Xylella fastidiosa Dispersion on Vegetal Hosts in Demarcated Zones in the North Region of Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prospection Phase
2.1.1. Sample Collection
2.1.2. Results Reception
- -
- In situ destruction of infected plants and other plants of the same species.
- -
- In situ destruction of all plants listed in Annexes I and II of Implementing Regulation (EU) 2020/1201.
2.2. Statistical Treatment
3. Results and Discussion
3.1. Number of Locations Observed
3.2. Type of Locations Observed
3.3. Presence of Symptoms
3.4. Hosts Observed
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, K.; Mourits, M.; van der Werf, W.; Lansink, A.O. On consumer impact from Xylella fastidiosa subspecies pauca. Ecol. Econ. 2021, 185, 107024. [Google Scholar] [CrossRef]
- Ali, B.M.; van der Werf, W.; Lansink, A.O. Assessment of the environmental impacts of Xylella fastidiosa subsp. pauca in Puglia. Crop. Prot. 2021, 142, 105519. [Google Scholar] [CrossRef]
- Montilon, V.; De Stradis, A.; Saponari, M.; Kubaa, R.A.; Giampetruzzi, A.; D’Attoma, G.; Saldarelli, P. Xylella fastidiosa subsp. pauca ST53 exploits pit membranes of susceptible olive cultivars to spread systemically in the xylem. Plant Pathol. 2023, 72, 144–153. [Google Scholar] [CrossRef]
- Vos, S.; Camilleri, M.; Diakaki, M.; Lázaro, E.; Parnell, S.; Schenk, M.; Schrader, G.; Vicent, A. Pest survey card on Xylella fastidiosa. EFSA Support. Publ. 2019, 16, 1667E. [Google Scholar] [CrossRef]
- Petit, G.; Bleve, G.; Gallo, A.; Mita, G.; Montanaro, G.; Nuzzo, V.; Zambonini, D.; Pitacco, A. Susceptibility to Xylella fastidiosa and functional xylem anatomy in Olea europaea: Revisiting a tale of plant–pathogen interaction. AoB Plants 2021, 13, plab027. [Google Scholar] [CrossRef] [PubMed]
- Delbianco, A.; Gibin, D.; Pasinato, L.; Boscia, D.; Morelli, M. Update of the Xylella spp. host plant database—Systematic literature search up to 30 June 2022. EFSA J. 2023, 21, e07726. [Google Scholar] [CrossRef] [PubMed]
- Baù, A.; Delbianco, A.; Stancanelli, G.; Tramontini, S. Susceptibility of Olea europaea L. varieties to Xylella fastidiosa subsp. pauca ST53: Systematic literature search up to 24 March 2017. EFSA J. 2017, 15, e04772. [Google Scholar] [CrossRef] [PubMed]
- Martelli, G.P.; Boscia, D.; Porcelli, F.; Saponari, M. The olive quick decline syndrome in south-east Italy: A threatening phytosanitary emergency. Eur. J. Plant Pathol. 2015, 144, 235–243. [Google Scholar] [CrossRef]
- Martinetti, D.; Soubeyrand, S. Identifying lookouts for epidemio-surveillance: Application to the emergence of Xylella fastidiosa in France. Phytopathology 2019, 109, 265–276. [Google Scholar] [CrossRef]
- EPPO Bulletin. PM 7/24 (4) Xylella fastidiosa. EPPO Bull. 2019, 49, 175–227. [Google Scholar] [CrossRef]
- Gilioli, G.; Simonetto, A.; Colturato, M.; Bazarra, N.; Fernández, J.R.; Naso, M.G.; Donato, B.; Bosco, D.; Dongiovanni, C.; Maiorano, A.; et al. An eco-epidemiological model supporting rational disease management of Xylella fastidiosa. An application to the outbreak in Apulia (Italy). Ecol. Model. 2023, 476, 110226. [Google Scholar] [CrossRef]
- Gutiérrez-Hernández, O.; García, L.V. Incidencia de Xylella fastidiosa en las Islas Baleares y distribución potencial en la península ibérica. Investig. Geogr. 2018, 69, 55–72. [Google Scholar] [CrossRef]
- Olmo, D.; Nieto, A.; Borràs, D.; Montesinos, M.; Adrover, F.; Pascual, A.; Gost, P.A.; Quetglas, B.; Urbano, A.; García, J.d.D.; et al. Landscape Epidemiology of Xylella fastidiosa in the Balearic Islands. Agronomy 2021, 11, 473. [Google Scholar] [CrossRef]
- DGAV. Plano de Contingência Xylella fastidiosa e Seus Vetores. 2022. Available online: https://www.dgav.pt/wp-content/uploads/2023/02/DGAV_Plano_Xf_contingencia_2022_v03_compressed.pdf (accessed on 23 April 2024).
