Virulence and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli from River Water and Farm Animal Feces near an Agricultural Region in Northwestern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fecal and Environmental Sample Collection
2.2. Recovery of Bacterial Isolates from Environmental Samples
2.3. Virulence Factor Identification in the Initial Screening of Presumptive STEC Colonies
2.4. Antimicrobial Susceptibility Testing
2.5. Phylogenetic and Multilocus Sequence Typing
2.6. Whole-Genome Sequencing and Annotation
2.7. Statistical Analyses
3. Results
3.1. Isolation and Initial Characterization of STEC from River Water and Feces of Farm Animals in the Agricultural Culiacan Valley
3.2. Profiles of Antimicrobial Resistance in the Recovered STEC Isolates
3.3. Genetic Relatedness of the Recovered STEC Isolates
3.4. Comparative Virulence Profiling of STEC Isolates with Clinically Relevant Serotypes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callejón, R.M.; Rodríguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; García-Parrilla, M.C.; Troncoso, A.M. Reported foodborne outbreaks due to fresh produce in the United States and European Union: Trends and causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Sivapalasingam, S.; Friedman, C.R.; Cohen, L.; Tauxe, R.V. Fresh produce: A growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J. Food Prot. 2004, 67, 2342–2353. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Commerce-International Trade Administration. Country Commercial Guides: Mexico—Agriculture. Available online: https://www.trade.gov/country-commercial-guides/mexico-agriculture (accessed on 15 February 2024).
- Huang, S.W. Imports Contribute to Year-Round Fresh Fruit Availability, U.S. Department of Agriculture-Economic Research Service Report FTS-356-01. Available online: http://www.ers.usda.gov/media/1252296/fts-356-01.pdf (accessed on 1 June 2022).
- Lucier, G.; Jerardo, A. Vegetables and Melons Outlook Report. U.S. Department of Agriculture-Economic Research Service Report No. VGS-313. Available online: https://www.ers.usda.gov/webdocs/outlooks/39473/14932_vgs285.pdf?v=981 (accessed on 3 April 2021).
- Karst, T. Mexico’s Dominance in Imports Is Revealed in USDA Statistics. Available online: https://www.thepacker.com/news/produce-crops/mexicos-dominance-imports-revealed-usda-statistics (accessed on 30 January 2023).
- Clemens, R.L. The Expanding U.S. Market for Fresh Produce; Center for Agricultural and Rural Development at Digital Repository Iowa State University: Ames, IA, USA, 2015; pp. 1–3. [Google Scholar]
- Flores, D.U.S. Department of Agriculture-Foreign Agricultural Service: Tomato Annual. GAIN Report MX8025. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Tomato%20Annual_Mexico%20City_Mexico_5-30-2018.pdf (accessed on 1 June 2022).
- Rentería-Guevara, S.A.; Rangel-Peraza, J.G.; Rodríguez-Mata, A.E.; Amábilis-Sosa, L.E.; Sanhouse-García, A.J.; Uriarte-Aceves, P.M. Effect of agricultural and urban infrastructure on river basin delineation and surface water availability: Case of the Culiacan River Basin. Hydrology 2019, 6, 58. [Google Scholar] [CrossRef]
- Center for Science in the Public Interest. Outbreak Alert: Closing the Gaps in Our Federal Food Safety Net. Available online: https://cspinet.org/sites/default/files/attachment/outbreak.pdf (accessed on 1 June 2022).
