Updates on Staphylococcal Vaccines
Abstract
:1. Introduction
2. Approaches towards a S. aureus Vaccine
2.1. Microbial Factors
2.1.1. Clumping Factor A
2.1.2. Capsular Polysaccharides
2.1.3. Manganese Transporter C (MntC)
2.1.4. IsdA or IsdB
2.2. Host Factors
2.2.1. T Cells
2.2.2. Antibody Therapy
2.3. Other Approaches
3. Application of S. aureus Vaccines
4. Failure to Obtain an S. aureus Vaccine
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular Mechanisms of Drug Resistance in Staphylococcus Aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef] [PubMed]
- Kuklin, N.A.; Clark, D.J.; Secore, S.; Cook, J.; Cope, L.D.; McNeely, T.; Noble, L.; Brown, M.J.; Zorman, J.K.; Wang, X.M.; et al. A Novel Staphylococcus Aureus Vaccine: Iron Surface Determinant B Induces Rapid Antibody Responses in Rhesus Macaques and Specific Increased Survival in a Murine S. Aureus Sepsis Model. Infect. Immun. 2006, 74, 2215–2223. [Google Scholar] [CrossRef] [PubMed]
- Sakr, A.; Brégeon, F.; Mège, J.-L.; Rolain, J.-M.; Blin, O. Staphylococcus Aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front. Microbiol. 2018, 9, 2419. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; DeDent, A.; Cheng, A.G.; McAdow, M.; Bagnoli, F.; Missiakas, D.M.; Schneewind, O. IsdA and IsdB Antibodies Protect Mice against Staphylococcus Aureus Abscess Formation and Lethal Challenge. Vaccine 2010, 28, 6382–6392. [Google Scholar] [CrossRef]
- Preda, M.; Mihai, M.M.; Popa, L.I.; Dițu, L.-M.; Holban, A.M.; Manolescu, L.S.C.; Popa, G.-L.; Muntean, A.-A.; Gheorghe, I.; Chifiriuc, C.M.; et al. Phenotypic and Genotypic Virulence Features of Staphylococcal Strains Isolated from Difficult-to-Treat Skin and Soft Tissue Infections. PLoS ONE 2021, 16, e0246478. [Google Scholar] [CrossRef]
- Armentrout, E.I.; Liu, G.Y.; Martins, G.A. T Cell Immunity and the Quest for Protective Vaccines against Staphylococcus Aureus Infection. Microorganisms 2020, 8, 1936. [Google Scholar] [CrossRef]
- Golli, A.L.; Nitu, F.M.; Balasoiu, M.; Nemes, R.M.; Tudorache, S.I.; Boca, B.M.; Olteanu, M. Bacterial Isolates from Endotracheal Aspirates and Their Antimicrobial Resistance Pattern in Patients from Intensive Care Unit. Rev. Chim. 2019, 70, 3299–3304. [Google Scholar] [CrossRef]
- Shinefield, H.R.; Black, S. Prevention of Staphylococcus Aureus Infections: Advances in Vaccine Development. Expert. Rev. Vaccines 2005, 4, 669–676. [Google Scholar] [CrossRef]
- LeClaire, R.D.; Hunt, R.E.; Bavari, S. Protection against Bacterial Superantigen Staphylococcal Enterotoxin B by Passive Vaccination. Infect. Immun. 2002, 70, 2278–2281. [Google Scholar] [CrossRef]
- Bristol-Myers Squibb A Phase IIa Dose Escalation Study to Assess Safety and Pharmacokinetics of Aurexis® in Cystic Fibrosis Subjects Chronically Colonized with Staphylococcus Aureus in Their Lungs. Available online: https://classic.clinicaltrials.gov/ct2/history/NCT00198289?V_3=View (accessed on 12 November 2023).
- Nabi Biopharmaceuticals Initial Safety and Pharmacokinetics Trial of Immune Globulin to Staphylococcus Aureus Capsule Polysaccharide (Altastaph) in Subjects with S. Aureus Bacteremia and Persistent Fever. Available online: https://ctv.veeva.com/study/safety-and-behavior-of-s-aureus-immune-globulin-intravenous-human-altastaph-in-patients-with-s (accessed on 12 November 2023).
