In Vitro Inhibitory Effects and Co-Aggregation Activity of Lactobacilli on Candida albicans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lactobacilli Strains
2.2. Test Organism
2.3. Agar Diffusion Assay
2.4. Agar Spot Assay
2.5. Growth Inhibition of C. albicans Using Co-Culture Assay
2.6. Co-Aggregation Assay
2.7. Statistical Analysis
3. Results
3.1. Agar Diffusion Assay and Agar Spot Assay
3.2. Growth Inhibition of C. albicans Using Co-Culture Assay
3.3. Co-Aggregation Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gismondo, M.R.; Drago, L.; Lombardi, A. Review of probiotics available to modify gastrointestinal flora. Int. J. Antimicrob. Agents 1999, 12, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, J.Z.; Lytvyn, L.; Steurich, J.; Parkin, P.; Mahant, S.; Johnston, B.C. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst. Rev. 2015, 2015, CD004827. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.W.; Jordan, R.P.C.; Wei, X.Q.; Alves, C.T.; Wise, M.P.; Wilson, M.J.; Lewis, M.A.O. Interactions of Candida albicans with host epithelial surfaces. J. Oral Microbiol. 2013, 5, 22434. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M.; Anaissie, E. Revisiting the source of candidemia: Skin or gut? Clin. Infect. Dis. 2001, 33, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, V.H.; Bandara, H.M.; Mayer, M.P.A.; Samaranayake, L.P. Probiotics as antifungals in mucosal candidiasis. Clin. Infect. Dis. 2016, 62, 1143–1153. [Google Scholar] [CrossRef]
- Sánchez-Vargas, L.O.; Ortiz-López, N.G.; Villar, M.; Moragues, M.D.; Aguirre, J.M.; Cashat-Cruz, M.; Lopez-Ribot, J.L.; Gaitán-Cepeda, J.A.; Quindós, G. Point prevalence, microbiology and antifungal susceptibility patterns of oral Candida isolates colonizing or infecting Mexican HIV/AIDS patients and healthy persons. Rev. Iberoam Micol. 2005, 22, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Förster, T.M.; Mogavero, S.; Dräger, A.; Graf, K.; Polke, M.; Jacobsen, I.D.; Hube, B. Enemies and brothers in arms: Candida albicans and gram-positive bacteria. Cell. Microbiol. 2016, 18, 1709–1715. [Google Scholar] [CrossRef]
- Matsubara, V.H.; Wang, Y.; Bandara, H.M.; Mayer, M.P.A.; Samaranayake, L.P. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl. Microbiol. Biotechnol. 2016, 100, 6415–6426. [Google Scholar] [CrossRef]
- Falagas, M.E.; Betsi, G.I.; Athanasiou, S. Probiotics for prevention of recurrent vulvovaginal candidiasis: A review. J. Antimicrob. Chemother. 2006, 58, 266–272. [Google Scholar] [CrossRef]
- Kumar, S.; Singhi, S. Role of probiotics in prevention of Candida infection in critically ill children. Mycoses 2013, 56, 204–211. [Google Scholar] [CrossRef]
- Oncel, M.Y.; Arayici, S.; Sari, F.N.; Simsek, G.; Yurttutan, S.; Erdeve, O.; Saygan, S.; Uras, N.; Oguz, S.; Dilmen, U. Comparison of Lactobacillus reuteri and nystatin prophylaxis on Candida colonization and infection in very low birth weight infants. J. Matern.-Fetal Neonatal Med. 2015, 28, 1790–1794. [Google Scholar] [CrossRef]
