Endophytic Fungi in Rice Plants and Their Prospective Uses
Abstract
:1. Introduction
2. Isolation and Identification of Endophytic Fungi in Rice
3. Variations in Endophytic Fungal Communities in Rice: Exploring the Diversity and Factors Influencing Their Composition
4. Colonization of Endophytic Fungi in Rice
5. Effects of Endophytic Fungi in Rice Plant
5.1. Direct Effects
5.1.1. Mineral Uptake
5.1.2. Promotion of Plant Hormone Secretion
5.2. Indirect Effects
5.2.1. Alleviation of Biotic Stress
5.2.2. Alleviation of Abiotic Stress
6. Secondary Metabolites of Endophytic Fungi
7. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sturz, A.; Nowak, J. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl. Soil Ecol. 2000, 15, 183–190. [Google Scholar] [CrossRef]
- Finkel, O.M.; Castrillo, G.; Paredes, S.H.; González, I.S.; Dangl, J.L. Understanding and exploiting plant beneficial microbes. Curr. Opin. Plant Biol. 2017, 38, 155–163. [Google Scholar] [CrossRef]
- Santoyo, G.; Moreno-Hagelsieb, G.; del Carmen Orozco-Mosqueda, M.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, A.A. Endophytes: Colonization, Behaviour, and Their Role in Defense Mechanism. Int. J. Microbiol. 2020, 2020, 6927219. [Google Scholar] [CrossRef] [PubMed]
- Chebotar, V.K.; Malfanova, N.V.; Shcherbakov, A.V.; Ahtemova, G.A.; Borisov, A.Y.; Lugtenberg, B.; Tikhonovich, I.A. Endophytic bacteria in microbial preparations that improve plant development (review). Appl. Biochem. Microbiol. 2015, 51, 271–277. [Google Scholar] [CrossRef]
- Afzal, I.; Shinwari, Z.K.; Sikandar, S.; Shahzad, S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 2019, 221, 36–49. [Google Scholar] [CrossRef]
- Montesinos, E. Plant-associated microorganisms: A view from the scope of microbiology. Int. Microbiol. 2003, 6, 221–223. [Google Scholar] [CrossRef]
- Morales-Cedeno, L.R.; Orozco-Mosqueda, M.d.C.; Loeza-Lara, P.D.; Parra-Cota, F.I.; Santos-Villalobos, S.d.L.; Santoyo, G. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiol. Res. 2021, 242, 126612. [Google Scholar] [CrossRef] [PubMed]
- Sieber, T.N. Endophytic fungi in forest trees: Are they mutualists? Fungal Biol. Rev. 2007, 21, 75–89. [Google Scholar] [CrossRef]
- Petrini, O. Fungal Endophytes of Tree Leaves. In Microbial Ecology of Leaves; Andrews, J.H., Hirano, S.S., Eds.; Brock/Springer Series in Contemporary Bioscience; Springer: New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes: Unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol. 2011, 90, 1829–1845. [Google Scholar] [CrossRef]
- Lu, H.; Wei, T.; Lou, H.; Shu, X.; Chen, Q. A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. J. Fungi 2021, 7, 719. [Google Scholar] [CrossRef] [PubMed]
- Kharwar, R.N.; Verma, V.C.; Strobel, G.; Ezra, D. The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr. Sci. 2008, 95, 228–233. [Google Scholar]
- Latz, M.A.; Jensen, B.; Collinge, D.B.; Jørgensen, H.J. Endophytic fungi as biocontrol agents: Elucidating mechanisms in disease suppression. Plant Ecol. Divers. 2018, 11, 555–567. [Google Scholar] [CrossRef]
- Baron, N.C.; Rigobelo, E.C. Endophytic fungi: A tool for plant growth promotion and sustainable agriculture. Mycology 2021, 13, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Lugtenberg, B.J.; Caradus, J.R.; Johnson, L.J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol. 2016, 92, fiw194. [Google Scholar] [CrossRef]
- Waqar, S.; Bhat, A.A.; Khan, A.A. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. Plant Physiol. Biochem. 2024, 206, 108174. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.-Z.; Dai, M.-D.; Zhu, J.-N.; Liu, X.-H.; Li, L.; Zhu, X.-M.; Wang, J.-Y.; Yuan, Z.-L.; Lin, F.-C. Dark septate endophyte Falciphora oryzae-assisted alleviation of cadmium in rice. J. Hazard. Mater. 2021, 419, 126435. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-Y.; Hu, C.-C.; Liu, J.-H.; Wang, H.-J.; Lu, L.-P.; Qiao, M.; Jiang, Y.-L.; Wu, R. Botryorhodine J, a new anti-MRSA depsidone isolated from endophytic fungus Alternaria alternata Pas11. Nat. Prod. Res. 2023, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.T.; Zhang, B.; Huang, Z.P.; Xu, Y.X.; Xu, X.R.; Li, S.H.; Zhao, Q.; Zhang, X.M. A new sesquiterpene from endophytic fungus Colletotrichum sp. B-89. Nat. Prod. Res. 2023, 1–7. [Google Scholar] [CrossRef]
- Nicolli, C.P.; Haidukowski, M.; Susca, A.; Gomes, L.B.; Logrieco, A.; Stea, G.; Del Ponte, E.M.; Moretti, A.; Pfenning, L.H. Fusarium fujikuroi species complex in Brazilian rice: Unveiling increased phylogenetic diversity and toxigenic potential. Int. J. Food Microbiol. 2020, 330, 108667. [Google Scholar] [CrossRef]
- Qiu, J.; Lu, Y.; He, D.; Lee, Y.-W.; Ji, F.; Xu, J.; Shi, J. Fusarium fujikuroi Species Complex Associated with Rice, Maize, and Soybean From Jiangsu Province, China: Phylogenetic, Pathogenic, and Toxigenic Analysis. Plant Dis. 2020, 104, 2193–2201. [Google Scholar] [CrossRef]
- Hazarika, P.; Rajam, M.V. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene. Physiol. Mol. Biol. Plants 2011, 17, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Bautista, R.C.; Counce, P.A. An Overview of Rice and Rice Quality. Cereal Foods World 2020, 65. [Google Scholar] [CrossRef]
- Zakaria, Z.; Zulkafflee, N.S.; Redzuan, N.A.M.; Selamat, J.; Ismail, M.R.; Praveena, S.M.; Tóth, G.; Razis, A.F.A. Understanding Potential Heavy Metal Contamination, Absorption, Translocation and Accumulation in Rice and Human Health Risks. Plants 2021, 10, 1070. [Google Scholar] [CrossRef] [PubMed]
- Miransari, M.; Mackenzie, A.F. Wheat Grain Nitrogen Uptake, as Affected by Soil Total and Mineral Nitrogen, for the Determination of Optimum Nitrogen Fertilizer Rates for Wheat Production. Commun. Soil Sci. Plant Anal. 2010, 41, 1644–1653. [Google Scholar] [CrossRef]
- Miransari, M.; Mackenzie, A.F. Development of a soil n test for fertilizer requirements for wheat. J. Plant Nutr. 2011, 34, 762–777. [Google Scholar] [CrossRef]
- Miransari, M.; Mackenzie, A.F. Optimal n fertilization, using total and mineral n, affecting corn (Zea mays L.) grain n uptake. J. Plant Nutr. 2014, 37, 232–243. [Google Scholar] [CrossRef]
- Stokstad, E. The nitrogen fix. Science 2016, 353, 1225–1227. [Google Scholar] [CrossRef]
- Fang, L. Overview of Biofertilizer Registration in China. Available online: https://agrochemical.chemlinked.com/chempedia/overview-biofertilizer-registration-china (accessed on 20 October 2020).