- Sewell, A.M.; Farber, J.M. Foodborne outbreaks in Canada linked to produce. J. Food Prot. 2001, 64, 1863–1877. [Google Scholar] [CrossRef]
- Gyles, C.L. Shiga toxin-producing Escherichia coli: An overview. J. Anim. Sci. 2007, 85, E45–E62. [Google Scholar] [CrossRef] [PubMed]
- Bolton, D.J. Verocytotoxigenic (Shiga toxin-producing) Escherichia coli: Virulence factors and pathogenicity in the farm to fork paradigm. Foodborne Pathog. Dis. 2011, 8, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejek, A.M.; Minnich, S.A.; Hovde, C.J. Escherichia coli 0157:H7 virulence factors and the ruminant reservoir. Curr. Opin. Infect. Dis. 2022, 35, 205–214. [Google Scholar] [CrossRef]
- Karmali, M.A. Infection by verocytotoxin-producing Escherichia coli. Clin. Microbiol. Rev. 1989, 2, 15–38. [Google Scholar] [CrossRef]
- Karmali, M.A.; Steele, B.T.; Petric, M.; Lim, C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1983, 321, 619–620. [Google Scholar] [CrossRef]
- Scheutz, F.; Teel, L.D.; Beutin, L.; Piérard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S.; et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol. 2012, 50, 2951–2963. [Google Scholar] [CrossRef]
- Gill, A.; Dussault, F.; McMahon, T.; Petronella, N.; Wang, X.; Cebelinski, E.; Scheutz, F.; Weedmark, K.; Blais, B.; Carrillo, C. Characterization of atypical Shiga toxin gene sequences and description of Stx2j, a new subtype. J. Clin. Microbiol. 2022, 60, e0222921. [Google Scholar] [CrossRef] [PubMed]
- Probert, W.S.; McQuaid, C.; Schrader, K. Isolation and identification of an Enterobacter cloacae strain producing a novel subtype of Shiga toxin type 1. J. Clin. Microbiol. 2014, 52, 2346–2351. [Google Scholar] [CrossRef] [PubMed]
- Bielaszewska, M.; Friedrich, A.W.; Aldick, T.; Schurk-Bulgrin, R.; Karch, H. Shiga toxin activatable by intestinal mucus in Escherichia coli isolated from humans: Predictor for a severe clinical outcome. Clin. Infect. Dis. 2006, 43, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Persson, S.; Olsen, K.E.; Ethelberg, S.; Scheutz, F. Subtyping method for Escherichia coli Shiga-toxin (verocytotoxin) 2 variants and correlations to clinical manifestations. J. Clin. Microbiol. 2007, 45, 2020–2024. [Google Scholar] [CrossRef] [PubMed]
- Boerlin, P.; McEwen, S.A.; Boerlin-Petzold, F.; Wilson, J.B.; Johnson, R.P.; Gyles, C.L. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J. Clin. Microbiol. 1999, 37, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Delannoy, S.; Mariani-Kurkdjian, P.; Bonacorsi, S.; Liguori, S.; Fach, P. Characteristics of emerging human-pathogenic Escherichia coli O26:H11 strains isolated in France between 2010 and 2013 and carrying the stx2d gene only. J. Clin. Microbiol. 2015, 53, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Beutin, L.; Krause, G.; Zimmermann, S.; Kaulfuss, S.; Gleier, K. Characterization of Shiga toxin-producing Escherichia coli strains isolated from human patients in Germany over a 3-year period. J. Clin. Microbiol. 2004, 42, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, A.W.; Bielaszewska, M.; Zhang, W.L.; Pulz, M.; Kuczius, T.; Ammon, A.; Karch, H. Escherichia coli harboring Shiga toxin 2 gene variants: Frequency and association with clinical symptoms. J. Infect. Dis. 2002, 185, 74–84. [Google Scholar] [CrossRef]
- Friedrich, A.W.; Borell, J.; Bielaszewska, M.; Fruth, A.; Tschape, H.; Karch, H. Shiga toxin 1c-producing Escherichia coli strains: Phenotypic and genetic characterization and association with human disease. J. Clin. Microbiol. 2003, 41, 2448–2453. [Google Scholar] [CrossRef]
