Characterization of Extended-Spectrum β-Lactamase Producing- and Carbapenem–Resistant Escherichia coli Isolated from Diarrheic Dogs in Tunisia: First Report of blaIMP Gene in Companion Animals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacterial Isolation and Identification
2.3. Antimicrobial Susceptibility Testing
2.4. Genomic DNA Extraction
2.5. Identification of Antibiotic Resistance Genes
2.6. Phylogenetic Grouping of the Isolates
2.7. Virulence Genes Identification
2.8. Data Analysis and Interpretation
3. Results
3.1. Bacterial Strains
3.2. Antibiotic Resistance of ESBL-Producing Strains
3.3. Beta-Lactam Resistance Genes
3.4. Non β-Lactam Resistance Genes
3.5. Phylogroups
3.6. Virulence Genes
3.7. Distribution of Virulence Genes and Resistance Genes in Phylogenetic Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bortolami, A.; Zendri, F.; Maciuca, E.I.; Wattret, A.; Ellis, C.; Schmidt, V.; Pinchbeck, G.; Timofte, D. Diversity, virulence, and clinical significance of extended-spectrum β-lactamase-and pAmpC-producing Escherichia coli from companion animals. Front. Microbiol. 2019, 10, 1260. [Google Scholar] [CrossRef] [PubMed]
- Duijvestijn, M.; Mughini-Gras, L.; Schuurman, N.; Schijf, W.; Wagenaar, J.A.; Egberink, H. Enteropathogen infections in canine puppies:(Co-) occurrence, clinical relevance and risk factors. Vet. Microbiol. 2016, 195, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Ghssein, G.; Barakat, R.; Nehme, N.; Awada, R.; Hassan, H.F. Fecal prevalence of Campylobacter spp. in house dogs in Lebanon: A pilot study. Vet. World 2023, 16, 2250. [Google Scholar] [CrossRef] [PubMed]
- Campagnolo, E.; Philipp, L.; Long, J.; Hanshaw, N. Pet-associated Campylobacteriosis: A persisting public health concern. Zoonoses Public Health 2018, 65, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Dupouy, V.; Abdelli, M.; Moyano, G.; Arpaillange, N.; Bibbal, D.; Cadiergues, M.-C.; Lopez-Pulin, D.; Sayah-Jeanne, S.; De Gunzburg, J.; Saint-Lu, N. Prevalence of beta-lactam and quinolone/fluoroquinolone resistance in Enterobacteriaceae from dogs in France and Spain—Characterization of ESBL/pAmpC isolates, genes, and conjugative plasmids. Front. Vet. Sci. 2019, 6, 279. [Google Scholar] [CrossRef] [PubMed]
- Halsby, K.D.; Walsh, A.L.; Campbell, C.; Hewitt, K.; Morgan, D. Healthy animals, healthy people: Zoonosis risk from animal contact in pet shops, a systematic review of the literature. PLoS ONE 2014, 9, e89309. [Google Scholar] [CrossRef] [PubMed]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; Van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M. Public health risk of antimicrobial resistance transfer from companion animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Ramatla, T.; Mafokwane, T.; Lekota, K.; Monyama, M.; Khasapane, G.; Serage, N.; Nkhebenyane, J.; Bezuidenhout, C.; Thekisoe, O. “One Health” perspective on prevalence of co-existing extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae: A comprehensive systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 88. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.-H.; Liu, C.-W.; Liu, P.-Y. Extended-Spectrum β-Lactamases (ESBL) Producing Bacteria in Animals. Antibiotics 2023, 12, 661. [Google Scholar] [CrossRef]
- Bogaerts, P.; Huang, T.-D.; Bouchahrouf, W.; Bauraing, C.; Berhin, C.; El Garch, F.; Glupczynski, Y.; Group, C.S. Characterization of ESBL-and AmpC-producing Enterobacteriaceae from diseased companion animals in Europe. Microb. Drug Resist. 2015, 21, 643–650. [Google Scholar] [CrossRef]