- NeuTec Pharma A Multi Centre, Double-Blind, Randomised, Placebo Controlled Prospective Study on the Safety and Efficacy of Aurograb in Patients with Severe, Deep-Seated Staphylococcal Infections Receiving Vancomycin. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT00217841 (accessed on 12 November 2023).
- Biosynexus Incorporated A Phase 2b/3, Multi-Center, Randomized, Double-Blind, Placebo Controlled Trial to Evaluate the Safety and Efficacy of Pagibaximab Injection in Very Low Birth Weight (VLBW) Neonates for the Prevention of Staphylococcal Sepsis. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT00646399 (accessed on 24 November 2023).
- Lim, J.; Lewin-Koh, N.; Chu, T.; Rymut, S.M.; Berhanu, A.; Carrasco-Triguero, M.; Rosenberger, C.C.; Hazenbos, W.L.; Miller, L.G.; Fowler, V.G.; et al. 167. A Phase 1b, Randomized, Double-Blind, Placebo-Controlled, Multiple-Ascending Dose Study to Investigate the Safety, Tolerability, and Pharmacokinetics of DSTA4637S in Patients with Staphylococcus Aureus Bacteremia Receiving Standard-of-Care Antibiotics. Open Forum Infect. Dis. 2020, 7, S213. [Google Scholar] [CrossRef]
- Buckley, P.T.; Chan, R.; Fernandez, J.; Luo, J.; Lacey, K.A.; DuMont, A.L.; O’Malley, A.; Brezski, R.J.; Zheng, S.; Malia, T.; et al. Multivalent Human Antibody-Centyrin Fusion Protein to Prevent and Treat Staphylococcus Aureus Infections. Cell Host Microbe 2023, 31, 751–765.e11. [Google Scholar] [CrossRef] [PubMed]
- Arsanis, Inc. A Phase 2, Randomized, Double-Blind, Placebo-Controlled Study to Determine the Safety and Efficacy of a Single Dose of ASN100 for the Prevention of Staphylococcus Aureus Pneumonia in Heavily Colonized, Mechanically Ventilated Subjects. Available online: https://classic.clinicaltrials.gov/ProvidedDocs/26/NCT02940626/SAP_002.pdf (accessed on 12 November 2023).
- Aridis Pharmaceuticals, Inc. A Randomized Double-Blind Placebo-Controlled Multicenter Phase 3 Study of Efficacy and Safety of AR-301 as Adjunct Therapy to Antibiotics in the Treatment of Ventilator-Associated Pneumonia (VAP) Caused by S. Aureus. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03816956 (accessed on 15 November 2023).
- Aridis Pharmaceuticals, Inc. A Phase 3, Randomized, Double-Blind, Placebo-Controlled, Single-Dose Study to Evaluate the Efficacy and Safety of Suvratoxumab in Mechanically Ventilated Adults and Adolescents for the Prevention of Nosocomial Pneumonia. Available online: https://fdaaa.trialstracker.net/trial/NCT05331885/ (accessed on 1 November 2023).