- Kawano, K.; Okada, M.; Haga, T.; Maeda, K.; Goto, Y. Relationship between pathogenicity for humans and stx genotype in Shiga toxin-producing Escherichia coli serotype O157. Eur. J. Clin. Microbiol. Infect Dis. 2008, 27, 227–232. [Google Scholar] [CrossRef]
- Coombes, B.K.; Gilmour, M.W.; Goodman, C.D. The evolution of virulence in non-O157 Shiga toxin-producing Escherichia coli. Front. Microbiol. 2011, 2, 90. [Google Scholar] [CrossRef] [PubMed]
- Mathusa, E.C.; Chen, Y.; Enache, E.; Hontz, L. Non-O157 Shiga toxin-producing Escherichia coli in foods. J. Food Prot. 2010, 73, 1721–1736. [Google Scholar] [CrossRef] [PubMed]
- Valilis, E.; Ramsey, A.; Sidiq, S.; DuPont, H.L. Non-O157 Shiga toxin-producing Escherichia coli—A poorly appreciated enteric pathogen: Systematic review. Int. J. Infect. Dis. 2018, 76, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, M.G.; Al-Hindi, R.R.; Esmael, A.; Alotibi, I.A.; Azhari, S.A.; Alseghayer, M.S.; Teklemariam, A.D. The “Big Six”: Hidden emerging foodborne bacterial pathogens. Trop. Med. Infect. Dis. 2022, 7, 356. [Google Scholar] [CrossRef]
- Bettelheim, K.A. The non-O157 Shiga-toxigenic (Verocytotoxigenic) Escherichia coli; under-rated pathogens. Crit. Rev. Microbiol. 2007, 33, 67–87. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.S. Prevalence and pathogenicity of Shiga toxin-producing Escherichia coli in beef cattle and their products. J. Anim. Sci. 2007, 85, E63–E72. [Google Scholar] [CrossRef] [PubMed]
- Etcheverría, A.I.; Padola, N.L. Shiga toxin-producing Escherichia coli: Factors involved in virulence and cattle colonization. Virulence 2013, 4, 366–372. [Google Scholar] [CrossRef]
- McWilliams, B.D.; Torres, A.G. Enterohemorrhagic Escherichia coli adhesins. Microbiol. Spectrum 2014, 2. [Google Scholar] [CrossRef]
- Stevens Mark, P.; Frankel Gad, M. The locus of enterocyte effacement and associated virulence factors of enterohemorrhagic Escherichia coli. Microbiol. Spectrum 2014, 2. [Google Scholar] [CrossRef]
- Colello, R.; Etcheverría, A.I.; Di Conza, J.A.; Gutkind, G.O.; Padola, N.L. Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC). Braz. J. Microbiol. 2015, 46, 1–5. [Google Scholar] [CrossRef]
- Rubab, M.; Oh, D.H. Virulence characteristics and antibiotic resistance profiles of Shiga toxin-producing Escherichia coli isolates from diverse sources. Antibiotics 2020, 9, 587. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Amábile-Cuevas, C.F. Antibiotic resistance in Mexico: A brief overview of the current status and its causes. J. Infect. Dev. Ctries. 2010, 4, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Lovari, S.; Cordaro, G.; Di Matteo, P.; Sorbara, L.; Iurescia, M.; Donati, V.; Buccella, C.; Battisti, A. Prevalence and concentration of Verotoxigenic Escherichia coli O157:H7 in adult sheep at slaughter from Italy. Zoonoses Public Health 2009, 56, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Ornelas-Eusebio, E.; García-Espinosa, G.; Laroucau, K.; Zanella, G. Characterization of commercial poultry farms in Mexico: Towards a better understanding of biosecurity practices and antibiotic usage patterns. PLoS ONE 2020, 15, e0242354. [Google Scholar] [CrossRef]
- McManus, P.S.; Stockwell, V.O.; Sundin, G.W.; Jones, A.L. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 2002, 40, 443–465. [Google Scholar] [CrossRef]
- Amézquita-López, B.A.; Quiñones, B.; Cooley, M.B.; León-Félix, J.; Castro-del Campo, N.; Mandrell, R.E.; Jiménez, M.; Chaidez, C. Genotypic analyses of Shiga toxin-producing Escherichia coli O157 and non-O157 recovered from feces of domestic animals on rural farms in Mexico. PLoS ONE 2012, 7, e51565. [Google Scholar] [CrossRef]