- Xylella fastidiosa—DGAV. Available online: https://www.dgav.pt/plantas/conteudo/sanidade-vegetal/inspecao-fitossanitaria/informacao-fitossanitaria/xylella-fastidiosa/ (accessed on 25 March 2023).
- RE (UE) 2020/1201. Regulamento de Execução (UE) 2020/1201 da Comissão de 14 de Agosto de 2020 Relativo às Medidas para Impedir a Introdução e a Propagação na União de Xylella fastidiosa (Wells et al.). Available online: https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32020R1201&from=EN (accessed on 6 November 2022).
- Paula, A.; De Carvalho, A.C.; De Carvalho Dn, A.C.; de Alimentação, G.; Veterinária, E.; de Almeida, P.; de Carvalho, C. Plano de Ação Para Erradicação de Xylella fastidiosa e Controlo dos Seus Vetores Zona Demarcada da Área Metropolitana do Porto Atualizado em Fevereiro de 2022 Aprovado. 2022. Available online: https://www.drapalgarve.gov.pt/images/pdf/inspecao_fitossanitaria/Plano_a%C3%A7%C3%A3o_Xylella2022_ZD_Algarve.pdf (accessed on 23 April 2023).
- Portaria n.o 243/2020. de 14 de Outubro|DRE. Available online: https://dre.pt/dre/detalhe/portaria/243-2020-145359683 (accessed on 23 April 2023).
- Decreto-Lei n.o 67/2020. de 15 de Setembro|DRE. Available online: https://dre.pt/dre/detalhe/decreto-lei/67-2020-142870334 (accessed on 23 April 2023).
- Yuan, X.; Morano, L.; Bromley, R.; Spring-Pearson, S.; Stouthamer, R.; Nunney, L. Multilocus Sequence Typing of Xylella fastidiosa Causing Pierce’s Disease and Oleander Leaf Scorch in the United States. Phytopathology 2010, 100, 601–611. [Google Scholar] [CrossRef]
- Frem, M.; Chapman, D.; Fucilli, V.; Choueiri, E.; El Moujabber, M.; La Notte, P.; Nigro, F. Xylella fastidiosa invasion of new countries in Europe, the Middle East and North Africa: Ranking the potential exposure scenarios. NeoBiota 2020, 59, 77–97. [Google Scholar] [CrossRef]
- Purcell, A.H.; Saunders, S.R. Fate of Pierce’s Disease Strains of Xylella fastidiosa in Common Riparian Plants in California. Plant Dis. 2007, 83, 825–830. [Google Scholar] [CrossRef]
- Phyto71n04_429.pdf|Enhanced Reader. Available online: https://www.apsnet.org/publications/phytopathology/backissues/Documents/1981Articles/Phyto71n04_429.PDF (accessed on 1 April 2024).
- Cao, T.; Connell, J.H.; Wilhelm, M.; Kirkpatrick, B.C. Influence of Inoculation Date on the Colonization of Xylella fastidiosa and the Persistence of Almond Leaf Scorch Disease Among Almond Cultivars. Plant Dis. 2011, 95, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Ledbetter, C.A.; Chen, J.; Livingston, S.; Groves, R.L. Winter curing of Prunus dulcis cv ‘Butte,’ P. webbii and their interspecific hybrid in response to Xylella fastidiosa infections. Euphytica 2009, 169, 113–122. [Google Scholar] [CrossRef]
- Almeida, R.P.P.; Purcell, A.H. Biological Traits of Xylella fastidiosa Strains from Grapes and Almonds. Appl. Environ. Microbiol. 2003, 69, 7447–7452. [Google Scholar] [CrossRef]
- Feil, H.; Feil, W.S.; Purcell, A.H. Effects of Date of Inoculation on the Within-Plant Movement of Xylella fastidiosa and Persistence of Pierce’s Disease Within Field Grapevines. Phytopathology 2003, 93, 244–251. [Google Scholar] [CrossRef]
- Saponari, M.; Giampetruzzi, A.; Loconsole, G.; Boscia, D.; Saldarelli, P. Xylella fastidiosa in olive in apulia: Where we stand. Phytopathology 2019, 109, 175–186. [Google Scholar] [CrossRef]
- Santos, B.d.N.G.d.; Anguita-Maeso, M.; Coletta-Filho, H.D. Transmission and distribution of Xylella fastidiosa subsp. pauca in olive trees as a parameter for managing olive quick decline syndrome. Plant Pathol. 2022, 71, 1849–1858. [Google Scholar] [CrossRef]
- Amanifar, N.; Taghavi, M.; Salehi, M. Xylella fastidiosa from almond in Iran: Overwinter recovery and effects of antibiotics. Phytopathol. Mediterr. 2016, 55, 337–345. [Google Scholar] [CrossRef]