- Sampangi-Ramaiah, M.H.; Jagadheesh; Dey, P.; Jambagi, S.; Kumari, M.M.V.; Oelmüller, R.; Nataraja, K.N.; Ravishankar, K.V.; Ravikanth, G.; Shaanker, R.U. An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host. Sci. Rep. 2020, 10, 3237. [Google Scholar] [CrossRef]
- Wijesooriya, W.; Deshappriya, N. An inoculum of endophytic fungi for improved growth of a traditional ricevariety in Sri Lanka. Trop. Plant Res. 2016, 3, 470–480. [Google Scholar] [CrossRef]
- Latiffah Zakaria, L.Z.; Amira Suriaty Yaakop, A.S.Y.; Baharuddin Salleh, B.S.; Maziah Zakaria, M.Z. Endophytic fungi from paddy. Trop. Life. Sci. Res. 2010, 21, 101–107. [Google Scholar]
- Khunnamwong, P.; Jindamorakot, S.; Limtong, S. Endophytic yeast diversity in leaf tissue of rice, corn and sugarcane cultivated in Thailand assessed by a culture-dependent approach. Fungal Biol. 2018, 122, 785–799. [Google Scholar] [CrossRef] [PubMed]
- Sornakili, A.; Thankappan, S.; Sridharan, A.; Nithya, P.; Uthandi, S. Antagonistic fungal endophytes and their metabolite-mediated interactions against phytopathogens in rice. Physiol. Mol. Plant Pathol. 2020, 112, 101525. [Google Scholar] [CrossRef]
- Syamsia; Kuswinanti, T.; Syam’un, E.; Masniawati, A. The Potency of Endophytic Fungal Isolates Collected from Local Aromatic Rice as Indole Acetic Acid (IAA) Producer. Procedia Food Sci. 2015, 3, 96–103. [Google Scholar] [CrossRef]
- Atugala, D.; Deshappriya, N. Effect of Endophytic fungi on plant growth and blast disease incidence of two traditional rice varieties. J. Natl. Sci. Found. Sri Lanka 2015, 43, 173. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, B.L.; Li, X.X.; Bin Zhang, Z.; Yan, R.M.; Yang, H.L.; Zhu, D. Phylogenetic diversity of culturable Endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis. Fungal Biol. 2015, 119, 1032–1045. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshani, C.D.N.; Deshappriya, N.; Sandamali, T.G.I. Effect of fungal endophytes of rice variety Ld 368 on growth and brown spot disease incidence of rice. Trop. Plant Res. 2018, 5, 292–302. [Google Scholar] [CrossRef]
- Yuan, Z.-L.; Zhang, C.-L.; Lin, F.-C.; Kubicek, C.P. Identity, Diversity, and Molecular Phylogeny of the Endophytic mycobiota in the Roots of Rare Wild Rice (Oryza granulate) from a Nature Reserve in Yunnan, China. Appl. Environ. Microbiol. 2010, 76, 1642–1652. [Google Scholar] [CrossRef] [PubMed]
- Tantirungkij, M.; Nasanit, R.; Limtong, S. Assessment of endophytic yeast diversity in rice leaves by a culture-independent approach. Antonie van Leeuwenhoek 2015, 108, 633–647. [Google Scholar] [CrossRef]
- Wang, W.; Zhai, Y.; Cao, L.; Tan, H.; Zhang, R. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol. Res. 2016, 188–189, 1–8. [Google Scholar] [CrossRef]
- Li, S.; Yan, Q.; Wang, J.; Peng, Q. Endophytic Fungal and Bacterial Microbiota Shift in Rice and Barnyardgrass Grown under Co-Culture Condition. Plants 2022, 11, 1592. [Google Scholar] [CrossRef]
- Tian, X.; Cao, L.; Tan, H.; Zeng, Q.; Jia, Y.; Han, W.; Zhou, S. Study on the communities of Endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J. Microbiol. Biotechnol. 2004, 20, 303–309. [Google Scholar] [CrossRef]
- Nutaratat, P.; Srisuk, N.; Arunrattiyakorn, P.; Limtong, S. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol. 2014, 118, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Soujanya, K.; Siva, R.; Kumara, P.M.; Srimany, A.; Ravikanth, G.; Mulani, F.; Aarthy, T.; Thulasiram, H.; Santhoshkumar, T.; Nataraja, K.N.; et al. Camptothecin-producing endophytic bacteria from Pyrenacantha volubilis Hook. (Icacinaceae): A possible role of a plasmid in the production of camptothecin. Phytomedicine 2017, 36, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Nisa, H.; Kamili, A.N.; Nawchoo, I.A.; Shafi, S.; Shameem, N.; Bandh, S.A. Fungal endophytes as prolific source of phyto-chemicals and other bioactive natural products: A review. Microb. Pathog. 2015, 82, 50–59. [Google Scholar] [CrossRef]
- Seephueak, P.; Preecha, C.; Seephueak, W. The diversity of fungi associated with rice (Oryza sativa L.) from Nakhon Si Thammarat, Thailand. Int. J. Agric. Technol. 2019, 15, 485–500. [Google Scholar]
- Tian, L.; Wang, E.; Lin, X.; Ji, L.; Chang, J.; Chen, H.; Wang, J.; Chen, D.; Tran, L.-S.P.; Tian, C. Wild rice harbors more root Endophytic fungi than cultivated rice in the F1 offspring after crossbreeding. BMC Genom. 2021, 22, 278. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, Z.; Liang, W.; Gao, B.; Wang, Y.; Chang, J.; Zhu, D. Endophytic fungi from Dongxiang wild rice (Oryza rufipogon Griff.) show diverse catalytic potential for converting glycyrrhizin. 3 Biotech 2022, 12, 79. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Mili, C.; Talukdar, R.; Wary, S.; Tayung, K. Seed Borne Endophytic fungi Associated with Some Indigenous Rice Varieties of North East India and Their Growth Promotion and Antifungal Potential. Indian J. Agric. Res. 2021, 55, 603–608. [Google Scholar] [CrossRef]
- Suada, I.K.; Suhartini, D.M.W.Y.; Sunariasih, N.P.L.; Wirawan, I.G.P.; Chun, K.W.; Cha, J.Y.; Ohga, S. Ability of Endophytic fungi Isolated from Rice to Inhibit Pyricularia oryzae–Induced Rice Blast in Indonesia. J. Fac. Agric. Kyushu Univ. 2012, 57, 51–53. [Google Scholar] [CrossRef]
- Leewijit, T.; Pongnak, W.; Soytong, K.; Poeaim, S. Isolation of soil and Endophytic fungi from rice (Oryza sativa L.). Int. J. Agric. Technol. 2016, 12, 2191–2202. [Google Scholar]