- Canizalez-Román, A.; Velázquez-Román, J.; Valdez-Flores, M.A.; Flores-Villaseñor, H.; Vidal, J.E.; Muro-Amador, S.; Guadrón-Llanos, A.M.; González-Nuñez, E.; Medina-Serrano, J.; Tapia-Pastrana, G.; et al. Detection of antimicrobial-resistance diarrheagenic Escherichia coli strains in surface water used to irrigate food products in the Northwest of Mexico. Int. J. Food Microbiol. 2019, 304, 1–10. [Google Scholar] [CrossRef]
- Sánchez-Huesca, R.; Lerma, A.; Guzmán-Saldaña, R.M.E.; Lerma, C. Prevalence of antibiotics prescription and assessment of prescribed daily dose in outpatients from Mexico City. Antibiotics 2020, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Cooley, M.B.; Jay-Russell, M.; Atwill, E.R.; Carychao, D.; Nguyen, K.; Quiñones, B.; Patel, R.; Walker, S.; Swimley, M.; Pierre-Jerome, E.; et al. Development of a robust method for isolation of Shiga toxin-positive Escherichia coli (STEC) from fecal, plant, soil and water samples from a leafy greens production region in California. PLoS ONE 2013, 8, e65716. [Google Scholar] [CrossRef] [PubMed]
- Cooley, M.B.; Quiñones, B.; Oryang, D.; Mandrell, R.E.; Gorski, L. Prevalence of Shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region. Front. Cell Infect. Microbiol. 2014, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Amézquita-López, B.A.; Quiñones, B.; Lee, B.G.; Chaidez, C. Virulence profiling of Shiga toxin-producing Escherichia coli recovered from domestic farm animals in Northwestern Mexico. Front. Cell Infect. Microbiol. 2014, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Canizalez-Román, A.; González-Nuñez, E.; Vidal, J.E.; Flores-Villaseñor, H.; León-Sicairos, N. Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in Northwestern Mexico. Int. J. Food Microbiol. 2013, 164, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Homedes, N.; Ugalde, A. Mexican pharmacies and antibiotic consumption at the US-Mexico border. South Med. Rev. 2012, 5, 9–19. [Google Scholar] [PubMed]
- Wirtz, V.J.; Dreser, A.; Gonzales, R. Trends in antibiotic utilization in eight Latin American countries, 1997-2007. Rev. Panam. Salud Publica 2010, 27, 219–225. [Google Scholar] [CrossRef]
- Amézquita-López, B.A.; Quiñones, B.; Soto-Beltrán, M.; Lee, B.G.; Yambao, J.C.; Lugo-Melchor, O.Y.; Chaidez, C. Antimicrobial resistance profiles of Shiga toxin-producing Escherichia coli O157 and non-O157 recovered from domestic farm animals in rural communities in Northwestern Mexico. Antimicrob. Resist. Infect. Control 2016, 5, 1. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: CLSI Document M100-S24; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014; Volume 34, pp. 1–230. [Google Scholar]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.J.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.F.; Mohamed, K.; Fan, Y.; Achtman, M.; Agama Study, G. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 1985, 125, 1–15. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef] [PubMed]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, G.V.; Cook, N.M.; Bueno-Sancho, V.; Lewis, C.M.; Persoons, A.; Mitiku, A.D.; Heaton, M.; Davey, P.E.; Abeyo, B.; Alemayehu, Y.; et al. MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. BMC Biol. 2019, 17, 65. [Google Scholar] [CrossRef] [PubMed]
- Joensen, K.G.; Tetzschner, A.M.; Iguchi, A.; Aarestrup, F.M.; Scheutz, F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J. Clin. Microbiol. 2015, 53, 2410–2426. [Google Scholar] [CrossRef]
- Seemann, T. ABRicate. Available online: https://github.com/tseemann/abricate (accessed on 1 May 2022).