- Osset, J.; García, E.; Bartolomé, R.M.; Andreu, A. Role of Lactobacillus as protector against vaginal candidiasis. Med. Clin. 2001, 117, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Pepoyan, A.; Balayan, M.; Manvelyan, A.; Galstyan, L.; Pepoyan, S.; Petrosyan, S.; Tsaturyan, V.; Kamiya, S.; Torok, T.; Chikindas, M. Probiotic Lactobacillus acidophilus strain INMIA 9602 Er 317/402 administration reduces the numbers of Candida albicans and abundance of Enterobacteria in the gut microbiota of familial Mediterranean fever patients. Front. Immunol. 2018, 9, 1426. [Google Scholar] [CrossRef]
- Rossoni, R.D.; de Barros, P.P.; de Alvarenga, J.A.; Ribeiro, F.C.; Velloso, M.S.; Fuchs, B.B.; Mylonakis, E.; Jorge, A.O.C.; Junqueira, J.C. Antifungal activity of clinical Lactobacillus strains against Candida albicans biofilms: Identification of potential probiotic candidates to prevent oral candidiasis. Biofouling 2018, 34, 212–225. [Google Scholar] [CrossRef]
- Georgieva, R.; Yocheva, L.; Tserovska, L.; Zhelezova, G.; Stefanova, N.; Atanasova, A.; Danguleva, A.; Ivanova, G.; Karapetkov, N.; Rumyan, N.; et al. Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol. Biotechnol. Equip. 2015, 29, 84–91. [Google Scholar] [CrossRef]
- Velikova, T.; Nakov, V.; Georgieva, R.; Toumangelova-Yuzeir, K.; Ivanova-Todorova, E.; Nakov, R.; Karaivanova, E.; Vladimirov, B.; Kyurkchiev, D. Immunomodulating properties of a novel synbiotic on healthy persons. Comptes Rendus Acad. Bulg. Sci. 2015, 68, 1321–1326. [Google Scholar]
- Velikova, T.; Tumangelova-Yuzeir, K.; Georgieva, R.; Ivanova-Todorova, E.; Karaivanova, E.; Nakov, V.; Nakov, R.; Kyurkchiev, D. Lactobacilli supplemented with larch arabinogalactan and colostrum stimulates an immune response towards peripheral NK activation and gut tolerance. Nutrients 2020, 12, 1706. [Google Scholar] [CrossRef]
- Schillinger, U.; Lücke, F.K. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 1989, 55, 1901–1906. [Google Scholar] [CrossRef]
- Campana, R.; Hemert, S.; Baffone, W. Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog. 2017, 9, 12. [Google Scholar] [CrossRef]
- Younes, J.A.; van der Mei, H.C.; van den Heuvel, E.; Busscher, H.J.; Reid, G. Adhesion forces and coaggregation between vaginal staphylococci and lactobacilli. PLoS ONE 2012, 7, e36917. [Google Scholar] [CrossRef]
- Mira, N.P.; Teixeira, M.C.; Sa-Correia, I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: A genome-wide view. OMICS 2010, 14, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Strus, M.; Kucharska, A.; Kukla, G.; Brzychczy-Włoch, M.; Maresz, K.; Heczko, P.B. The in vitro activity of vaginal Lactobacillus with probiotic properties against Candida. Infect. Dis. Obstet. Gynecol. 2005, 13, 69–75. [Google Scholar] [CrossRef]
- Assefa, S.; Ahles, K.; Bigelow, S.; Curtis, J.T.; Köhler, G.A. Lactobacilli with probiotic potential in the prairie vole (Microtus ochrogaster). Gut Pathog. 2015, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Cleusix, V.; Lacroix, C.; Vollenweider, S.; Duboux, M.; Le Blay, G. Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol. 2007, 7, 101. [Google Scholar] [CrossRef] [PubMed]