- Davis, M.J.; French, W.J.; Schaad, N.W. Axenic culture of the bacteria associated with phony disease of peach and plum leaf scald. Curr. Microbiol. 1981, 6, 309–314. [Google Scholar] [CrossRef]
- Aldrich, J.H. Distribution of Xylella fastidiosa within Roots of Peach. Plant Dis. 1992, 76, 885. [Google Scholar] [CrossRef]
- Holland, R.M.; Christiano, R.S.C.; Gamliel-Atinsky, E.; Scherm, H. Distribution of Xylella fastidiosa in Blueberry Stem and Root Sections in Relation to Disease Severity in the Field. Plant Dis. 2014, 98, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Henneberger, T.S.M.; Stevenson, K.L.; Britton, K.O.; Chang, C.J. Distribution of Xylella fastidiosa in Sycamore Associated with Low Temperature and Host Resistance. Plant Dis. 2007, 88, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, D.L. Seasonal Fluctuation in the Occurrence of Xylella fastidiosa in Root and Stem Extracts from Citrus with Blight. Plant Dis. 1991, 75, 145. [Google Scholar] [CrossRef]
- He, C.X.; Li, W.B.; Ayres, A.J.; Hartung, J.S.; Miranda, V.S.; Teixeira, D.C. Distribution of Xylella fastidiosa in Citrus Rootstocks and Transmission of Citrus Variegated Chlorosis between Sweet Orange Plants Through Natural Root Grafts. Plant Dis. 2007, 84, 622–626. [Google Scholar] [CrossRef]
- Rapicavoli, J.N.; Blanco-Ulate, B.; Muszyński, A.; Figueroa-Balderas, R.; Morales-Cruz, A.; Azadi, P.; Dobruchowska, J.M.; Castro, C.; Cantu, D.; Roper, M.C. Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa. Nat. Commun. 2018, 9, 390. [Google Scholar] [CrossRef]
- Purcell, A. Paradigms: Examples from the Bacterium Xylella fastidiosa. Annu. Rev. Phytopathol. 2013, 51, 339–356. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Health (PLH); Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.; Miret, J.A.J.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S.; et al. Update of the Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory. EFSA J. 2019, 17, e05665. [Google Scholar] [CrossRef]
- Queiroz-Voltan, R.B.; Cabral, L.P.; Filho, O.P. Severidade do sintoma da bactéria Xylella fastidiosa em cultivares de cafeeiro. Bragantia 2004, 63, 395–404. [Google Scholar] [CrossRef]
- Hopkins, D.L. Biological Control of Pierce’s Disease in the Vineyard with Strains of Xylella fastidiosa Benign to Grapevine. Plant Dis. 2005, 89, 1348–1352. [Google Scholar] [CrossRef]
- Kandel, P.P.; Almeida, R.P.P.; Cobine, P.A.; De La Fuente, L. Natural Competence Rates Are Variable among Xylella fastidiosa Strains and Homologous Recombination Occurs In Vitro Between Subspecies fastidiosa and multiplex. Mol. Plant-Microbe Interact. 2017, 30, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, T.; Gonçalves, B.; Serra, L.; Martins, Â.; Cortez, I.; Poeta, P. Histological analysis of Xylella fastidiosa infection in Quercus pyrenaica in Northern Portugal. AIMS Agric. Food 2024, 9, 607–627. [Google Scholar] [CrossRef]
- Gibin, D.; Pasinato, L.; Delbianco, A. Update of the Xylella spp. host plant database—Systematic literature search up to 31 December 2022. EFSA J. 2023, 21, e08061. [Google Scholar] [CrossRef] [PubMed]
- Niza, B.; Coletta-Filho, H.D.; Merfa, M.V.; Takita, M.A.; de Souza, A.A. Differential colonization patterns of Xylella fastidiosa infecting citrus genotypes. Plant Pathol. 2015, 64, 1259–1269. [Google Scholar] [CrossRef]
- Baccari, C.; Antonova, E.; Lindow, S. Biological Control of Pierce’s Disease of Grape by an Endophytic Bacterium. Phytopathology 2019, 109, 248–256. [Google Scholar] [CrossRef]
- Direção Geral de Alimentação e Veterinária. Xylella fastidiosa Géneros e Espécies Vegetais Detetados Infetados na Zona Demarcada da Área Metropolitana do Porto. Available online: https://www.dgav.pt/wp-content/uploads/2024/05/Xf_Listaespeciesinfetadas_ZD-AMP_maio24-002.pdf (accessed on 1 March 2023).