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef]
- Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Chernyatina, A.A.; Low, H.H. Core architecture of a bacterial type II secretion system. Nat. Commun. 2019, 10, 5437. [Google Scholar] [CrossRef]
- Deng, W.; Marshall, N.C.; Rowland, J.L.; McCoy, J.M.; Worrall, L.J.; Santos, A.S.; Strynadka, N.C.J.; Finlay, B.B. Assembly, structure, function and regulation of type III secretion systems. Nat. Rev. Microbiol. 2017, 15, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Garrido, J.; Ruano-Gallego, D.; Choudhary, J.S.; Frankel, G. The type III secretion system effector network hypothesis. Trends Microbiol. 2022, 30, 524–533. [Google Scholar] [CrossRef]
- Cherrak, Y.; Flaugnatti, N.; Durand, E.; Journet, L.; Cascales, E. Structure and activity of the type VI secretion system. Microbiol. Spectrum 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Coombes, B.K.; Wickham, M.E.; Mascarenhas, M.; Gruenheid, S.; Finlay, B.B.; Karmali, M.A. Molecular analysis as an aid to assess the public health risk of non-O157 Shiga toxin-producing Escherichia coli strains. Appl. Environ. Microbiol. 2008, 74, 2153–2160. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.E.; Mau, B.; Perna, N.T. ProgressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef] [PubMed]
- Néron, B.; Denise, R.; Coluzzi, C.; Touchon, M.; Rocha, E.P.C.; Abby, S.S. MacSyFinder v2: Improved modelling and search engine to identify molecular systems in genomes. Peer Community J. 2023, 3, e28. [Google Scholar] [CrossRef]
- Meuskens, I.; Saragliadis, A.; Leo, J.C.; Linke, D. Type V secretion systems: An overview of passenger domain functions. Front. Microbiol. 2019, 10, 1163. [Google Scholar] [CrossRef] [PubMed]
- Mehta, C.R.; Patel, N.R. Algorithm 643. FEXACT: A FORTRAN subroutine for Fisher’s exact test on unordered r×c contingency tables. ACM Trans. Math Softw. 1986, 12, 154–161. [Google Scholar] [CrossRef]
- Leyva Morales, J.B.; Valdez, J.B.; Bastidas, P.d.J.B.; Angulo Escalante, M.A.; Sarmiento Sanchez, J.I.; Barraza Lobo, A.L.; Olmeda Rubio, C.; Chaidez Quiroz, C. Monitoring of pesticides in Northwestern Mexico rivers. Acta Univ. 2017, 27, 45–54. [Google Scholar] [CrossRef]
- Amézquita-López, B.A.; Soto-Beltrán, M.; Lee, B.G.; Yambao, J.C.; Quiñones, B. Isolation, genotyping and antimicrobial resistance of Shiga toxin-producing Escherichia coli. J. Microbiol. Immunol. Infect. 2017, 51, 425–434. [Google Scholar] [CrossRef]
- Murillo Llanés, J.; Varón, J.; Félix, J.S.V.; González-Ibarra, F.P. Antimicrobial resistance of Escherichia coli in Mexico: How serious is the problem? J. Infect. Dev. Ctries. 2012, 6, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Burnham, C.-A.D.; Leeds, J.; Nordmann, P.; O’Grady, J.; Patel, J. Diagnosing antimicrobial resistance. Nat. Rev. Microbiol. 2017, 15, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Louie, M.; Cockerill, F.R., 3rd. Susceptibility testing. Phenotypic and genotypic tests for bacteria and mycobacteria. Infect. Dis. Clin. N. Am. 2001, 15, 1205–1226. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.; Hwang, S.Y.; Kwon, K.H.; Kim, K.Y.; Kim, J.H.; Park, Y.H. Prevalence and characteristics of Shiga toxin-producing Escherichia coli (STEC) from cattle in Korea between 2010 and 2011. J. Vet. Sci. 2014, 15, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Abd El Ghany, M.; Barquist, L.; Clare, S.; Brandt, C.; Mayho, M.; Joffre, E.; Sjöling, Å.; Turner, A.K.; Klena, J.D.; Kingsley, R.A.; et al. Functional analysis of colonization factor antigen I positive enterotoxigenic Escherichia coli identifies genes implicated in survival in water and host colonization. Microb. Genom. 2021, 7, 000554. [Google Scholar] [CrossRef] [PubMed]