- Potshangbam, M.; Devi, S.I.; Sahoo, D.; Strobel, G.A. Functional Characterization of Endophytic Fungal Community Associated with Oryza sativa L. and Zea mays L. Front. Microbiol. 2017, 8, 325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Gao, B.; Xiao, Y.; Yang, H.; Wang, Y.; Du, L.; Zhu, D. Purification and characterization of a novel β-glucuronidase precisely converts glycyrrhizin to glycyrrhetinic acid 3-O-mono-β-D-glucuronide from plant endophytic Chaetomium globosum DX-THS3. Int. J. Biol. Macromol. 2020, 159, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, K.G.; Pereira, G.M.D.; Mosqueira, C.A.; Baraúna, A.C.; Vital, M.J.S.; Silva, K.; Zilli, J.É. Isolation storage and determination of dark septate fungal colonies from rice plants. Revista Agro@mbiente Online 2011, 5, 97–105. [Google Scholar] [CrossRef]
- Wiyono, S.; Prakoso, B.B.; Santoso, S. Endophytic fungi play important role in rice protection against brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). IOP Conf. Series: Earth Environ. Sci. 2020, 468, 012047. [Google Scholar] [CrossRef]
- Dong, M.; Shi, L.; Xie, Z.; Lian, L.; Zhang, J.; Jiang, Z.; Wu, C. Shifts in the diversity of root endophytic microorganisms across the life cycle of the ratooning rice Jiafuzhan. Front. Microbiol. 2023, 14, 1161263. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Tan, H.; Cao, L. Isolation of phytase-producing yeasts from rice seedlings for prospective probiotic applications. 3 Biotech 2019, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Zhao, Y.; Xu, P.; Yu, D. Microbial Diversity of Upland Rice Roots and Their Influence on Rice Growth and Drought Tolerance. Microorganisms 2020, 8, 1329. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.E. Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biol. Rev. 2007, 21, 51–66. [Google Scholar] [CrossRef]
- Le, H.T.; Padgham, J.L.; Sikora, R.A. Biological control of the rice root-knot nematode Meloidogyne graminicola on rice, using endophytic and rhizosphere fungi. Int. J. Pest Manag. 2009, 55, 31–36. [Google Scholar] [CrossRef]
- Peng, L.; Qin, B.; Shen, Z.; Wang, S. Characterization of fungal communities on shared bicycles in Southwest China. BMC Microbiol. 2021, 21, 283. [Google Scholar] [CrossRef]
- Hernández-Tasco, A.J.; Tronchini, R.A.; Apaza-Castillo, G.A.; Hosaka, G.K.; Quiñones, N.R.; Goulart, M.C.; Fantinatti-Garboggini, F.; Salvador, M.J. Diversity of bacterial and fungal endophytic communities presents in the leaf blades of Sinningia magnifica, Sinningia schiffneri and Sinningia speciosa from different cladus of Gesneriaceae family: A comparative analysis in three consecutive years. Microbiol. Res. 2023, 271, 127365. [Google Scholar] [CrossRef]
- Wu, N.-N.; Zeng, Z.-Y.; Xu, Q.-B.; Zhang, H.-B.; Xu, T. Artificial Cultivation Changes Foliar Endophytic Fungal Community of the Ornamental Plant Lirianthe delavayi. Microorganisms 2023, 11, 775. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.; Al-Ghalith, G.A.; Caporaso, J.G. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ 2018, 6, e27295ve27292. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Oberhofer, M.; Malfent, F.; Zehl, M.; Urban, E.; Wackerlig, J.; Reznicek, G.; Vignolle, G.A.; Rückert, C.; Busche, T.; Wibberg, D.; et al. Biosynthetic Potential of the Endophytic Fungus Helotiales sp. BL73 Revealed via Compound Identification and Genome Mining. Appl. Environ. Microbiol. 2022, 88, e0251021. [Google Scholar] [CrossRef] [PubMed]
- Chow, Y.Y.; Ting, A.S.Y. Influence of fungal infection on plant tissues: FTIR detects compositional changes to plant cell walls. Fungal Ecol. 2019, 37, 38–47. [Google Scholar] [CrossRef]
- Vergara, C.; Araujo, K.E.C.; Alves, L.S.; de Souza, S.R.; Santos, L.A.; Santa-Catarina, C.; da Silva, K.; Pereira, G.M.D.; Xavier, G.R.; Zilli, J. Contribution of dark septate fungi to the nutrient uptake and growth of rice plants. Braz. J. Microbiol. 2018, 49, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D.; Pramanik, K.; Mandal, S.; Mandal, N.C. Augmented growth of Cd-stressed rice seedlings with the application of phytostimulating, root-colonizing, Cd-tolerant, leaf-Endophytic fungi Colletotrichum spp. isolated from Eupatorium triplinerve. J. Hazard. Mater. 2022, 438, 129508. [Google Scholar] [CrossRef] [PubMed]
- Mohd, S.; Shukla, J.; Kushwaha, A.S.; Mandrah, K.; Shankar, J.; Arjaria, N.; Saxena, P.N.; Narayan, R.; Roy, S.K.; Kumar, M. Endophytic fungi Piriformospora indica Mediated Protection of Host from Arsenic Toxicity. Front. Microbiol. 2017, 8, 754. [Google Scholar] [CrossRef]
- Vergara, C.; Araujo, K.E.C.; Sperandio, M.V.L.; Santos, L.A.; Urquiaga, S.; Zilli, J.E. Dark septate Endophytic fungi increase the activity of proton pumps, efficiency of 15N recovery from ammonium sulphate, N content, and micronutrient levels in rice plants. Braz. J. Microbiol. 2019, 50, 825–838. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Tang, M.; Yang, Y.; Sun, K.; Tian, L.; Lu, F.; Hao, A.; Dai, C. Endophytic fungus Phomopsis liquidambaris B3 induces rice resistance to RSRD caused by Fusarium proliferatum and promotes plant growth. J. Sci. Food Agric. 2021, 101, 4059–4075. [Google Scholar] [CrossRef]
- Vallino, M.; Greppi, D.; Novero, M.; Bonfante, P.; Lupotto, E. Rice root colonisation by mycorrhizal and Endophytic fungi in aerobic soil. Ann. Appl. Biol. 2009, 154, 195–204. [Google Scholar] [CrossRef]
- Vergara, C.; Araujo, K.E.C.; Urquiaga, S.; Santa-Catarina, C.; Schultz, N.; Araújo, E.d.S.; Balieiro, F.d.C.; Xavier, G.R.; Zilli, J. Dark Septate Endophytic fungi Increase Green Manure-15N Recovery Efficiency, N Contents, and Micronutrients in Rice Grains. Front. Plant Sci. 2018, 9, 613. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhou, X.; Zhao, Y.; Zhu, S.; Wu, L.; He, Y.; Ping, X.; Lu, X.; Huang, W.; Qian, J.; et al. Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid. J. Integr. Plant Biol. 2020, 62, 1433–1451. [Google Scholar] [CrossRef]
- Kandar, M.; Suhandono, S.; Aryantha, I.N.P. Growth Promotion of Rice Plant by Endophytic Fungi. J. Pure Appl. Microbiol. 2018, 12, 1569–1577. [Google Scholar] [CrossRef]