- Pereira, P.S. Xylella fastidiosa—A new menace for Portuguese agriculture and forestry. Revista de Ciências Agrárias 2015, 38, 149–154. [Google Scholar]
- Cavalieri, V.; Altamura, G.; Fumarola, G.; di Carolo, M.; Saponari, M.; Cornara, D.; Bosco, D.; Dongiovanni, C. Transmission of Xylella fastidiosa Subspecies Pauca Sequence Type 53 by Different Insect Species. Insects 2019, 10, 324. [Google Scholar] [CrossRef]
- Dietrich, C.H. Keys to the families of Cicadomorpha and subfamilies and tribes of Cicadellidae (hemiptera: Auchenorrhyncha). Fla. Èntomol. 2005, 88, 502–517. [Google Scholar] [CrossRef]
- Bodino, N.; Cavalieri, V.; Dongiovanni, C.; Saladini, M.A.; Simonetto, A.; Volani, S.; Plazio, E.; Altamura, G.; Tauro, D.; Gilioli, G.; et al. Spittlebugs of Mediterranean Olive Groves: Host-Plant Exploitation throughout the Year. Insects 2020, 11, 130. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, W.-H. Spatial analysis of climatic and dispersion characteristics of Xylella fastidiosa outbreak by insect vectors. J. Asia-Pacific Èntomol. 2023, 26, 102011. [Google Scholar] [CrossRef]
- Lago, C.; Cornara, D.; Minutillo, S.A.; Moreno, A.; Fereres, A. Feeding behaviour and mortality of Philaenus spumarius exposed to insecticides and their impact on Xylella fastidiosa transmission. Pest Manag. Sci. 2022, 78, 4841–4849. [Google Scholar] [CrossRef]
- Drosopoulos, S.; Asche, M. Biosystematic studies on the spittlebug genus Philaenus with the description of a new species. Zool. J. Linn. Soc. 1991, 101, 169–177. [Google Scholar] [CrossRef]
- Godefroid, M.; Durán, J.M. Composition of landscape impacts the distribution of the main vectors of Xylella fastidiosa in southern Spain. J. Appl. Èntomol. 2022, 146, 666–675. [Google Scholar] [CrossRef]
- Karban, R.; Strauss, S.Y. Physiological tolerance, climate change, and a northward range shift in the spittlebug, Philaenus spumarius. Ecol. Èntomol. 2004, 29, 251–254. [Google Scholar] [CrossRef]
- Chmiel, S.M.; Wilson, M.C. Estimation of the Lower and Upper Developmental Threshold Temperatures and Duration of the Nymphal Stages of the Meadow Spittlebug, Philaenus spumarius. Environ. Èntomol. 1979, 8, 682–685. [Google Scholar] [CrossRef]
- Ahmed, D.D.; Davidson, R.H. Life History of the Meadow Spittlebug in Ohio. J. Econ. Èntomol. 1950, 43, 905–908. [Google Scholar] [CrossRef]
- Drosopoulos, S. New data on the nature and origin of colour polymorphism in the spittlebug genus Philaenus (Hemiptera: Aphorophoridae). Ann. Soc. Èntomol. Fr. 2003, 39, 31–42. [Google Scholar] [CrossRef]
- Chartois, M.; Mesmin, X.; Quiquerez, I.; Borgomano, S.; Farigoule, P.; Pierre, É.; Thuillier, J.-M.; Streito, J.-C.; Casabianca, F.; Hugot, L.; et al. Environmental factors driving the abundance of Philaenus spumarius in mesomediterranean habitats of Corsica (France). Sci. Rep. 2023, 13, 1901. [Google Scholar] [CrossRef] [PubMed]
- Cornara, D.; Panzarino, O.; Santoiemma, G.; Bodino, N.; Loverre, P.; Mastronardi, M.G.; Mattia, C.; DE Lillo, E.; Addante, R. Natural areas as reservoir of candidate vectors of Xylella fastidiosa. Bull. Insectology 2021, 74, 173–180. [Google Scholar]
- Dongiovanni, C.; Cavalieri, V.; Bodino, N.; Tauro, D.; Di Carolo, M.; Fumarola, G.; Altamura, G.; Lasorella, C.; Bosco, D. Plant Selection and Population Trend of Spittlebug Immatures (Hemiptera: Aphrophoridae) in Olive Groves of the Apulia Region of Italy. J. Econ. Èntomol. 2018, 112, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Séverine, H.; Casarin, N. Belgian Journal of Entomology Distribution, Adult Phenology and Life History Traits of Potential Insect Vectors of Xylella fastidiosa in Belgium. Available online: https://www.researchgate.net/publication/352903222 (accessed on 25 October 2023).