- Bielaszewska, M.; Aldick, T.; Bauwens, A.; Karch, H. Hemolysin of enterohemorrhagic Escherichia coli: Structure, transport, biological activity and putative role in virulence. Int. J. Med. Microbiol. 2014, 304, 521–529. [Google Scholar] [CrossRef]
- Dubreuil, J.D. EAST1 toxin: An enigmatic molecule associated with sporadic episodes of diarrhea in humans and animals. J. Microbiol. 2019, 57, 541–549. [Google Scholar] [CrossRef]
- Ménard, L.-P.; Dubreuil, J.D. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1): A new toxin with an old twist. Crit. Rev. Microbiol. 2002, 28, 43–60. [Google Scholar] [CrossRef]
- Paton, A.W.; Srimanote, P.; Woodrow, M.C.; Paton, J.C. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect. Immun. 2001, 69, 6999–7009. [Google Scholar] [CrossRef]
- Márquez, L.B.; Velázquez, N.; Repetto, H.A.; Paton, A.W.; Paton, J.C.; Ibarra, C.; Silberstein, C. Effects of Escherichia coli subtilase cytotoxin and Shiga toxin 2 on primary cultures of human renal tubular epithelial cells. PLoS ONE 2014, 9, e87022. [Google Scholar] [CrossRef] [PubMed]
- Paton, A.W.; Srimanote, P.; Talbot, U.M.; Wang, H.; Paton, J.C. A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J. Exp. Med. 2004, 200, 35–46. [Google Scholar] [CrossRef]
- Mughini-Gras, L.; van Pelt, W.; van der Voort, M.; Heck, M.; Friesema, I.; Franz, E. Attribution of human infections with Shiga toxin-producing Escherichia coli (STEC) to livestock sources and identification of source-specific risk factors, The Netherlands (2010–2014). Zoonoses Public Health 2018, 65, e8–e22. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Lee, M.-S.; Kim, J.H. Recent updates on outbreaks of Shiga toxin-producing Escherichia coli and its potential reservoirs. Front. Cell Infect. Microbiol. 2020, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, S.C.; Burgess, C.M.; Fanning, S.; Duffy, G. An overview of Shiga-toxin producing Escherichia coli carriage and prevalence in the ovine meat production chain. Foodborne Pathog. Dis. 2021, 18, 147–168. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.T.; Sowers, E.G.; Wells, J.G.; Greene, K.D.; Griffin, P.M.; Hoekstra, R.M.; Strockbine, N.A. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983-2002. J. Infect. Dis. 2005, 192, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Fuller, C.A.; Pellino, C.A.; Flagler, M.J.; Strasser, J.E.; Weiss, A.A. Shiga toxin subtypes display dramatic differences in potency. Infect. Immun. 2011, 79, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, B.; Swimley, M.S. Use of a Vero cell-based fluorescent assay to assess relative toxicities of Shiga toxin 2 subtypes from Escherichia coli. Methods Mol. Biol. 2011, 739, 61–71. [Google Scholar] [CrossRef]
- Byrne, L.; Adams, N.; Jenkins, C. Association between Shiga toxin–producing Escherichia coli O157:H7 stx gene subtype and disease severity, England, 2009–2019. Emerg. Infect. Dis. 2020, 26, 2394. [Google Scholar] [CrossRef]
- Lee, M.S.; Koo, S.; Jeong, D.G.; Tesh, V.L. Shiga toxins as multi-functional proteins: Induction of host cellular stress responses, role in pathogenesis and therapeutic applications. Toxins 2016, 8, 77. [Google Scholar] [CrossRef]