- De Jonge, M.; Burchfield, D.; Bloom, B.; Duenas, M.; Walker, W.; Polak, M.; Jung, E.; Millard, D.; Schelonka, R.; Eyal, F.; et al. Clinical Trial of Safety and Efficacy of IHN-A21 for the Prevention of Nosocomial Staphylococcal Bloodstream Infection in Premature Infants. J. Pediatr. 2007, 151, 260–265.e1. [Google Scholar] [CrossRef]
- Adhikari, R.P.; Karauzum, H.; Sarwar, J.; Abaandou, L.; Mahmoudieh, M.; Boroun, A.R.; Vu, H.; Nguyen, T.; Devi, V.S.; Shulenin, S.; et al. Novel Structurally Designed Vaccine for S. Aureus α-Hemolysin: Protection against Bacteremia and Pneumonia. PLoS ONE 2012, 7, e38567. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, A.C.; Solinga, R.M.; Cocchiaro, J.; Portoles, M.; Kiser, K.B.; Risley, A.; Randall, S.M.; Valtulina, V.; Speziale, P.; Walsh, E.; et al. Immunization with Staphylococcus Aureus Clumping Factor B, a Major Determinant in Nasal Carriage, Reduces Nasal Colonization in a Murine Model. Infect. Immun. 2006, 74, 2145–2153. [Google Scholar] [CrossRef]
- Wacker, M.; Wang, L.; Kowarik, M.; Dowd, M.; Lipowsky, G.; Faridmoayer, A.; Shields, K.; Park, S.; Alaimo, C.; Kelley, K.A.; et al. Prevention of Staphylococcus Aureus Infections by Glycoprotein Vaccines Synthesized in Escherichia Coli. J. Infect. Dis. 2014, 209, 1551–1561. [Google Scholar] [CrossRef]
- Mancini, F.; Monaci, E.; Lofano, G.; Torre, A.; Bacconi, M.; Tavarini, S.; Sammicheli, C.; Arcidiacono, L.; Galletti, B.; Laera, D.; et al. One Dose of Staphylococcus Aureus 4C-Staph Vaccine Formulated with a Novel TLR7-Dependent Adjuvant Rapidly Protects Mice through Antibodies, Effector CD4+ T Cells, and IL-17A. PLoS ONE 2016, 11, e0147767. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.H.; Pasetti, M.F.; Adhikari, R.P.; Baughman, H.; Douglas, R.; El-Khorazaty, J.; Greenberg, N.; Holtsberg, F.W.; Liao, G.C.; Reymann, M.K.; et al. Safety and Immunogenicity of a Parenterally Administered, Structure-Based Rationally Modified Recombinant Staphylococcal Enterotoxin B Protein Vaccine, STEBVax. Clin. Vaccine Immunol. 2016, 23, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, H.; Baber, J.; Begier, E.; Noriega, D.C.; Konishi, H.; Yato, Y.; Wang, M.Y.; Le Huec, J.C.; Patel, V.; Varga, P.; et al. Efficacy of a 4-Antigen Staphylococcus Aureus Vaccine in Spinal Surgery: The STaphylococcus Aureus suRgical Inpatient Vaccine Efficacy (STRIVE) Randomized Clinical Trial. Clin. Infect. Dis. 2023, 77, 312–320. [Google Scholar] [CrossRef]
- Shinefield, H.; Black, S.; Fattom, A.; Horwith, G.; Rasgon, S.; Ordonez, J.; Yeoh, H.; Law, D.; Robbins, J.B.; Schneerson, R.; et al. Use of a Staphylococcus Aureus Conjugate Vaccine in Patients Receiving Hemodialysis. N. Engl. J. Med. 2002, 346, 491–496. [Google Scholar] [CrossRef]
- Zeng, H.; Yang, F.; Feng, Q.; Zhang, J.; Gu, J.; Jing, H.; Cai, C.; Xu, L.; Yang, X.; Xia, X.; et al. Rapid and Broad Immune Efficacy of a Recombinant Five-Antigen Vaccine against Staphylococcus Aureus Infection in Animal Models. Vaccines 2020, 8, 134. [Google Scholar] [CrossRef]
- Amandine, G.-B.; Gagnaire, J.; Pelissier, C.; Philippe, B. Botelho-Nevers Elisabeth Vaccines for Healthcare Associated Infections without Vaccine Prevention to Date. Vaccine X 2022, 11, 100168. [Google Scholar] [CrossRef] [PubMed]