- Leach, J.E.; Triplett, L.R.; Argueso, C.T.; Trivedi, P. Communication in the Phytobiome. Cell 2017, 169, 587–596. [Google Scholar] [CrossRef]
- Hassani, M.A.; Durán, P.; Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 2018, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Higgins, K.L.; Arnold, A.E.; Coley, P.D.; Kursar, T.A. Communities of fungal endophytes in tropical forest grasses: Highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecol. 2014, 8, 1–11. [Google Scholar] [CrossRef]
- dos Santos, I.P.; Bezerra, J.D.P.; de Souza-Motta, C.M.; da Silva Cavalcanti, M.; de Menezes Lima, V.L. Endophytic mycobiota from leaves of Indigofera suffruticosa Miller (Fabaceae): The relationship between seasonal change in Atlantic Coastal Forest and tropical dry forest (Caatinga), Brazil. Afr. J. Microbiol. Res. 2015, 9, 1227–1235. [Google Scholar] [CrossRef]
- Ali, M.; Ali, Q.; Sohail, M.A.; Ashraf, M.F.; Saleem, M.H.; Hussain, S.; Zhou, L. Diversity and Taxonomic Distribution of Endophytic Bacterial Community in the Rice Plant and Its Prospective. Int. J. Mol. Sci. 2021, 22, 10165. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Zhang, F.-M.; Kang, N.; Gong, J.-H.; Zhang, W.; Chen, Y.; Dai, C.-C. Rice carbohydrate dynamics regulate endophytic colonization of Diaporthe liquidambaris in response to external nitrogen. Fungal Ecol. 2019, 39, 213–224. [Google Scholar] [CrossRef]
- Gateta, T.; Nacoon, S.; Seemakram, W.; Ekprasert, J.; Theerakulpisut, P.; Sanitchon, J.; Suwannarach, N.; Boonlue, S. The Potential of Endophytic fungi for Enhancing the Growth and Accumulation of Phenolic Compounds and Anthocyanin in Maled Phai Rice (Oryza sativa L.). J. Fungi 2023, 9, 937. [Google Scholar] [CrossRef] [PubMed]
- Nacoon, S.; Seemakram, W.; Gateta, T.; Theerakulpisut, P.; Sanitchon, J.; Kuyper, T.W.; Boonlue, S. Accumulation of Health-Promoting Compounds in Upland Black Rice by Interacting Mycorrhizal and Endophytic Fungi. J. Fungi 2023, 9, 1152. [Google Scholar] [CrossRef]
- Nenwani, V.; Doshi, P.; Saha, T.; Rajkumar, S. Isolation and Characterization of a fungal isolatae for Phosphate solubilization and plant growth promoting. Act. J. Yeast Fungal Res. 2011, 1, 9–14. [Google Scholar]
- Siddikee, A.; Zereen, M.I.; Li, C.-F.; Dai, C.-C. Endophytic fungus Phomopsis liquidambari and different doses of N-fertilizer alter microbial community structure and function in rhizosphere of rice. Sci. Rep. 2016, 6, 32270. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.-Y.; Li, D.; Sun, K.; Cao, W.; Fu, W.-Q.; Zhang, W.; Dai, C.-C. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.). Plant Physiol. Biochem. 2018, 130, 367–376. [Google Scholar] [CrossRef]
- Yang, B.; Ma, H.-Y.; Wang, X.-M.; Jia, Y.; Hu, J.; Li, X.; Dai, C.-C. Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari. Plant Physiol. Biochem. 2014, 82, 172–182. [Google Scholar] [CrossRef]
- Tang, M.-J.; Lu, F.; Yang, Y.; Sun, K.; Zhu, Q.; Xu, F.-J.; Zhang, W.; Dai, C.-C. Benefits of Endophytic Fungus Phomopsis liquidambaris Inoculation for Improving Mineral Nutrition, Quality, and Yield of Rice Grains Under Low Nitrogen and Phosphorus Condition. J. Plant Growth Regul. 2022, 41, 2499–2513. [Google Scholar] [CrossRef]
- Yang, B.; Wang, X.-M.; Ma, H.-Y.; Jia, Y.; Li, X.; Dai, C.-C. Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Plant Growth Regul. 2013, 73, 165–179. [Google Scholar] [CrossRef]
- Yang, B.; Wang, X.-M.; Ma, H.-Y.; Yang, T.; Jia, Y.; Zhou, J.; Dai, C.-C. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere. Front. Microbiol. 2015, 6, 982. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, C.V.; Bull, J.J.; Lau, J.A. Symbiosis and stress: How plant microbiomes affect host evolution. Philos. Trans. R. Soc. B: Biol. Sci. 2020, 375, 20190590. [Google Scholar] [CrossRef] [PubMed]
- Doni, F.; Fathurrahman, F.; Mispan, M.S.; Suhaimi, N.S.M.; Yusoff, W.M.W.; Uphoff, N. Transcriptomic Profiling of Rice Seedlings Inoculated with the Symbiotic Fungus Trichoderma asperellum SL2. J. Plant Growth Regul. 2019, 38, 1507–1515. [Google Scholar] [CrossRef]
- Omoarelojie, L.O.; Van Staden, J. Plant-Endophytic fungi interactions: A strigolactone perspective. S. Afr. J. Bot. 2020, 134, 280–284. [Google Scholar] [CrossRef]
- Bilal, L.; Asaf, S.; Hamayun, M.; Gul, H.; Iqbal, A.; Ullah, I.; Lee, I.-J.; Hussain, A. Plant growth promoting Endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 2018, 76, 117–127. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, A.L.; Kamran, M.; Hamayun, M.; Kang, S.-M.; Kim, Y.-H.; Lee, I.-J. Endophytic fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth during Stress. Molecules 2012, 17, 10754–10773. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Khan, A.L.; Shahzad, R.; Ullah, I.; Khan, A.R.; Lee, I.-J. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. J. Zhejiang Univ. B 2015, 16, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Airin, A.A.; Arafat, I.; Begum, R.A.; Islam, R.; Seraj, Z.I. Plant growth-promoting Endophytic fungi of the wild halophytic rice Oryza coarctata. Ann. Microbiol. 2023, 73, 1–21. [Google Scholar] [CrossRef]
- Yustisia, D.; Mustari, K.; Kuswinanti, T.; Yassi, A.; E Kurniawan, M. Selection of Endophytic fungi from Sinjai local red rice as producer of IAA (Indole Acetad Acid) hormone. IOP Conf. Series: Earth Environ. Sci. 2020, 492, 012117. [Google Scholar] [CrossRef]
- Bandara, W.M.M.S.; Seneviratne, G.; Kulasooriya, S.A. Interactions among endophytic bacteria and fungi: Effects and potentials. J. Biosci. 2006, 31, 645–650. [Google Scholar] [CrossRef]