- Griffin, P.M.; Karmali, M.A. Emerging public health challenges of Shiga toxin–producing Escherichia coli related to changes in the pathogen, the population, and the environment. Clin. Infect. Dis. 2017, 64, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Müthing, J.; Schweppe, C.H.; Karch, H.; Friedrich, A.W. Shiga toxins, glycosphingolipid diversity, and endothelial cell injury. Thromb. Haemost. 2009, 101, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Ageorges, V.; Monteiro, R.; Leroy, S.; Burgess, C.M.; Pizza, M.; Chaucheyras-Durand, F.; Desvaux, M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): From bacterial adhesion to biofilm formation. FEMS Microbiol. Rev. 2020, 44, 314–350. [Google Scholar] [CrossRef] [PubMed]
- Barnhart, M.M.; Chapman, M.R. Curli biogenesis and function. Annu. Rev. Microbiol. 2006, 60, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, H.; Suzue, K.; Takita, A.; Tomita, H. Roles of OmpA in type III secretion system-mediated virulence of enterohemorrhagic Escherichia coli. Pathogens 2021, 10, 1496. [Google Scholar] [CrossRef] [PubMed]
- Kortman, G.A.; Boleij, A.; Swinkels, D.W.; Tjalsma, H. Iron availability increases the pathogenic potential of Salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface. PLoS ONE 2012, 7, e29968. [Google Scholar] [CrossRef] [PubMed]
- van Duin, D.; Paterson, D.L. Multidrug-resistant bacteria in the community: Trends and lessons learned. Infect. Dis. Clin. N. Am. 2016, 30, 377–390. [Google Scholar] [CrossRef] [PubMed]
- McGannon, C.M.; Fuller, C.A.; Weiss, A.A. Different classes of antibiotics differentially influence Shiga toxin production. Antimicrob. Agents Chemother. 2010, 54, 3790–3798. [Google Scholar] [CrossRef]
- Das, N.; Madhavan, J.; Selvi, A.; Das, D. An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech 2019, 9, 231. [Google Scholar] [CrossRef]
- Cooley, M.B.; Carychao, D.; Crawford-Miksza, L.; Jay, M.T.; Myers, C.; Rose, C.; Keys, C.; Farrar, J.; Mandrell, R.E. Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California. PLoS ONE 2007, 2, e1159. [Google Scholar] [CrossRef]
Strain NAME | Sample NAME | Serotype 1 | Source | Site | ST 2 | MLST Allele Number | Shiga Toxin Subtype | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
adk | fum | gyrB | icd | mdh | purA | recA | |||||||
BAAL1102 | Ba05 | O157:H7 | River water | Jotagua | 11 | 12 | 12 | 8 | 12 | 15 | 2 | 2 | stx2c |
BAAL1103 | Ba05 | O8:H19 | River water | Jotagua | 2385 | 6 | 359 | 5 | 1 | 9 | 8 | 6 | stx1a, stx2d |
BAAL1104 | Ba06 | O157:H7 | River water | Jotagua | 11 | 12 | 12 | 8 | 12 | 15 | 2 | 2 | stx2c |
BAAL1105 | Bp01 | O113:H21 | Chicken feces | Jotagua | 223 | 6 | 4 | 4 | 18 | 24 | 8 | 14 | stx1a, stx2d |
BAAL1106 | Bp01 | O113:H21 | Chicken feces | Jotagua | 223 | 6 | 4 | 4 | 18 | 24 | 8 | 14 | stx1a |
BAAL1107 | Bp04 | O113:H21 | Chicken feces | Jotagua | 223 | 6 | 4 | 4 | 18 | 24 | 8 | 14 | stx1a |
BAAL1108 | Bv01 | O185:NT | Cattle feces | Jotagua | 48 | 6 | 11 | 4 | 8 | 8 | 8 | 2 | stx1a |
BAAL1110 | Bv02 | O8:H19 | Cattle feces | Jotagua | 2385 | 6 | 359 | 5 | 1 | 9 | 8 | 6 | stx1a, stx2a |
BAAL1111 | Bv02 | O8:H19 | Cattle feces | Jotagua | 2385 | 6 | 359 | 5 | 1 | 9 | 8 | 6 | stx1a, stx2a |
BAAL1112 | Bv03 | O8:H19 | Cattle feces | Jotagua | 2385 | 6 | 359 | 5 | 1 | 9 | 8 | 6 | stx1a, stx2a, stx2d |
BAAL1113 | Bv03 | O8:H19 | Cattle feces | Jotagua | 2385 | 6 | 359 | 5 | 1 | 9 | 8 | 6 | stx1a, stx2d |