- Mesmin, X.; Chartois, M.; Borgomano, S.; Rasplus, J.-Y.; Rossi, J.-P.; Cruaud, A. Interaction networks between spittlebugs and vegetation types in and around olive and clementine groves of Corsica; implications for the spread of Xylella fastidiosa. Agric. Ecosyst. Environ. 2022, 334, 107979. [Google Scholar] [CrossRef]
- Albre, J.; Carrasco, J.M.G.; Gibernau, M. Ecology of the meadow spittlebug Philaenus spumarius in the Ajaccio region (Corsica) –I: Spring. Bull. Èntomol. Res. 2020, 111, 246–256. [Google Scholar] [CrossRef] [PubMed]
- (PDF) Xylella fastidiosa: An Overview of Research at Sasa. Available online: https://www.researchgate.net/publication/344376341_Xylella_fastidiosa_AN_OVERVIEW_OF_RESEARCH_AT_SASA (accessed on 24 October 2023).
- Bodino, N.; Cavalieri, V.; Dongiovanni, C.; Plazio, E.; Saladini, M.A.; Volani, S.; Simonetto, A.; Fumarola, G.; Di Carolo, M.; Porcelli, F.; et al. Phenology, seasonal abundance and stage-structure of spittlebug (Hemiptera: Aphrophoridae) populations in olive groves in Italy. Sci. Rep. 2019, 9, 17725. [Google Scholar] [CrossRef] [PubMed]
- Villa, M.; Rodrigues, I.; Baptista, P.; Fereres, A.; Pereira, J.A. Populations and Host/Non-Host Plants of Spittlebugs Nymphs in Olive Orchards from Northeastern Portugal. Insects 2020, 11, 720. [Google Scholar] [CrossRef]
- Morente, M.; Cornara, D.; Plaza, M.; Durán, J.M.; Capiscol, C.; Trillo, R.; Ruiz, M.; Ruz, C.; Sanjuan, S.; Pereira, J.A.; et al. Distribution and Relative Abundance of Insect Vectors of Xylella fastidiosa in Olive Groves of the Iberian Peninsula. Insects 2018, 9, 175. [Google Scholar] [CrossRef]
- Antonatos, S.; Papachristos, D.P.; Varikou, K.; Vahamidis, P.; Kapranas, A.; Milonas, P. Seasonal Appearance, Abundance, and Host Preference of Philaenus spumarius and Neophilaenus campestris (Hemiptera: Aphrophoridae) in Olive Groves in Greece. Environ. Èntomol. 2021, 50, 1474–1482. [Google Scholar] [CrossRef]
- Nunney, L.; Elfekih, S.; Stouthamer, R. The Importance of Multilocus Sequence Typing: Cautionary Tales from the Bacterium Xylella fastidiosa. Phytopathology 2012, 102, 456–460. [Google Scholar] [CrossRef]
- Nunney, L.; Yuan, X.; Bromley, R.; Hartung, J.; Montero-Astúa, M.; Moreira, L.; Ortiz, B.; Stouthamer, R. Population Genomic Analysis of a Bacterial Plant Pathogen: Novel Insight into the Origin of Pierce’s Disease of Grapevine in the U.S. PLoS ONE 2010, 5, e15488. [Google Scholar] [CrossRef]
- Denancé, N.; Legendre, B.; Briand, M.; Olivier, V.; de Boisseson, C.; Poliakoff, F.; Jacques, M. Several subspecies and sequence types are associated with the emergence of Xylella fastidiosa in natural settings in France. Plant Pathol. 2017, 66, 1054–1064. [Google Scholar] [CrossRef]
- Cunty, A.; Legendre, B.; de Jerphanion, P.; Dousset, C.; Forveille, A.; Paillard, S.; Olivier, V. Update of the Xylella fastidiosa outbreak in France: Two new variants detected and a new region affected. Eur. J. Plant Pathol. 2022, 163, 505–510. [Google Scholar] [CrossRef]
- Landa, B.B.; Castillo, A.I.; Giampetruzzi, A.; Kahn, A.; Román-Écija, M.; Velasco-Amo, M.P.; Navas-Cortés, J.A.; Marco-Noales, E.; Barbé, S.; Moralejo, E.; et al. Emergence of a Plant Pathogen in Europe Associated with Multiple Intercontinental Introductions. Appl. Environ. Microbiol. 2020, 86, e01521-19. [Google Scholar] [CrossRef]
- Direção Geral de Alimentação e Veterinária, Despacho no6/G/2022—Atualização da Zona Demarcada Para Xylella fastidiosa da Área Metropolitana do Porto. Available online: https://www.dgav.pt/wp-content/uploads/2022/12/Despacho-6_G_2022-_-ZD-XylellafastidiosaJan2022.pdf (accessed on 1 February 2024).