- Saini, L.S.; Patel, S.; Gaur, A.; Warghane, P.; Saini, R.; Warghane, A. Endophytic Fungi: Symbiotic Bioresource for Production of Plant Secondary Metabolites. In Endophytic Fungi. Fungal Biolog; Singh, B.P., Abdel-Azeem, A.M., Gautam, V., Singh, G., Singh, S.K., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Zafar, S.; Afzal, H.; Ijaz, A.; Ahmad, M.; Zafar, M.; Naz, T.; Datta, R. Endophytic Fungi: Potential Source of Allelochemicals for Sustainable Agriculture. In Plant Holobiome Engineering for Climate-Smart Agriculture. Sustainable Plant Nutrition in a Changing World; Sayyed, R.Z., Ilyas, N., Eds.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, J.; Zhao, X.; Shi, J.; Jiang, C.; Shao, D. Beneficial effects of Endophytic fungi colonization on plants. Appl. Microbiol. Biotechnol. 2019, 103, 3327–3340. [Google Scholar] [CrossRef] [PubMed]
- Rajani, P.; Rajasekaran, C.; Vasanthakumari, M.; Olsson, S.B.; Ravikanth, G.; Shaanker, R.U. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiol. Res. 2020, 242, 126595. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.K.; Dai, C.C.; Liu, X.Z. Mechanisms of fungal endophytes in plant protection against pathogens. Afr. J. Microbiol. Res. 2010, 4, 1346–1351. [Google Scholar]
- Mueller, U.; Sachs, J. Engineering Microbiomes to Improve Plant and Animal Health. Trends Microbiol. 2015, 23, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Wu, Y.-B.; Chen, M.; Lu, F.; Sun, K.; Tang, M.-J.; Zhang, W.; Bu, Y.-Q.; Dai, C.-C. Preinoculation with Endophytic fungus Phomopsis liquidambaris reduced rice bakanae disease caused by Fusarium proliferatum via enhanced plant resistance. J. Appl. Microbiol. 2022, 133, 1566–1580. [Google Scholar] [CrossRef] [PubMed]
- Andargie, M.; Congyi, Z.; Yun, Y.; Li, J. Identification and evaluation of potential bio-control fungal endophytes against Ustilagonoidea virens on rice plants. World J. Microbiol. Biotechnol. 2017, 33, 120. [Google Scholar] [CrossRef] [PubMed]
- Crawford, K.M.; Land, J.M.; Rudgers, J.A. Fungal endophytes of native grasses decrease insect herbivore preference and performance. Oecologia 2010, 164, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Trizelia, T.; Rahma, H.; Syahrawati, M. Diversity of Endophytic fungi of rice plants in Padang City, Indonesia, entomopathogenic to brown planthopper (Nilaparvata lugens). Biodiversitas J. Biol. Divers. 2023, 24, 2384–2391. [Google Scholar] [CrossRef]
- Promgool, T.; Kanokmedhakul, K.; Leewijit, T.; Song, J.; Soytong, K.; Yahuafai, J.; Kudera, T.; Kokoska, L.; Kanokmedhakul, S. Cytotoxic and antibacterial depsidones from the endophytic fungus Chaetomium brasiliense isolated from Thai rice. Nat. Prod. Res. 2022, 36, 4599–4607. [Google Scholar] [CrossRef]
- Le, H.; Padgham, J.; Hagemann, M.; Sikora, R.; Schouten, A. Developmental and behavioural effects of the endophytic Fusarium moniliforme Fe14 towards Meloidogyne graminicola in rice. Ann. Appl. Biol. 2016, 169, 134–143. [Google Scholar] [CrossRef]
- Jisha, R.D.; Asok, A.K. Bio Control Potential of Rice Endophyte Fusarium oxysporum Against Rice Sheath Blight Pathogen Rhizoctonia solani. Agric. Res. Technol. Open Access J. 2018, 19, 1–3. [Google Scholar] [CrossRef]
- Khunnamwong, P.; Lertwattanasakul, N.; Jindamorakot, S.; Suwannarach, N.; Matsui, K.; Limtong, S. Evaluation of antagonistic activity and mechanisms of endophytic yeasts against pathogenic fungi causing economic crop diseases. Folia Microbiol. 2020, 65, 573–590. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Feng, L.; Li, Y.; Yue, R.; Wang, Y.; Zhou, Y. Endophytic fungi Volatile Organic Compounds as Crucial Biocontrol Agents Used for Controlling Fruit and Vegetable Postharvest Diseases. J. Fungi 2024, 10, 332. [Google Scholar] [CrossRef]
- Chen, J.-L.; Sun, S.-Z.; Miao, C.-P.; Wu, K.; Chen, Y.-W.; Xu, L.-H.; Guan, H.-L.; Zhao, L.-X. Endophytic Trichoderma gamsii YIM PH30019: A promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J. Ginseng Res. 2016, 40, 315–324. [Google Scholar] [CrossRef]
- Macías-Rubalcava, M.L.; Garrido-Santos, M.Y. Phytotoxic compounds from endophytic fungi. Appl. Microbiol. Biotechnol. 2022, 106, 931–950. [Google Scholar] [CrossRef]
- Plaszkó, T.; Szűcs, Z.; Kállai, Z.; Csoma, H.; Vasas, G.; Gonda, S. Volatile Organic Compounds (VOCs) of Endophytic fungi Growing on Extracts of the Host, Horseradish (Armoracia rusticana). Metabolites 2020, 10, 451. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, J.; Zhou, Z.; Guo, Y. Antibacterial and antitumor activity of secondary metabolites of Endophytic fungi ty5 from Dendrobium officinale. J. Biobased Mater. Bioenergy 2018, 12, 184–193. [Google Scholar] [CrossRef]
- Korpi, A.; Järnberg, J.; Pasanen, A.-L. Microbial volatile organic compounds. Crit. Rev. Toxicol. 2009, 39, 139–193. [Google Scholar] [CrossRef] [PubMed]
- Kaddes, A.; Fauconnier, M.-L.; Sassi, K.; Nasraoui, B.; Jijakli, M.-H. Endophytic Fungal Volatile Compounds as Solution for Sustainable Agriculture. Molecules 2019, 24, 1065. [Google Scholar] [CrossRef]
- Sridharan, A.P.; Thankappan, S.; Karthikeyan, G.; Uthandi, S. Comprehensive profiling of the VOCs of Trichoderma longibrachiatum EF5 while interacting with Sclerotium rolfsii and Macrophomina phaseolina. Microbiol. Res. 2020, 236, 126436. [Google Scholar] [CrossRef]
- Sodhi, G.K.; Saxena, S. Plant growth promotion and abiotic stress mitigation in rice using endophytic fungi: Advances made in the last decade. Environ. Exp. Bot. 2023, 209, 105312. [Google Scholar] [CrossRef]
- Sodhi, G.K.; Saxena, S. Plant growth-promoting endophyte Nigrospora oryzae mitigates abiotic stress in rice (Oryza sativa L.). FEMS Microbiol. Ecol. 2023, 99, fiad094. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, A.A.; Saadatmand, S.; Niknam, V.; Nejadsatari, T.; Babaeizad, V. Effect of endophytic fungus, Piriformospora indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 1337–1350. [Google Scholar]