- Yeaman, M.R.; Filler, S.G.; Chaili, S.; Barr, K.; Wang, H.; Kupferwasser, D.; Hennessey, J.P.; Fu, Y.; Schmidt, C.S.; Edwards, J.E.; et al. Mechanisms of NDV-3 Vaccine Efficacy in MRSA Skin versus Invasive Infection. Proc. Natl. Acad. Sci. USA 2014, 111, E5555–E5563. [Google Scholar] [CrossRef]
- Schmidt, C.S.; White, C.J.; Ibrahim, A.S.; Filler, S.G.; Fu, Y.; Yeaman, M.R.; Edwards, J.E.; Hennessey, J.P. NDV-3, a Recombinant Alum-Adjuvanted Vaccine for Candida and Staphylococcus Aureus Is Safe and Immunogenic in Healthy Adults. Vaccine 2012, 30, 7594–7600. [Google Scholar] [CrossRef]
- Karauzum, H.; Venkatasubramaniam, A.; Adhikari, R.P.; Kort, T.; Holtsberg, F.W.; Mukherjee, I.; Mednikov, M.; Ortines, R.; Nguyen, N.T.Q.; Doan, T.M.N.; et al. IBT-V02: A Multicomponent Toxoid Vaccine Protects Against Primary and Secondary Skin Infections Caused by Staphylococcus Aureus. Front. Immunol. 2021, 12, 624310. [Google Scholar] [CrossRef]
- Merrill, C.; Ensermu, D.B.; Abdi, R.D.; Gillespie, B.E.; Vaughn, J.; Headrick, S.I.; Hash, K.; Walker, T.B.; Stone, E.; Kerro Dego, O. Immunological Responses and Evaluation of the Protection in Dairy Cows Vaccinated with Staphylococcal Surface Proteins. Vet. Immunol. Immunopathol. 2019, 214, 109890. [Google Scholar] [CrossRef] [PubMed]
- Marshall, H.; Nissen, M.; Richmond, P.; Shakib, S.; Jiang, Q.; Cooper, D.; Rill, D.; Baber, J.; Eiden, J.; Gruber, W.C.; et al. Safety and Immunogenicity of a Booster Dose of a 3-Antigen Staphylococcus Aureus Vaccine (SA3Ag) in Healthy Adults: A Randomized Phase 1 Study. J. Infect. 2016, 73, 437–454. [Google Scholar] [CrossRef] [PubMed]
- Broughan, J.; Anderson, R.; Anderson, A.S. Strategies for and Advances in the Development of Staphylococcus Aureus Prophylactic Vaccines. Expert. Rev. Vaccines 2011, 10, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Ohlsen, K.; Lorenz, U. Immunotherapeutic Strategies to Combat Staphylococcal Infections. Int. J. Med. Microbiol. 2010, 300, 402–410. [Google Scholar] [CrossRef]
- Anderson, A.S.; Miller, A.A.; Donald, R.G.K.; Scully, I.L.; Nanra, J.S.; Cooper, D.; Jansen, K.U. Development of a Multicomponent Staphylococcus Aureus Vaccine Designed to Counter Multiple Bacterial Virulence Factors. Hum. Vaccines Immunother. 2012, 8, 1585–1594. [Google Scholar] [CrossRef]
- Scully, I.L.; Timofeyeva, Y.; Illenberger, A.; Lu, P.; Liberator, P.A.; Jansen, K.U.; Anderson, A.S. Performance of a Four-Antigen Staphylococcus Aureus Vaccine in Preclinical Models of Invasive S. Aureus Disease. Microorganisms 2021, 9, 177. [Google Scholar] [CrossRef]
- Soltan, M.A.; Magdy, D.; Solyman, S.M.; Hanora, A. Design of Staphylococcus Aureus New Vaccine Candidates with B and T Cell Epitope Mapping, Reverse Vaccinology, and Immunoinformatics. OMICS 2020, 24, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Fattom, A.; Matalon, A.; Buerkert, J.; Taylor, K.; Damaso, S.; Boutriau, D. Efficacy Profile of a Bivalent Staphylococcus Aureus Glycoconjugated Vaccine in Adults on Hemodialysis: Phase III Randomized Study. Hum. Vaccin. Immunother. 2015, 11, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-J.; Zhang, J.-Y.; Wei, C.; Yang, L.-Y.; Zuo, Q.-F.; Zhuang, Y.; Feng, Y.-J.; Srinivas, S.; Zeng, H.; Zou, Q.-M. Immunisation with Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus Aureus Infection. PLoS ONE 2016, 11, e0149638. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, H.; Yang, Y.; Tong, Y.; Peng, L.; Zhu, B.; Diao, W.; Zeng, H.; Sun, H.; Zou, Q. Protective Effects of a Nanoemulsion Adjuvant Vaccine (2C-Staph/NE) Administered Intranasally against Invasive Staphylococcus Aureus Pneumonia. RSC Adv. 2018, 8, 9996–10008. [Google Scholar] [CrossRef]
