococcus faecalis, Actinomyces viscousus, Streptococcus mutans, Lactobacillus casei | Direct Contact Test (DCT) | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pal, A.; Altaf, N.; Mahmood, A.; Akbar, S.; Maher, N.; Kumar, N.; Zafar, M.S.; Murcia, L.; Oñate-Sánchez, R.E. Exploring the Variability in Antibacterial Testing of Resin Dental Composites among Investigators: A Narrative Review. Microbiol. Res. 2023, 14, 1736-1750. https://doi.org/10.3390/microbiolres14040119
Pal A, Altaf N, Mahmood A, Akbar S, Maher N, Kumar N, Zafar MS, Murcia L, Oñate-Sánchez RE. Exploring the Variability in Antibacterial Testing of Resin Dental Composites among Investigators: A Narrative Review. Microbiology Research. 2023; 14(4):1736-1750. https://doi.org/10.3390/microbiolres14040119
Chicago/Turabian StylePal, Ashlesha, Noorulain Altaf, Anum Mahmood, Shazia Akbar, Nazrah Maher, Naresh Kumar, Muhammad Sohail Zafar, Laura Murcia, and Ricardo E. Oñate-Sánchez. 2023. "Exploring the Variability in Antibacterial Testing of Resin Dental Composites among Investigators: A Narrative Review" Microbiology Research 14, no. 4: 1736-1750. https://doi.org/10.3390/microbiolres14040119
APA StylePal, A., Altaf, N., Mahmood, A., Akbar, S., Maher, N., Kumar, N., Zafar, M. S., Murcia, L., & Oñate-Sánchez, R. E. (2023). Exploring the Variability in Antibacterial Testing of Resin Dental Composites among Investigators: A Narrative Review. Microbiology Research, 14(4), 1736-1750. https://doi.org/10.3390/microbiolres14040119