- Redman, R.S.; Kim, Y.O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J. Increased Fitness of Rice Plants to Abiotic Stress Via Habitat Adapted Symbiosis: A Strategy for Mitigating Impacts of Climate Change. PLoS ONE 2011, 6, e14823. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, Z.S.; Wei, X.; Umar, M.; Abideen, Z.; Zulfiqar, F.; Chen, J.; Hanif, A.; Dawar, S.; Dias, D.A.; Yasmeen, R. Scrutinizing the Application of Saline Endophyte to Enhance Salt Tolerance in Rice and Maize Plants. Front. Plant Sci. 2022, 12, 770084. [Google Scholar] [CrossRef]
- dos Santos, S.G.; da Silva, P.R.A.; Garcia, A.C.; Zilli, J.; Berbara, R.L.L. Dark septate endophyte decreases stress on rice plants. Braz. J. Microbiol. 2017, 48, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, Z.H.; Mostofa, M.G.; Mim, M.F.; Haque, A.; Karim, M.A.; Sultana, R.; Rohman, M.; Bhuiyan, A.-U.; Rupok, R.B.; Islam, S.M.N. The fungal endophyte Metarhizium anisopliae (MetA1) coordinates salt tolerance mechanisms of rice to enhance growth and yield. Plant Physiol. Biochem. 2024, 207, 108328. [Google Scholar] [CrossRef] [PubMed]
- Mani, K.M.; Ameena, M.; Johnson, J.M.; Anith, K.; Pillai, P.S.; John, J.; Beena, R. Endophytic fungus Piriformospora indica mitigates moisture stress in rice by modifying root growth. Rhizosphere 2023, 28, 100799. [Google Scholar] [CrossRef]
- Qin, W.; Liu, C.; Jiang, W.; Xue, Y.; Wang, G.; Liu, S. A coumarin analogue NFA from endophytic Aspergillus fumigatus improves drought resistance in rice as an antioxidant. BMC Microbiol. 2019, 19, 1–11. [Google Scholar] [CrossRef]
- Fu, W.-Q.; Xu, M.; Sun, K.; Chen, X.-L.; Dai, C.-C.; Jia, Y. Remediation mechanism of endophytic fungus Phomopsis liquidambaris on phenanthrene in vivo. Chemosphere 2020, 243, 125305. [Google Scholar] [CrossRef]
- Fu, W.-Q.; Xu, M.; Zhang, A.-Y.; Sun, K.; Dai, C.-C.; Jia, Y. Remediation of phenanthrene phytotoxicity by the interaction of rice and endophytic fungus P. liquidambaris in practice. Ecotoxicol. Environ. Saf. 2022, 235, 113415. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.S.; Kapri, A.; Goel, R. Heavy Metal Pollution: Source, Impact, and Remedies. Environ. Pollut. 2011, 20, 1–28. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Qi, Z.; Wang, Y.; Chen, S.; Yan, J.; Qiu, H.; Yu, Y.; Fang, Z.; Wang, J.; Gong, J. An endophytic fungus interacts with the defensin-like protein OsCAL1 to regulate cadmium allocation in rice. Mol. Plant 2024, 17, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Sehar, S.; Adil, M.F.; Ma, Z.; Karim, M.F.; Faizan, M.; Zaidi, S.S.A.; Siddiqui, M.H.; Alamri, S.; Zhou, F.; Shamsi, I.H. Phosphorus and Serendipita indica synergism augments arsenic stress tolerance in rice by regulating secondary metabolism related enzymatic activity and root metabolic patterns. Ecotoxicol. Environ. Saf. 2023, 256, 114866. [Google Scholar] [CrossRef] [PubMed]
- Sehar, S.; Adil, M.F.; Askri, S.M.H.; Feng, Q.; Wei, D.; Sahito, F.S.; Shamsi, I.H. Pan-transcriptomic Profiling Demarcates Serendipita Indica-Phosphorus Mediated Tolerance Mechanisms in Rice Exposed to Arsenic Toxicity. Rice 2023, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Sehar, S.; Feng, Q.; Adil, M.F.; Sahito, F.S.; Ibrahim, Z.; Baloch, D.M.; Ullah, N.; Ouyang, Y.; Guo, Y.; Shamsi, I.H. Tandem application of endophytic fungus Serendipita indica and phosphorus synergistically recuperate arsenic induced stress in rice. Front. Plant Sci. 2022, 13, 982668. [Google Scholar] [CrossRef]
- Ghorbani, A.; Tafteh, M.; Roudbari, N.; Pishkar, L.; Zhang, W.; Wu, C. Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots. Ecotoxicol. Environ. Saf. 2021, 209, 111793. [Google Scholar] [CrossRef]
- Verma, N.; Narayan, O.P.; Prasad, D.; Jogawat, A.; Panwar, S.L.; Dua, M.; Johri, A.K. Functional characterization of a high-affinity iron transporter (PiFTR) from the endophytic fungus Piriformospora indica and its role in plant growth and development. Environ. Microbiol. 2022, 24, 689–706. [Google Scholar] [CrossRef]
- Jogawat, A.; Vadassery, J.; Verma, N.; Oelmüller, R.; Dua, M.; Nevo, E.; Johri, A.K. PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Sci. Rep. 2016, 6, 36765. [Google Scholar] [CrossRef]
- Ibrahim, M.; Oyebanji, E.; Fowora, M.; Aiyeolemi, A.; Orabuchi, C.; Akinnawo, B.; Adekunle, A.A. Extracts of Endophytic fungi from leaves of selected Nigerian ethnomedicinal plants exhibited antioxidant activity. BMC Complement. Med. Ther. 2021, 21, 98. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, G. Analysis of secondary metabolites from plant endophytic fungi. Methods Mol. Biol. 2018, 1848, 25–38. [Google Scholar] [CrossRef]
- Akpotu, M.O.; Eze, P.M.; Abba, C.C.; Umeokoli, B.O.; Nwachukwu, C.U.; Okoye, F.B.C.; Esimone, C.O. Antimicrobial activities of secondary metabolites of Endophytic fungi isolated from Catharanthus roseus. J. Heal. Sci. 2017, 7, 15–22. [Google Scholar] [CrossRef]
- Bezerra, V.H.S.; Cardoso, S.L.; Fonseca-Bazzo, Y.; Silveira, D.; Magalhães, P.O.; Souza, P.M. Protease Produced by Endophytic Fungi: A Systematic Review. Molecules 2021, 26, 7062. [Google Scholar] [CrossRef]
- Ling, L.; Tu, Y.; Ma, W.; Feng, S.; Yang, C.; Zhao, Y.; Wang, N.; Li, Z.; Lu, L.; Zhang, J. A potentially important resource: Endophytic yeasts. World J. Microbiol. Biotechnol. 2020, 36, 110. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.H.; Patil, M.P.; Maheshwari, V.L. Bioactive secondary metabolites from endophytic fungi: A review of biotechnological production and their potential applications. Stud. Nat. Prod. Chem. 2016, 49, 189–205. [Google Scholar] [CrossRef]
- Macías-Rubalcava, M.L.; Sánchez-Fernández, R.E. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J. Microbiol. Biotechnol. 2017, 33, 15. [Google Scholar] [CrossRef]
- Ancheeva, E.; Daletos, G.; Proksch, P. Bioactive Secondary Metabolites from Endophytic Fungi. Curr. Med. Chem. 2020, 27, 1836–1854. [Google Scholar] [CrossRef]