BAAL1114 | Bv04 | O17:H45 | Cattle feces | Jotagua | 2385 | 6 | 359 | 5 | 1 | 9 | 8 | 6 | stx1a, stx2a, stx2d |
BAAL1115 | Bv04 | O8:H19 | Cattle feces | Jotagua | 2385 | 6 | 359 | 5 | 1 | 9 | 8 | 6 | stx1a, stx2a, stx2d |
BAAL1116 | Av04 | O17:H45 | Cattle feces | Agua Caliente | 747 | 52 | 54 | 46 | 48 | 35 | 40 | 38 | stx1a, stx2a |
BAAL1117 | Av04 | O17:H45 | Cattle feces | Agua Caliente | 747 | 52 | 54 | 46 | 48 | 35 | 40 | 38 | stx1a, stx2a |
BAAL1119 | Av06 | O8:H33 | Cattle feces | Agua Caliente | 3910 | 52 | 403 | 76 | 324 | 35 | 40 | 278 | stx1a |
BAAL1120 | Ca02 | ONT:H30 | River water | San Pedro | 8577 | 8 | 7 | 728 | 220 | 8 | 8 | 2 | stx1a |
BAAL1121 | Ca04 | O185:NT | River water | San Pedro | 1146 | 6 | 29 | 4 | 1 | 24 | 8 | 7 | stx1a |
BAAL1122 | Cv02 | O17:H45 | Cattle feces | San Pedro | 6475 | 52 | 859 | 46 | 48 | 35 | 8 | 38 | stx1a, stx2a |
BAAL1123 | Cv02 | O8:H19 | Cattle feces | San Pedro | 2385 | 6 | 359 | 5 | 1 | 9 | 8 | 6 | stx1a, stx2c |
BAAL1124 | Cv03 | O8:H19 | Cattle feces | San Pedro | 2385 | 6 | 359 | 5 | 1 | 9 | 8 | 6 | stx1a, stx2a, stx2c, stx2d |
Strain Name | Sources | Site | Antimicrobial Profile 1 |
---|---|---|---|
BAAL1122 | Cattle feces | San Pedro | AMP |
BAAL1116 | Cattle feces | Agua Caliente | KAN |
BAAL1113 | Cattle feces | Jotagua | KAN |
BAAL1110, BAAL1111 | Cattle feces | Jotagua | CEF |
BAAL1102 | River water | Jotagua | CEF |
BAAL1107 | Chicken feces | Jotagua | GEN |
BAAL1123 | Cattle feces | San Pedro | TET |
BAAL1104 | River water | Jotagua | AMP, SXT |
BAAL1117 | Cattle feces | Agua Caliente | CEF, KAN |
BAAL1124 | Cattle feces | San Pedro | CEF, TET |
BAAL1115 | Cattle feces | Jotagua | KAN, TET |
BAAL1105 | Chicken feces | Jotagua | AMK, CIP, GEN |
BAAL1121 | River water | San Pedro | CEF, GEN, KAN |
BAAL1106 | Chicken feces | Jotagua | CIP, IPM, KAN |
BAAL1108 | Cattle feces | Jotagua | CIP, NAL, TET |
BAAL1119 | Cattle feces | Agua Caliente | AMP, CEF, CHL, KAN, TET |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amézquita-López, B.A.; Soto-Beltrán, M.; Lee, B.G.; Bon-Haro, E.F.; Lugo-Melchor, O.Y.; Quiñones, B. Virulence and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli from River Water and Farm Animal Feces near an Agricultural Region in Northwestern Mexico. Microbiol. Res. 2024, 15, 385-403. https://doi.org/10.3390/microbiolres15010026
Amézquita-López BA, Soto-Beltrán M, Lee BG, Bon-Haro EF, Lugo-Melchor OY, Quiñones B. Virulence and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli from River Water and Farm Animal Feces near an Agricultural Region in Northwestern Mexico. Microbiology Research. 2024; 15(1):385-403. https://doi.org/10.3390/microbiolres15010026
Chicago/Turabian StyleAmézquita-López, Bianca A., Marcela Soto-Beltrán, Bertram G. Lee, Edgar F. Bon-Haro, Ofelia Y. Lugo-Melchor, and Beatriz Quiñones. 2024. "Virulence and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli from River Water and Farm Animal Feces near an Agricultural Region in Northwestern Mexico" Microbiology Research 15, no. 1: 385-403. https://doi.org/10.3390/microbiolres15010026
APA StyleAmézquita-López, B. A., Soto-Beltrán, M., Lee, B. G., Bon-Haro, E. F., Lugo-Melchor, O. Y., & Quiñones, B. (2024). Virulence and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli from River Water and Farm Animal Feces near an Agricultural Region in Northwestern Mexico. Microbiology Research, 15(1), 385-403. https://doi.org/10.3390/microbiolres15010026