- Rubin, J.E.; Pitout, J.D. Extended-spectrum β-lactamase, carbapenemase and AmpC producing Enterobacteriaceae in companion animals. Vet. Microbiol. 2014, 170, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, B.; Boothe, D.; Oyarzabal, O.; Smaha, T. Antimicrobial resistance profiles and clonal relatedness of canine and feline Escherichia coli pathogens expressing multidrug resistance in the United States. J. Vet. Intern. Med. 2010, 24, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Köck, R.; Daniels-Haardt, I.; Becker, K.; Mellmann, A.; Friedrich, A.W.; Mevius, D.; Schwarz, S.; Jurke, A. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: A systematic review. Clin. Microbiol. Infect. 2018, 24, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Dierikx, C.; van Duijkeren, E.; Schoormans, A.; van Essen-Zandbergen, A.; Veldman, K.; Kant, A.; Huijsdens, X.; van der Zwaluw, K.; Wagenaar, J.; Mevius, D. Occurrence and characteristics of extended-spectrum-β-lactamase-and AmpC-producing clinical isolates derived from companion animals and horses. J. Antimicrob. Chemother. 2012, 67, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Beutin, L. Escherichia coli as a pathogen in dogs and cats. Vet. Res. 1999, 30, 285–298. [Google Scholar] [PubMed]
- Johnson, J.R.; Johnston, B.; Clabots, C.R.; Kuskowski, M.A.; Roberts, E.; DebRoy, C. Virulence genotypes and phylogenetic background of Escherichia coli serogroup O6 isolates from humans, dogs, and cats. J. Clin. Microbiol. 2008, 46, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J. Extraintestinal pathogenic Escherichia coli: A combination of virulence with antibiotic resistance. Front. Microbiol. 2012, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Ukah, U.; Glass, M.; Avery, B.; Daignault, D.; Mulvey, M.; Reid-Smith, R.; Parmley, E.; Portt, A.; Boerlin, P.; Manges, A. Risk factors for acquisition of multidrug-resistant Escherichia coli and development of community-acquired urinary tract infections. Epidemiol. Infect. 2018, 146, 46–57. [Google Scholar] [CrossRef]
- European Society of Clinical Microbiology and Infectious Diseases. European Committee on Antimicrobial Susceptibility Testing (EUCAST) Breakpoint Tables v 8.0 (2018) Tables for Interpretation of MICs and Zone Diameters; European Society of Clinical Microbiology and Infectious Diseases: Basel, Switzerland, 2018. [Google Scholar]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of theEscherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef]
- Coura, F.M.; Diniz, A.N.; Oliveira Junior, C.A.; Lage, A.P.; Lobato, F.C.F.; Heinemann, M.B.; Silva, R.O.S. Detection of virulence genes and the phylogenetic groups of Escherichia coli isolated from dogs in Brazil. Ciência Rural 2018, 48, e20170478. [Google Scholar] [CrossRef]
- Algammal, A.M.; El-Tarabili, R.M.; Alfifi, K.J.; Al-Otaibi, A.S.; Hashem, M.E.A.; El-Maghraby, M.M.; Mahmoud, A.E. Virulence determinant and antimicrobial resistance traits of Emerging MDR Shiga toxigenic E. coli in diarrheic dogs. AMB Express 2022, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Hordijk, J.; Schoormans, A.; Kwakernaak, M.; Duim, B.; Broens, E.; Dierikx, C.; Mevius, D.; Wagenaar, J.A. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front. Microbiol. 2013, 4, 242. [Google Scholar] [CrossRef] [PubMed]