- Tang, Z.; Qin, Y.; Chen, W.; Zhao, Z.; Lin, W.; Xiao, Y.; Chen, H.; Liu, Y.; Chen, H.; Bu, T.; et al. Diversity, Chemical Constituents, and Biological Activities of Endophytic fungi Isolated from Ligusticum chuanxiong Hort. Front. Microbiol. 2021, 12, 771000. [Google Scholar] [CrossRef]
- Muhammad, M.; Basit, A.; Ali, K.; Ahmad, H.; Li, W.-J.; Khan, A.; Mohamed, H.I. A review on endophytic fungi: A potent reservoir of bioactive metabolites with special emphasis on blight disease management. Arch. Microbiol. 2024, 206, 129. [Google Scholar] [CrossRef]
- Syamsia, S.; Idhan, A.; Hakim, I.; Patappari, A.; Noerfitryani, N. Screening Endophytic fungi from Local Rice for Lignocellulolytic Enzyme Production. In Proceedings of the 1st International Conference on Science and Technology, ICOST 2019, Makassar, Indonesia, 2–3 May 2019. [Google Scholar]
Rice Variety | Phytonic Habitat | Endophytic Fungal Taxa | Reference |
---|---|---|---|
Wild rice | Roots | Falciphora oryzae(a DSE strain) ¡ | [18] |
Traditional rice variety in Sri Lanka | Seeds, stems, leaves | Acremonium | [32] |
Traditional rice variety in Sri Lanka | Roots, stems, leaves | Arthrobotrys | [32] |
Traditional rice variety in Sri Lanka | Roots | Aspergillus | [32] |
Traditional rice variety in Sri Lanka | Roots | Aureobasidium | [32] |
Traditional rice variety in Sri Lanka | Roots | Chaetomium | [32] |
Traditional rice variety in Sri Lanka | Stems, leaves, seeds | Colletotrichum | [32] |
Traditional rice variety in Sri Lanka | Roots | Curvularia | [32] |
Traditional rice variety in Sri Lanka | Seeds | Fusarium | [32] |
Traditional rice variety in Sri Lanka | Roots, stems, leaves | Humicola | [32] |
Traditional rice variety in Sri Lanka | Roots, stems | Penicillium | [32] |
Traditional rice variety in Sri Lanka | Roots, stems | Phoma | [32] |
Traditional rice variety in Sri Lanka | Leaves | Rhizoctonia | [32] |
Traditional rice variety in Sri Lanka | Stems | Rhizopus | [32] |
Traditional rice variety in Sri Lanka | Roots | Trichoderma | [32] |
Paddy rice (Oryza sativa) | Seeds | Fusarium, Aspergillus, Curvularia | [33] |
Paddy rice (Oryza sativa) | Roots | Fusarium, Penicillium, Gilmaniella | [33] |
Paddy rice (Oryza sativa) | Leaves | Fusarium, Aspergillus, Curvularia, Penicillium, Arthrobotrys foliicola | [33] |
Paddy rice (Oryza sativa) | Stems | Fusarium, Aspergillus, Penicillium | [33] |
O. sativa L. | Leaves | Saitozyma flava | [34] |
O. sativa L. | Leaves | Papiliotrema japonica | [34] |
O. sativa L. | Leaves | Papiliotrema siamense | [34] |
O. sativa L. | Leaves | Rhodotorula taiwanensis | [34] |
O. sativa L. | Leaves | Rhodotorula aff. toruloides | [34] |
O. sativa L. | Leaves | Sporobolomyces carnicolor | [34] |
O. sativa L. | Leaves | Cystobasidium aff. slooffiae | [34] |
O. sativa L. | Leaves | Moesziomyces antarcticus | [34] |
O. sativa L. | Leaves | Pseudozyma churashimaensis | [34] |
O. sativa L. | Leaves | Candida metapsilosis | [34] |
O. sativa L. | Leaves | Candida tropicalis | [34] |
O. sativa L. | Leaves | Meyerozyma caribbica | [34] |
O. sativa L. | Leaves | Wickerhamomyces anomalus | [34] |
O. sativa L. | Leaves | Candida citri | [34] |
O. sativa L. | Leaves | Kodamaea ohmeri | [34] |
O. sativa L. | Leaves | Diutina siamensis | [34] |
O. sativa L. | Leaves | Paecilomyces tenuis EF1 * | [35] |
O. sativa L. | Leaves | Talaromyces pinophilus EF2 * | [35] |
O. sativa L. | Leaves | N. sphaerica EF3 * | [35] |
O. sativa L. | Leaves | N. oryzae EF4 * | [35] |
O. sativa L. | Leaves | Trichoderma longibrachiatum EF5 * | [35] |
O. sativa L. | Leaves | Aspergillus terreus EF6 * | [35] |
O. sativa L. | Leaves | T. longibrachiatum EF7 * | [35] |
Suwandel rice variety | Leaves, stems, roots, seeds | Absidia *, Cylindrocladium *, Aspergillus *, Penicillium *, Paecilomyces *, Aureobasidium, Rhizoctonia *, Mortierella, Fusarium, Gliocladium *, Phoma *, Acremonium *, Arthroderma, Varicosporium, Cladosporium, Rhziophus, Emericella | [37] |
Kaluheenati rice variety | Leaves, stems, roots, seeds | Colletotrichum SM, Absidia *, Cylindrocladium *, Aspergillus *, Penicillium *, Paecilomyces *, Aureobasidium, Rhizoctonia *, Mortierella, Fusarium, Gliocladium *, Phoma *, Acremonium *, Arthroderma, Varicosporium, Cladosporium, Rhziophus | [37] |
Wild rice (O. rufipogon Griff.) | Seeds | Cladosporium sp. * | [38] |
Wild rice (O. rufipogon Griff.) | Seeds | Alternaria sp. * | [38] |
Wild rice (O. rufipogon Griff.) | Seeds | Dendryphiella sp. * | [38] |
Wild rice (O. rufipogon Griff.) | Seeds | Phoma sp. *, Leptosphaerulina sp., Dendryphiella sp., Pleosporales sp., Phoma sp. | [38] |
Wild rice (O. rufipogon Griff.) | Stems | Penicillium sp. * | [38] |
Wild rice (O. rufipogon Griff.) | Roots | Trichoderma sp. *, Monographella, Bionectria sp. | [38] |
Wild rice (O. rufipogon Griff.) | Stems | Sarocladium sp. * | [38] |
Wild rice (O. rufipogon Griff.) | Stems | Fusarium *, Penicillium sp., Gaeumannomyces | [38] |
Wild rice (O. rufipogon Griff.) | Leaves | Bipolaris sp. *, Paraphaeosphaeria sp., Acrophialophora | [38] |
Rice variety Ld 368 | Healthy plant parts | Penicillium | [39] |
Rice variety Ld 368 | Healthy plant parts | Aspergillus | [39] |
Rice variety Ld 368 | Healthy plant parts | Fusarium sp.* | [39] |
Rice variety Ld 368 | Healthy plant parts | Colletotrichum | [39] |
Rice variety Ld 368 | Healthy plant parts | Curvularia | [39] |
Rice variety Ld 368 | Healthy plant parts | Chaetomium sp.* | [39] |
Rice variety Ld 368 | Healthy plant parts | Trichoderma sp.* | [39] |
Rice ‘Tianyou Huazhan’ | Roots | Pleosporales sp., Aspergillus sp., Penicillium sp., Chaetomium Sordariales(o), Cladosporium, and Apodus | [43] |
O. sativa L. | Stems, leaves, grains | C. globosum | [48] |
O. sativa L. | Stems, leaves | Acremonium hansfordii | [48] |
O. sativa L. | Stems | Acremonium luzulae | [48] |
O. sativa L. | Stems | Alternaria alternata | [48] |
O. sativa L. | Stems, leaves, grains | A. padwickii | [48] |