- Yu, W.; Yao, D.; Yu, S.; Wang, X.; Li, X.; Wang, M.; Liu, S.; Feng, Z.; Chen, X.; Li, W.; et al. Protective Humoral and CD4+ T Cellular Immune Responses of Staphylococcus Aureus Vaccine MntC in a Murine Peritonitis Model. Sci. Rep. 2018, 8, 3580. [Google Scholar] [CrossRef]
- Pilpa, R.M.; Robson, S.A.; Villareal, V.A.; Wong, M.L.; Phillips, M.; Clubb, R.T. Functionally Distinct NEAT (NEAr Transporter) Domains within the Staphylococcus Aureus IsdH/HarA Protein Extract Heme from Methemoglobin*. J. Biol. Chem. 2009, 284, 1166–1176. [Google Scholar] [CrossRef]
- Joshi, A.; Pancari, G.; Cope, L.; Bowman, E.P.; Cua, D.; Proctor, R.A.; McNeely, T. Immunization with Staphylococcus Aureus Iron Regulated Surface Determinant B (IsdB) Confers Protection via Th17/IL17 Pathway in a Murine Sepsis Model. Hum. Vaccin. Immunother. 2012, 8, 336–346. [Google Scholar] [CrossRef]
- Fowler, V.G.; Allen, K.B.; Moreira, E.D.; Moustafa, M.; Isgro, F.; Boucher, H.W.; Corey, G.R.; Carmeli, Y.; Betts, R.; Hartzel, J.S.; et al. Effect of an Investigational Vaccine for Preventing Staphylococcus Aureus Infections after Cardiothoracic Surgery: A Randomized Trial. JAMA 2013, 309, 1368–1378. [Google Scholar] [CrossRef]
- Wong Fok Lung, T.; Chan, L.C.; Prince, A.; Yeaman, M.R.; Archer, N.K.; Aman, M.J.; Proctor, R.A. Staphylococcus Aureus Adaptive Evolution: Recent Insights on How Immune Evasion, Immunometabolic Subversion and Host Genetics Impact Vaccine Development. Front. Cell Infect. Microbiol. 2022, 12, 1060810. [Google Scholar] [CrossRef]
- Karauzum, H.; Datta, S.K. Adaptive Immunity against Staphylococcus Aureus. Curr. Top. Microbiol. Immunol. 2017, 409, 419–439. [Google Scholar] [CrossRef]
- Francis, D.; Kuyyalil, S. Immunogenicity and Protective Efficacy of Recombinant Alkaline Shock Protein 23 from Staphylococcus Aureus in a Murine Model. Cent. Eur. J. Immunol. 2018, 43, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, R.; Kant, R.; Christodoulides, M. Artificial Intelligence in Accelerating Vaccine Development—Current and Future Perspectives. Front. Bacteriol. 2023, 2, 7205241. [Google Scholar] [CrossRef]
- Grunenwald, C.M.; Bennett, M.R.; Skaar, E.P. Non-Conventional Therapeutics against Staphylococcus Aureus. Microbiol. Spectr. 2018, 6, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Rupp, M.E.; Holley, H.P.; Lutz, J.; Dicpinigaitis, P.V.; Woods, C.W.; Levine, D.P.; Veney, N.; Fowler, V.G. Phase II, Randomized, Multicenter, Double-Blind, Placebo-Controlled Trial of a Polyclonal Anti-Staphylococcus Aureus Capsular Polysaccharide Immune Globulin in Treatment of Staphylococcus Aureus Bacteremia. Antimicrob. Agents Chemother. 2007, 51, 4249–4254. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, D.K.; Schelonka, R.; White, R.; Holley, H.P.; Bifano, E.; Cummings, J.; Adcock, K.; Kaufman, D.; Puppala, B.; Riedel, P.; et al. A Blinded, Randomized, Multicenter Study of an Intravenous Staphylococcus Aureus Immune Globulin. J. Perinatol. 