- Dupas, E.; Durand, K.; Rieux, A.; Briand, M.; Pruvost, O.; Cunty, A.; Denancé, N.; Donnadieu, C.; Legendre, B.; Lopez-Roques, C.; et al. Suspicions of two bridgehead invasions of Xylella fastidiosa subsp. multiplex in France. Commun. Biol. 2023, 6, 103. [Google Scholar] [CrossRef]
- Direção Geral de Alimentação e Veterinária. Atualização da Zona Demarcada Para Xylella fastidiosa da Área Metropolitana de Lisboa. Available online: https://www.dgav.pt/wp-content/uploads/2022/12/Despacho-90_G_2022_ZDXf_LVT.pdf (accessed on 1 April 2024).
- Giampetruzzi, A.; Saponari, M.; Loconsole, G.; Boscia, D.; Savino, V.N.; Almeida, R.P.P.; Zicca, S.; Landa, B.B.; Chacón-Díaz, C.; Saldarelli, P. Genome-wide analysis provides evidence on the genetic relatedness of the emergent Xylella fastidiosa genotype in Italy to isolates from Central America. Phytopathology 2017, 107, 816–827. [Google Scholar] [CrossRef]
- Godefroid, M.; Cruaud, A.; Streito, J.-C.; Rasplus, J.-Y.; Rossi, J.-P. Climate change and the potential distribution of Xylella fastidiosa in Europe. bioRxiv 2018, 289876. [Google Scholar] [CrossRef]
- Piyapong, C.; Tattoni, C.; Ciolli, M.; Dembski, S.; Paradis, E. Modelling the geographical distributions of one native and two introduced species of crayfish in the French Alps. Ecol. Inform. 2020, 60, 101172. [Google Scholar] [CrossRef]
- Bosso, L.; Di Febbraro, M.; Cristinzio, G.; Zoina, A.; Russo, D. Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biol. Invasions 2016, 18, 1759–1768. [Google Scholar] [CrossRef]
- Feil, H.; Purcell, A.H. Temperature-Dependent Growth and Survival of Xylella fastidiosa in Vitro and in Potted Grapevines. Plant Dis. 2001, 85, 1230–1234. [Google Scholar] [CrossRef]
- Hoddle, M.S. The potential adventive geographic range of glassy-winged sharpshooter, Homalodisca coagulata and the grape pathogen Xylella fastidiosa: Implications for California and other grape growing regions of the world. Crop. Prot. 2004, 23, 691–699. [Google Scholar] [CrossRef]
- Cardone, G.; Digiaro, M.; Djelouah, K.; Frem, M.; Rota, C.; Lenders, A.; Fucilli, V. Socio-Economic Risks Posed by a New Plant Disease in the Mediterranean Basin. Diversity 2022, 14, 975. [Google Scholar] [CrossRef]
- Chikwendu, V.; Tochi, H. Aspects of the ecology of spittlebugs (Homoptera: Cercopidae) in Nsukka, south east, Nigeria. Anim. Res. Int. 2010, 7, 1242–1252. [Google Scholar] [CrossRef]
- Purcell, A.H.; Hopkins, D.L. Fastidious xylem-limited bacterial plant pathogens. Annu. Rev. Phytopathol. 1996, 34, 131–151. [Google Scholar] [CrossRef]
- Temperaturas Médias do ar em Portugal 2019–2022. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0009895&contexto=bd&selTab=tab2&xlang=pt (accessed on 17 December 2023).
- Bosso, L.; Russo, D.; Di Febbraro, M.; Cristinzio, G.; Zoina, A. Potential distribution of Xylella fastidiosa in Italy: A maximum entropy model. Phytopathol. Mediterr. 2016, 55, 62–72. [Google Scholar] [CrossRef]
- Avosani, S.; Tattoni, C.; Mazzoni, V.; Ciolli, M. Occupancy and detection of agricultural threats: The case of Philaenus spumarius, European vector of Xylella fastidiosa. Agric. Ecosyst. Environ. 2022, 324, 107707. [Google Scholar] [CrossRef]
- Castro, M.; Castro, J.; Sal, A.G. The Role of Black Oak Woodlands (Quercus pyrenaica Willd.) in Small Ruminant Production in Northeast Portugal. Sustainability of Agrosilvopastoral Systems. 2004, pp. 221–229. Available online: https://bibliotecadigital.ipb.pt/handle/10198/4447 (accessed on 7 December 2023).