- Ström, K.; Sjögren, J.; Broberg, A.; Schnürer, J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol. 2002, 68, 4322–4327. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yan, Y.; Wang, J.; Zhang, H.P.; Qi, W. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS ONE 2012, 7, e29452. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. J. Gen. Appl. Microbiol. 2013, 59, 425–436. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, P.R.; Silva, J.A.; Marchesi, A.; Nader-Macías, M.E.F. Anti-Candida activity of beneficial vaginal lactobacilli in in vitro assays and in a murine experimental model. FEMS Yeast Res. 2019, 19, foz008. [Google Scholar] [CrossRef]
- Chew, S.Y.; Cheah, Y.K.; Seow, H.F.; Sandai, P.D.; Than, L.T.L. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 exhibit strong antifungal effects against vulvovaginal candidiasis-causing Candida glabrata isolates. J. Appl. Microbiol. 2015, 118, 1180–1190. [Google Scholar] [CrossRef]
- Köhler, G.A.; Assefa, S.; Reid, G. Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infect. Dis. Obstet. Gynecol. 2012, 2012, 636474. [Google Scholar]
- Papadimitriou, K.; Zoumpopoulou, G.; Foligné, B.; Alexandraki, V.; Kazou, M.; Pot, B.; Tsakalidou, E. Discovering probiotic microorganisms: In vitro, in vivo, genetic and omics approaches. Front. Microbiol. 2015, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Carmo, M.S.; Noronha, F.M.F.; Arruda, M.O.; Costa, E.P.d.S.; Bomfim, M.R.Q.; Monteiro, A.S.; Ferro, T.A.F.; Fernandes, E.S.; Girón, J.A.; Monteiro-Neto, V. Lactobacillus fermentum ATCC 23271 displays in vitro inhibitory activities against Candida spp. Front. Microbiol. 2016, 7, 1722. [Google Scholar] [CrossRef]
- Orsi, C.F.; Sabia, C.; Ardizzoni, A.; Colombari, B.; Neglia, R.G.; Peppoloni, S.; Morace, G.; Blasi, E. Inhibitory effects of different lactobacilli on Candida albicans hyphal formation and biofilm development. J. Biol. Regul. Homeost. Agents 2014, 28, 743–752. [Google Scholar]
- Xu, Z.; Li, Y.; Xu, A.; Xue, L.; Soteyome, T.; Yuan, L.; Ma, Q.; Seneviratne, G.; Hong, W.; Mao, Y.; et al. Differential alteration in Lactiplantibacillus plantarum subsp. plantarum quorum-sensing systems and reduced Candida albicans yeast survival and virulence gene expression in dual-species interaction. Microbiol. Spectr. 2024, 12, e0035324. [Google Scholar] [CrossRef]
- Yang, E.; Fan, L.; Yan, J.; Jiang, Y.; Doucette, C.; Fillmore, S.; Walker, B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Expr. 2018, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; McGroarty, J.A.; Angotti, R.; Cook, R.L. Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can. J. Microbiol. 1988, 34, 344–351. [Google Scholar] [CrossRef]
- Jørgensen, M.R.; Kragelund, C.; Jensen, P.Ø.; Keller, M.K.; Twetman, S. Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro. J. Oral Microbiol. 2017, 9, 1274582. [Google Scholar] [CrossRef]
- Gil, N.F.; Martinez, R.C.R.; Gomes, B.C.; Nomizo, A.; de Martinis, E.C.P. Vaginal lactobacilli as potential probiotics against Candida spp. Braz. J. Microbiol. 2010, 41, 6–14. [Google Scholar] [CrossRef]