O. sativa L. | Stems, leaves | A. flavus | [48] |
O. sativa L. | Stems, leaves | Aspergillus fumigatus | [48] |
O. sativa L. | Stems, leaves | A. niger | [48] |
O. sativa L. | Stems, leaves, grains | Bipolaris oryzae | [48] |
O. sativa L. | Stems, leaves, grains | Cercospora oryzae | [48] |
O. sativa L. | Stems, leaves | Cladosporium cladosporioides | [48] |
O. sativa L. | Stems, leaves, grains | Cladosporium elatum | [48] |
O. sativa L. | Stems, leaves, grains | Cladosporium oxysporum | [48] |
O. sativa L. | Stems, leaves, grains | Cladosporium tenuissimum | [48] |
O. sativa L. | Stems, leaves, grains | Colletotrichum graminicola | [48] |
O. sativa L. | Stems, leaves, grains | C. lunata | [48] |
O. sativa L. | Stems, leaves, grains | Dactylaria hawaiiensis | [48] |
O. sativa L. | Stems, leaves, grains | Drechslera australiensis | [48] |
O. sativa L. | Stems, leaves, grains | F. solani | [48] |
O. sativa L. | Stems, leaves, grains | F. semitectum | [48] |
O. sativa L. | Stems, leaves, grains | Nigrospora oryzae | [48] |
O. sativa L. | Stems, leaves, grains | Nigrospora sphaerica | [48] |
O. sativa L. | Stems | Penicillium sp. | [48] |
O. sativa L. | Stems | Penicillium funiculosum | [48] |
O. sativa L. | Stems, leaves, grains | Pyricularia oryzae | [48] |
O. sativa L. | Stems, leaves | Rhinocladiella similis | [48] |
O. sativa L. | Stems, leaves | Rhynchosporium oryzae | [48] |
O. sativa L. | Stems | Sarocladium oryzae | [48] |
O. sativa L. | Stems | Stachybotrys dichroa | [48] |
O. sativa L. | Stems | Veronaea apiculata | [48] |
O. sativa L. | Stems, leaves | Veronaea coprophila | [48] |
O. sativa L. | Leaves, stems, roots | Microsphaeropsis arundinis S59 # | [50] |
O. sativa L. | Leaves, stems, roots | Penicillium rubens L138 # | [50] |
O. sativa L. | Leaves, stems, roots | A. flavus L55 ## | [50] |
O. sativa L. | Leaves, stems, roots | Eupenicillium javanicum R57 ## | [50] |
Indian indigenous rice varieties | Seeds | Aspergillus | [51] |
Indian indigenous rice varieties | Seeds | Fusarium *,& | [51] |
Indian indigenous rice varieties | Seeds | Gliocladium | [51] |
Indian indigenous rice varieties | Seeds | Penicillium | [51] |
Indian indigenous rice varieties | Seeds | Bipolaris | [51] |
Indian indigenous rice varieties | Seeds | Basidiobolus | [51] |
Indian indigenous rice varieties | Seeds | Mycelia sterila | [51] |
(O.sativa L.) | Seeds, seedlings | Phialemonium curvatum *, Phaeosphaeriopsis musae *, Sarocladium oryzae *, Penicillium citrinum *, Sordariomycetes sp. *, Penicillium radicum *, Nigrospora oryzae *, Cladosporium sp. *, Nodulisporium sp. * | [52] |
O. sativa L. | Leaves | Colletotrichum spp. | [53] |
O. sativa L. | Leaves | Trichoderma sp. | [53] |
O. sativa L. | Leaves | Penicillium sp. | [53] |
O. sativa L. | Leaves | Chaetomium cupreum | [53] |
O. sativa L. | Leaves | C. lunata | [53] |
O. sativa L. | Stems | Aspergillus flavus | [53] |
O. sativa L. | Roots | Rhizopus spp. | [53] |
O. sativa L. | Roots | F. oxysporum | [53] |
O. sativa L. | Leaves | Fusarium solani | [53] |
O. sativa L. | Leaves | Colletotrichum spp. | [53] |
O. sativa L. | Roots | A. flavus | [53] |
O. sativa L. | Roots | Aspergillus niger | [53] |
O. sativa L. | Roots | Pythium spp. | [53] |
O. sativa L. | Stems | Trichoderma harzianum | [53] |
O. sativa L. | Stems | Penicillium sp. | [53] |
O. sativa L. | Stems | Chaetomium globosum | [53] |
O. sativa L. | Stems | Chaetomium brasiliense | [53] |
O. sativa L. | Roots | Penicillium simplicissimum &,£,¢,¡ | [54] |
O. sativa L. | Roots | Trichoderma sp. | [54] |
O. sativa L. | Roots, stems | Fusarium oxysporum | [54] |
O. sativa L. | Roots | Aspergillus sp. | [54] |
O. sativa L. | Stems | Acremonium sp. ¢,£,¡ | [54] |
O. sativa L. | Stems | Phoma sp. | [54] |
O. sativa L. | Leaves | Galactomyces geotrichum | [54] |
O. sativa L. | Leaves | Penicillium sp. | [54] |
O. sativa L. | Leaves | Aspergillus ustus ¢,£,¡ | [54] |
Wild rice (O. rufipogon Griff.) | Leaves | C. Globosum DX-THS3 # | [38,55] |
O. sativa L. | Sheaths | Nigrospora sp. * | [57] |
O. sativa L. | Sheaths | Acremonium sp. | [57] |
O. sativa L. | Sheaths | Alternaria padwickii | [57] |
O. sativa L. | Sheaths | Cephalosporium sp. | [57] |
O. sativa L. | Sheaths | Chaetomium sp. | [57] |
O. sativa L. | Sheaths | Curvularia lunata | [57] |
O. sativa L. | Sheaths | Fusarium semitectum | [57] |
O. sativa L. | Sheaths | Penicillium sp. | [57] |
O. sativa L. | Sheaths | Pestalotia sp. | [57] |
O. sativa L. | Sheaths | Phyllosticta sp. | [57] |
Upland rice | Roots | Talaromyces spp. ¢, Penicillium sp. ¢, Trichocomaceae sp. ¢, Hypocreales sp. ¢ | [60] |
O. sativa L. | Roots | Gaeumannomyces graminis & | [79] |
O. sativa L. | Roots | Meyerozyma guilliermondii & | [79] |
O. sativa L. | Roots | Gaeumannomyces amomi & | [79] |
O. sativa L. | Roots | Phialemonium dimorphosporum & | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Lu, G.; Lin, D.; Luo, H.; Hatungimana, M.; Liu, B.; Lin, Z. Endophytic Fungi in Rice Plants and Their Prospective Uses. Microbiol. Res. 2024, 15, 972-993. https://doi.org/10.3390/microbiolres15020064
Hu Y, Lu G, Lin D, Luo H, Hatungimana M, Liu B, Lin Z. Endophytic Fungi in Rice Plants and Their Prospective Uses. Microbiology Research. 2024; 15(2):972-993. https://doi.org/10.3390/microbiolres15020064
Chicago/Turabian StyleHu, Yingping, Guodong Lu, Dongmei Lin, Hailin Luo, Mediatrice Hatungimana, Bin Liu, and Zhanxi Lin. 2024. "Endophytic Fungi in Rice Plants and Their Prospective Uses" Microbiology Research 15, no. 2: 972-993. https://doi.org/10.3390/microbiolres15020064
APA StyleHu, Y., Lu, G., Lin, D., Luo, H., Hatungimana, M., Liu, B., & Lin, Z. (2024). Endophytic Fungi in Rice Plants and Their Prospective Uses. Microbiology Research, 15(2), 972-993. https://doi.org/10.3390/microbiolres15020064