Tests | |||
---|---|---|---|
N | DF | −Loglike | RSquare (U) |
15,345 | 37 | 379.13984 | 0.0825 |
Test | ChiSquare | Prob > ChiSq | |
Likelihood ratio | 758.280 | <0.001 | |
Pearson | 967.623 | <0.001 |
Frequency Level | Count | Prob |
---|---|---|
Outros | 6746 | 0.43962 |
Olea europaea | 842 | 0.05487 |
Desconhecido | 641 | 0.04177 |
Citrus | 420 | 0.02737 |
Laurus nobilis L. | 385 | 0.02509 |
Rosa spp. | 351 | 0.02287 |
Nerium oleander L. | 332 | 0.02164 |
Pelargonium sp. | 325 | 0.02118 |
Hedera helix L. | 322 | 0.02098 |
Lavandula dentata L. | 317 | 0.02066 |
Metrosideros excelsea | 305 | 0.01988 |
Quercus suber | 304 | 0.01981 |
Prunus laurocerasus | 259 | 0.01688 |
Quercus sp. | 251 | 0.01636 |
Ilex aquifolium L. | 231 | 0.01505 |
Euryops chrysanthemoides (DC) B.Nord | 196 | 0.01277 |
Vitis vinifera | 183 | 0.01193 |
Citrus sinensis | 182 | 0.01186 |
Dodonea viscosa (L.) Jacq. | 182 | 0.01186 |
Prunus sp. | 173 | 0.01127 |
Ficus carica L. | 170 | 0.01108 |
Rubus | 168 | 0.01095 |
Prunus dulcis | 165 | 0.01075 |
Pteridium aquilinum (L.) Kuhn | 157 | 0.01023 |
Citrus limon | 154 | 0.01004 |
Quercus robur | 154 | 0.01004 |
Hebe | 150 | 0.00978 |
Brassica | 148 | 0.00964 |
Prunus domestica L. | 139 | 0.00906 |
Lonicera japonica Thunb | 130 | 0.00847 |
Strelitzia reginae Aiton | 120 | 0.00782 |
Prunus persica (L.) Batsch | 111 | 0.00723 |
Asparagus acutifolius L. | 110 | 0.00717 |
Veronica sp. | 107 | 0.00697 |
Lavandula angustifélia L. | 106 | 0.00691 |
Pelargonium graveolens (L’Hér.) Dum. Cours | 104 | 0.00678 |
Prunus lusitanica | 103 | 0.00671 |
Eugenia myrtifolia Sims | 102 | 0.00665 |
Total | 15,345 | 1.00000 |
Level | Count | Prob |
---|---|---|
Outros | 196 | 0.64901 |
Lavandula dentata L. | 57 | 0.18874 |
Hebe | 6 | 0.01987 |
Citrus limon | 5 | 0.01656 |
Lavandula angustifólia L. | 5 | 0.01656 |
Olea europaea L. | 5 | 0.01656 |
Dodonea viscosa (L.) Jacq. | 4 | 0.01325 |
Pelargonium graveolens (L’Hér.) Dum. Cours | 3 | 0.00993 |
Prunus persica (L.) Batsch | 3 | 0.00993 |
Pteridium aquilinum (L.) Kuhn | 3 | 0.00993 |
Asparagus acutifolius L. | 2 | 0.00662 |
Citrus sinensis | 2 | 0.00662 |
Euryops chrysanthemoides (DC.) B.Nord | 2 | 0.00662 |
Metrosideros excelsea | 2 | 0.00662 |
Strelitzia reginae Aiton | 2 | 0.00662 |
Ilex aquifolium L. | 1 | 0.00331 |
Prunus laurocerasus | 1 | 0.00331 |
Quercus suber L. | 1 | 0.00331 |
Rosa spp. | 1 | 0.00331 |
Vitis vinifera | 1 | 0.00331 |
Total | 302 | 1.00000 |
1. Acacia longifolia (Andrews) Wild. | 41. Lagerstroemia indica L. | 38. Hypericum androsaemum L. |
2. Acacia melanoxylon R. Br. | 42. Laurus nobilis | 39. Hypericum perforatum L. |
3. Acacia dealbata Link. | 43. Lavandula angustifólia L. | 40. Ilex aquifolium L. |
4. Adenocarpus lainzii (Castrov.) | 44. Lavandula dentata L. | 78. Vinca |
5. Argyranthemum frutescens L. | 45. Lavandula stoechas L. | 79. Vitis spp. |
6. Artemisia arborescens L. | 46. Lavatera cretica L. | |
7. Asparagus acutifolius L. | 47. Liquidambar styraciflua L. | |
8. Athyrium filix-femina (L.) Roth. | 48. Lonicera periclymenum L. | |
9. Berberis thunbergii DC. | 49. Magnolia grandiflora L. | |
10. Calluna vulgaris (L.) Hull. | 50. Magnolia x soulangeana Soul.-Bod. | |