- Boris, S.; Suárez, J.E.; Vázquez, F.; Barbés, C. Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infect. Immun. 1998, 66, 1985–1989. [Google Scholar] [CrossRef] [PubMed]
- Salari, S.; Almani, P.G.N. Antifungal effects of Lactobacillus acidophilus and Lactobacillus plantarum against different oral Candida species isolated from HIV/AIDS patients: An in vitro study. J. Oral Microbiol. 2020, 12, 1769386. [Google Scholar] [CrossRef] [PubMed]
- Verdenelli, M.C.; Coman, M.M.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Cresci, A. Evaluation of antipathogenic activity and adherence properties of human Lactobacillus strains for vaginal formulations. J. Appl. Microbiol. 2014, 116, 297–307. [Google Scholar] [CrossRef] [PubMed]
Sources of Isolation | Species/Strain | |
---|---|---|
Dairy | Home-made yogurt | Lactobacillus delbrueckii subsp. bulgaricus LLB-02 |
L. delbrueckii subsp. bulgaricus LLB-05 | ||
L. delbrueckii subsp. bulgaricus LLB-06 | ||
Lactiplantibacillus plantarum LLP-4B | ||
Yellow cheese whey | Lactobacillus delbrueckii subsp. lactis LLL-14 | |
Cheese | Lacticaseibacillus rhamnosus LLR-L2 | |
Lacticaseibacillus casei LLC-4K | ||
Human origin | Infant feces | Lactobacillus acidophilus LLA-01 |
L. delbrueckii subsp. lactis LLL-F18 | ||
Lactobacillus helveticus LLH-108 | ||
Lacticaseibacillus paracasei LLC-J31 | ||
L. paracasei LLC-J35 | ||
L. paracasei LLC-115 | ||
L. rhamnosus LLR-L1 | ||
Limosilactobacilllus reuteri LLR-K67 | ||
Vagina | L. reuteri LLR-V31 | |
Lactobacillus gasseri LLG-V33 | ||
L. gasseri LLG-V74 | ||
L. rhamnosus LLR-V57 | ||
Saliva | Limosilactobacilllus fermentum LLF-01 | |
Ligilactobacillus salivarius LLS-23 | ||
Others | Raw-dried sausages | L. plantarum LLP-2L |
Plant | L. delbrueckii subsp. bulgaricus LKZ-200 | |
Geranium sanguineum |
Strains | Inhibition Zone (mm) ADA/ASA | Strains | Inhibition Zone (mm) ADA/ASA |
---|---|---|---|
L. bulgaricus LLB-02 | 0/0 | L. rhamnosus LLR-L2 | 0/8.0 (±0) |
L. bulgaricus LLB-05 | 0/0 | L. rhamnosus LLR-V57 | 0/8.0 (±2.3) |
L. bulgaricus LLB-06 | 0/0 | L. casei LLC-4K | 11.0(±1.0)/7.0 (±1.2) |
L. bulgaricus LKZ-200 | 0/0 | L. paracasei LLC-J31 | 0/6.0 (±0) |
L. lactis LLL-14 | 0/0 | L. paracasei LLC-J35 | 0/6.5 (±1.0) |
L. lactis LLL-F18 | 0/0 | L. paracasei LLC-115 | 0/9.5 (±1.9) |
L. helveticus LLH-108 | 0/7.5 (±1.9) | L. plantarum LLP-4B | 14.0 (±1.0)/9.0 (±1.2) |
L. acidophilus LLA-01 | 0/0 | L. plantarum LLP-2L | 0/8.0 (±1.6) |
L. gasseri LLG-V33 | 0/0 | L. fermentum LLF-01 | 12.6 (±1.2)/10.5 (±1.7) |
L. gasseri LLG-V74 | 0/0 | L. reuteri LLR-K67 | 0/6.0 (±0) |
L. salivarius LLS-23 | 0/7.0 (±1.2) | L. reuteri LLR-V31 | 0/0 |
L. rhamnosus LLR-L1 | 14.3 (±1.2)/7.5 (±1.9) |
Lactobacilli Strains | Growth Reduction (%) of C. albicans | |||
---|---|---|---|---|
MRS Broth Model System | BHI Broth Model System | |||
C. albcans + Cells | C. albicans + Supernatants | C. albicans + Cells | C. albicans + Supernatants | |
L. bulgaricus LLB-02 | 21.2 (±4.9) Aac | 9.7 (±3.6) Ba | 11.4 (±2.7) Aac | 5.9 (±2.0) Ba |
L. bulgaricus LLB-05 | 12.1 (±5.4) Ac | 4.7 (±1.2) Ba | 2.0 (±1.7) Abcd | 5.4 (±0.5) Ba |