2006, 26, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Creech, C.B.; Johnson, B.G.; Alsentzer, A.R.; Hohenboken, M.; Edwards, K.M.; Talbot, T.R. Vaccination as Infection Control: A Pilot Study to Determine the Impact of Staphylococcus Aureus Vaccination on Nasal Carriage. Vaccine 2009, 28, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Lesan, A.; Man, M.A.; Nemes, R.M.; Harsovescu, T.; Tudorache, I.S.; Boca, B.M.; Pop, C.M. Serum Interleukin 4 and 6 Levels Measured Using the ELISA Method in Patients with Acquired Bronchiectasis Compared to Healthy Subjects. An Anti-Inflammatory and pro-Inflammatory Relation. Rev. Chim. 2019, 70, 2410–2414. [Google Scholar] [CrossRef]
- Motoc, N.S.; Martinovici, P.; Boca, B.M.; Tudorache, I.S.; Harsovescu, T.; Furtunescu, F.L.; Man, M.A.; Pop, C.M. Neutrophil-to-Lymphocyte Ratio (NLR) and Platelets-to-Lymphocyte (PLR) Ratio in Patients with Exacerbation of Bronchiectasis. Rev. Chim. 2019, 70, 3889–3892. [Google Scholar] [CrossRef]
- Dimitrov, I.; Doytchinova, I. Prediction of Bacterial Immunogenicity by Machine Learning Methods. Methods Mol. Biol. 2023, 2673, 289–303. [Google Scholar] [CrossRef]
- Seib, K.L.; Zhao, X.; Rappuoli, R. Developing Vaccines in the Era of Genomics: A Decade of Reverse Vaccinology. Clin. Microbiol. Infect. 2012, 18, 109–116. [Google Scholar] [CrossRef]
- Meca, A.-D.; Turcu-Stiolica, A.; Bogdan, M.; Subtirelu, M.-S.; Cocoș, R.; Ungureanu, B.S.; Mahler, B.; Pisoschi, C.-G. Screening Performance of C-Reactive Protein for Active Pulmonary Tuberculosis in HIV-Positive Patients: A Systematic Review with a Meta-Analysis. Front. Immunol. 2022, 13, 891201. [Google Scholar] [CrossRef] [PubMed]
- Oprea, M.; Antohe, F. Reverse-Vaccinology Strategy for Designing T-Cell Epitope Candidates for Staphylococcus Aureus Endocarditis Vaccine. Biologicals 2013, 41, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.A. Is There a Future for a Staphylococcus Aureus Vaccine? Vaccine 2012, 30, 2921–2927. [Google Scholar] [CrossRef] [PubMed]
- Clegg, J.; Soldaini, E.; McLoughlin, R.M.; Rittenhouse, S.; Bagnoli, F.; Phogat, S. Staphylococcus Aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front. Immunol. 2021, 12, 705360. [Google Scholar] [CrossRef]
- Teymournejad, O.; Li, Z.; Beesetty, P.; Yang, C.; Montgomery, C.P. Toxin Expression during Staphylococcus Aureus Infection Imprints Host Immunity to Inhibit Vaccine Efficacy. npj Vaccines 2023, 8, 3. [Google Scholar] [CrossRef]
- Tsai, C.-M.; Caldera, J.; Hajam, I.A.; Chiang, A.W.T.; Tsai, C.-H.; Li, H.; Lázaro Díez, M.; Gonzalez, C.; Trieu, D.; Martins, G.A.; et al. Non-Protective Immune Imprint Underlies Failure of Staphylococcus Aureus IsdB Vaccine. Cell Host Microbe 2022, 30, 1163–1172.e6. [Google Scholar] [CrossRef] [PubMed]
Name | Compound | Target | Company | Status | Reference |
---|---|---|---|---|---|
SEB-specific antibody | Chicken immunoglobulin IgY | Staphylococcal enterotoxin B | - | Animal model | [9] |
Tefibazumab, Aurexis | humanized monoclonal antibody | Clumping Factor A | Bristol-Myers Squibb | Phase IIa | [10] |
Altastaph | Polyclonal human immunoglobulin G | Capsular polysaccharide type 5 and type 8 | Nabi Biopharmaceuticals | Phase II | [11] |
Aurograb | Monoclonal antibody | ABC transporter | Novartis | Phase II | [12] |