11. Castanea sativa Mill. | 51. Mentha suaveolens Ehrh. | |
12. Cistus psilosepalus Sweet. | 52. Medicago sativa L. | |
13. Cistus salviifolius L. | 53. Metrosideros excelsea Sol. Ex Gaertn. | |
14. Citrus limon (L.) N. Burman | 54. Myrtus communis L. | |
15. Citrus paradisii Macfadyen | 55. Nerium oleander L. | |
16. Citrus reticulata Blanco | 56. Olea europaea L. | |
17. Citrus sinensis (L.) Osbeck | 57. Pelargonium graveolens (L’Hér.) Dum. | |
18. Coprosma repens A. Rich. | 58. Pyracantha coccinea M. Römer | |
19. Cortaderia selloana | 59. Plantago lanceolata L. | |
20. Cytisus scoparius (L.) Link. | 60. Platanus x hispanica | |
21. Dimorphoteca ecklonis (DC.) Norl. | 61. Prunus laurocerasus L. | |
22. Dodonea viscosa (L.) Jacq. | 62. Prunus persica (L.) Batsch | |
23. Echium plantagineum L. | 63. Prunus cerasifera Ehrh. | |
24. Elaeagnus x submacrophylla | 64. Pteridium aquilinum (L.) Kuhn | |
25. Erica cinerea L. | 65. Quercus coccinea Münchh. | |
26. Erigeron canadensis (L.) | 66. Quercus robur L. | |
27. Erodium moschatum (L.) L. Her. | 67. Quercus rubra L. | |
28. Euryops chrysanthemoides (DC.) B. Nord. | 68. Quercus suber L. | |
29. Frangula alnus Mill. | 69. Rosa | |
30. Gazania rigens (L.) Gaertn. | 70. Rubus idaeus L. | |
31. Genista triacanthos Brot. | 71. Rubus ulmifolius Schott. | |
32. Genista tridentata (L.) | 72. Ruta graveolans L. | |
33. Gleditsia triacanthos L. | 73. Salvia rosmarinus Spenn. | |
34. Grevillea rosmarinifolia | 74. Sambucus nigra L. | |
35. Hebe | 75. Santolina chamaecyparissus L. | |
36. Helichrysum italicum (Roth) G.Don | 76. Strelitzia reginae Ait. | |
37. Hibiscus syriacus L. | 77. Ulex spp. |
Sequence Type | Subspecies | Country Most Frequently Found in | Number of Records |
---|---|---|---|
ST53 | pauca | Italy, France, Costa Rica | 475 |
ST11 | pauca | Brazil | 52 |
ST1 | fastidiosa | US, Spain, Mexico | 201 |
ST06 | multiplex | France, Spain, US | 160 |
ST07 | multiplex | Portugal, US, France | 142 |
ST81 | multiplex | Spain | 100 |
ST87 | multiplex | Italy | 91 |
ST29 | morus | US | 10 |
ST05 | sandyi | US | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loureiro, T.; Serra, L.; Martins, Â.; Cortez, I.; Poeta, P. Xylella fastidiosa Dispersion on Vegetal Hosts in Demarcated Zones in the North Region of Portugal. Microbiol. Res. 2024, 15, 1050-1072. https://doi.org/10.3390/microbiolres15030069
Loureiro T, Serra L, Martins Â, Cortez I, Poeta P. Xylella fastidiosa Dispersion on Vegetal Hosts in Demarcated Zones in the North Region of Portugal. Microbiology Research. 2024; 15(3):1050-1072. https://doi.org/10.3390/microbiolres15030069
Chicago/Turabian StyleLoureiro, Talita, Luís Serra, Ângela Martins, Isabel Cortez, and Patrícia Poeta. 2024. "Xylella fastidiosa Dispersion on Vegetal Hosts in Demarcated Zones in the North Region of Portugal" Microbiology Research 15, no. 3: 1050-1072. https://doi.org/10.3390/microbiolres15030069
APA StyleLoureiro, T., Serra, L., Martins, Â., Cortez, I., & Poeta, P. (2024). Xylella fastidiosa Dispersion on Vegetal Hosts in Demarcated Zones in the North Region of Portugal. Microbiology Research, 15(3), 1050-1072. https://doi.org/10.3390/microbiolres15030069