L. bulgaricus LLB-06 | 14.0 (±0.7) Aac | 5.1 (±1.0) Ba | 12.2 (±4.2) Aac | 6.2 (±2.7) Ba |
L. bulgaricus LKZ-200 | 14.4 (±5.1) Aac | 3.9 (±1.4) Ba | 9.5 (±2.9) Aac | 4.3 (±1.0) Ba |
L. lactis LLL-14 | 20.7 (±2.4) Aac | 5.4 (±1.3) Ba | 5.5 (±4.0) Abcd | 2.7 (±1.4) Aa |
L. lactis LLL-F18 | 24.6 (±3.5) Aa | 6.6 (±1.2) Ba | 9.6 (±2.2) Aac | 2.8 (±0.9) Ba |
L. helveticus LLH-108 | 22.5 (±3.9) Aac | 9.2 (±2.7) Ba | 4.2 (±2.2) Abcd | 2.2 (±0.8) Aa |
L. acidophilus LLA-01 | 6.5 (±1.1) Abc | 3.5 (±0.8) Ba | 7.8 (±2.7) Aacd | 4.5 (±1.2) Ba |
L. gasseri LLG-V33 | 5.7 (±1.3) Ab | 3.9 (±0.8) Ba | 6.5 (±1.6) Aabcd | 3.3 (±2.5) Ba |
L. gasseri LLG-V74 | 6.4 (±1.8) Abc | 7.5 (±1.5) Ba | 6.5 (±2.1) Aabcd | 3.8 (±1.0) Ba |
L. salivarius LLS-23 | 18.6 (±1.9) Aac | 4.8 (±1.4) Ba | 8.0 (±2.9) Aacd | 6.4 (±3.3) Aa |
L. rhamnosus LLR-L1 | 28.2 (±3.2) Aa | 7.3 (±4.2) Ba | 7.1 (±2.7) Aabcd | 6.5 (±3.6) Aa |
L. rhamnosus LLR-L2 | 26.6 (±3.6) Aa | 8.6 (±5.1) Ba | 7.2 (±3.2) Aabcd | 5.1 (±2.3) Aa |
L. rhamnosus LLR-V57 | 24.7 (±4.6) Aac | 7.6 (±3.7) Ba | 9.9 (±2.9) Aac | 7.3 (±1.2) Aa |
L. casei LLC-4K | 25.1 (±3.0) Aa | 5.0 (±2.9) Ba | 8.5 (±3.2) Aacd | 7.7 (±4.1) Aa |
L. paracasei LLC-J31 | 23.1 (±2.2) Aac | 6.5 (±2.2) Ba | 10.3 (±2.9) Aac | 7.9 (±4.5) Aa |
L. paracasei LLC-J35 | 20.3 (±1.6) Aac | 5.5 (±1.6) Ba | 11.8 (±4.9) Aacd | 6.9 (±1.6) Aa |
L. paracasei LLC-115 | 25.0 (±3.3) Aa | 6.6 (±1.9) Ba | 17.1 (±2.2) Aa | 4.7 (±3.2) Ba |
L. plantarum LLP-4B | 26.1 (±5.1) Aac | 5.4 (±0.7) Ba | 8.1 (±2.8) Aacd | 7.1 (±2.9) Aa |
L. plantarum LLP-2L | 21.5 (±4.2) Aac | 6.3 (±2.3) Ba | 10.2 (±5.5) Aacd | 7.6 (±1.6) Aa |
L. fermentum LLF-01 | 28.9 (±2.4) Aa | 5.1 (±3.1) Ba | 14.3 (±2.7) Aa | 4.0 (±3.3) Ba |
L. reuteri LLR-K67 | 28.3 (±3.1) Aa | 6.9 (±0.6) Ba | 14.9 (±3.4) Aa | 7.9 (±2.9) Ba |
L. reuteri LLR-V31 | 21.6 (±2.9) Aac | 5.2 (±1.2) Ba | 7.1 (±3.6) Aabcd | 5.9 (±1.3) Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yocheva, L.; Tserovska, L.; Danguleva-Cholakova, A.; Todorova, T.; Zhelezova, G.; Karaivanova, E.; Georgieva, R. In Vitro Inhibitory Effects and Co-Aggregation Activity of Lactobacilli on Candida albicans. Microbiol. Res. 2024, 15, 1576-1589. https://doi.org/10.3390/microbiolres15030104
Yocheva L, Tserovska L, Danguleva-Cholakova A, Todorova T, Zhelezova G, Karaivanova E, Georgieva R. In Vitro Inhibitory Effects and Co-Aggregation Activity of Lactobacilli on Candida albicans. Microbiology Research. 2024; 15(3):1576-1589. https://doi.org/10.3390/microbiolres15030104
Chicago/Turabian StyleYocheva, Lyubomira, Lilia Tserovska, Antonia Danguleva-Cholakova, Teodora Todorova, Galina Zhelezova, Elena Karaivanova, and Ralitsa Georgieva. 2024. "In Vitro Inhibitory Effects and Co-Aggregation Activity of Lactobacilli on Candida albicans" Microbiology Research 15, no. 3: 1576-1589. https://doi.org/10.3390/microbiolres15030104
APA StyleYocheva, L., Tserovska, L., Danguleva-Cholakova, A., Todorova, T., Zhelezova, G., Karaivanova, E., & Georgieva, R. (2024). In Vitro Inhibitory Effects and Co-Aggregation Activity of Lactobacilli on Candida albicans. Microbiology Research, 15(3), 1576-1589. https://doi.org/10.3390/microbiolres15030104