Pagimaximab | Humanized mouse chimeric monoclonal antibody | Lipoteichoic acid | Biosynexus | Phase IIb/III | [13] |
DSTA4637S | Engineered human IgG1 monoclonal antibody | Wall teichoic acid at the surface of S. aureus | Genentech | Phase Ib | [14] |
mAbtyrin | Human-derived anti-S. aureus monoclonal antibody (mAb)-centyrin fusion protein | Bacterial adhesins | Animal model | Animal model | [15] |
ASN100 | Monoclonal antibody combination of two fully human IgG1(κ) monoclonal antibodies, ASN-1, and ASN-2 | Alpha-hemolysin (Hla) and five bicomponent leukocidins | Arsanis | Phase II | [16] |
Tosatoxumab or AR-301 | Fully human monoclonal IgG1 antibody | S. aureus alpha-toxin | Aridis Pharmaceuticals, Inc | Phase III | [17] |
Suvratoxumab or ‘AR-320’ | Human anti-alpha-toxin IgG1 monoclonal antibody | S. aureus alpha-toxin | Aridis Pharmaceuticals, Inc | Phase III, ongoing | [18] |
INH-A21, Veronate | pooled human immunoglobulin purified from the serum of donors with high titers against ClfA and SdrG | Staphylococcal adhesins that bind fibrinogen and fibrin (S. aureus ClfA and S. epidermidis SdrG) | (Inhibitex) | Phase III, failed | [19] |
Name | Target | Company | Status | Reference |
---|---|---|---|---|
- | Alpha-haemolysin (Hla) | - | Animal model | [20] |
- | Clumping factor B (ClfB) | - | Animal model | [21] |
Glycovaxine | CP5/CP8/HlaH35L (recombinant) | GSK | Animal model | [22] |
4C-Staph | ferric hydroxamate uptakeuD2, EsxAB, HlaH35L, conserved staphylococcal antigens1A (purified, alum-adjuvanted) | Novartis | Animal model | [23] |
SA75 | Whole-cell vaccine | Vaccine Research International | Phase I | [23] |
STEBvax | Enterotoxin B (rSEB) | Integrated BioTherapeutics | Phase I | [24] |
SA4Ag (PF-06290510) | ClfA/MntC/CP5/CP8 (conjugated CP5/CP8 plus recombinant MntC/ClfA) | Pfizer | Phase IIb/III | [25] |
StaphVax | capsule polysaccharides 5 and 8 | Nabi Biopharmaceutical | Phase III | [26] |
V710 (0657nl) | Iron surface determinant B (IsdB) | Merck | Phase III stopped | [2] |
rFSAV | Hla, SpA, SEB, IsdB, MntC + Alum-adjuvanted | Olymvax | Phase II | [27] |
SA5Ag | GSK | Phase II | [28] | |
NDV-3A | Als-3 (C. albicans cross reactive cell wall protein) + Alum | Novadigm Therapeutics | Phase II | [29,30] |
IBT-V02 | SEB, SEA, TSST-1, LukS, LukF, LukAB, Hla + alum | Integrated Biotherapeutics | Phase II | [31] |
Lysigin | Whole-cell vaccine | Boehringer Ingelheim Vetmedica | Animal model | [32] |
Startvac | Hipra | Animal model | [32] | |
Sa3Ag | S. aureus capsular polysaccharides | Pfizer | Phase II | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scafa-Udriste, A.; Popa, M.-I.; Popa, G.-L. Updates on Staphylococcal Vaccines. Microbiol. Res. 2024, 15, 137-151. https://doi.org/10.3390/microbiolres15010009
Scafa-Udriste A, Popa M-I, Popa G-L. Updates on Staphylococcal Vaccines. Microbiology Research. 2024; 15(1):137-151. https://doi.org/10.3390/microbiolres15010009
Chicago/Turabian StyleScafa-Udriste, Alexandru, Mircea-Ioan Popa, and Gabriela-Loredana Popa. 2024. "Updates on Staphylococcal Vaccines" Microbiology Research 15, no. 1: 137-151. https://doi.org/10.3390/microbiolres15010009
APA StyleScafa-Udriste, A., Popa, M. -I., & Popa, G. -L. (2024). Updates on Staphylococcal Vaccines. Microbiology Research, 15(1), 137-151. https://doi.org/10.3390/microbiolres15010009