- Wedley, A.L.; Dawson, S.; Maddox, T.W.; Coyne, K.P.; Pinchbeck, G.L.; Clegg, P.; Nuttall, T.; Kirchner, M.; Williams, N.J. Carriage of antimicrobial resistant Escherichia coli in dogs: Prevalence, associated risk factors and molecular characteristics. Vet. Microbiol. 2017, 199, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Ikeda, F.; Kamimura, T.; Yokota, Y.; Mine, Y. Novel plasmid-mediated beta-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob. Agents Chemother. 1988, 32, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Teshager, T.; Domínguez, L.; Moreno, M.A.; Saénz, Y.; Torres, C.; Cardeñosa, S. Isolation of an SHV-12 β-lactamase-producing Escherichia coli strain from a dog with recurrent urinary tract infections. Antimicrob. Agents Chemother. 2000, 44, 3483–3484. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Lovari, S.; Franco, A.; Cordaro, G.; Di Matteo, P.; Battisti, A. Extended-spectrum β-lactamases in Escherichia coli isolated from dogs and cats in Rome, Italy, from 2001 to 2003. Antimicrob. Agents Chemother. 2005, 49, 833–835. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Grobbel, M.; Bethe, A.; Wieler, L.H.; Guenther, S. Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: Action is clearly warranted. Berl. J. Soziol. 2011, 124, 4–101. [Google Scholar]
- Sun, Y.; Zeng, Z.; Chen, S.; Ma, J.; He, L.; Liu, Y.; Deng, Y.; Lei, T.; Zhao, J.; Liu, J.-H. High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin. Microbiol. Infect. 2010, 16, 1475–1481. [Google Scholar] [CrossRef]
- Schaufler, K.; Bethe, A.; Lübke-Becker, A.; Ewers, C.; Kohn, B.; Wieler, L.H.; Guenther, S. Putative connection between zoonotic multiresistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in dog feces from a veterinary campus and clinical isolates from dogs. Infect. Ecol. Epidemiol. 2015, 5, 25334. [Google Scholar] [CrossRef]
- Liu, X.; Thungrat, K.; Boothe, D.M. Occurrence of OXA-48 carbapenemase and other β-lactamase genes in ESBL-producing multidrug resistant Escherichia coli from dogs and cats in the United States, 2009–2013. Front. Microbiol. 2016, 7, 1057. [Google Scholar] [CrossRef]
- Schmiedel, J.; Falgenhauer, L.; Domann, E.; Bauerfeind, R.; Prenger-Berninghoff, E.; Imirzalioglu, C.; Chakraborty, T. Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 2014, 14, 187. [Google Scholar] [CrossRef] [PubMed]
- Stolle, I.; Prenger-Berninghoff, E.; Stamm, I.; Scheufen, S.; Hassdenteufel, E.; Guenther, S.; Bethe, A.; Pfeifer, Y.; Ewers, C. Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J. Antimicrob. Chemother. 2013, 68, 2802–2808. [Google Scholar] [CrossRef] [PubMed]
- Ezzeddine, Z.; Ghssein, G. Towards new antibiotics classes targeting bacterial metallophores. Microb. Pathog. 2023, 182, 106221. [Google Scholar] [CrossRef] [PubMed]
- Raro, O.H.F.; da Silva, R.M.C.; Filho, E.M.R.; Sukiennik, T.C.T.; Stadnik, C.; Dias, C.A.G.; Oteo Iglesias, J.; Pérez-Vázquez, M. Carbapenemase-Producing Klebsiella pneumoniae From Transplanted Patients in Brazil: Phylogeny, Resistome, Virulome and Mobile Genetic Elements Harboring bla KPC–2 or bla NDM–1. Front. Microbiol. 2020, 11, 1563. [Google Scholar] [CrossRef] [PubMed]
- Taggar, G.; Attiq Rheman, M.; Boerlin, P.; Diarra, M.S. Molecular epidemiology of carbapenemases in Enterobacteriales from humans, animals, food and the environment. Antibiotics 2020, 9, 693. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Cornaglia, G. Carbapenemase-producing Enterobacteriaceae: A call for action! Clin. Microbiol. Infect. 2012, 18, 411–412. [Google Scholar] [CrossRef]
- Poirel, L.; Potron, A.; Nordmann, P. OXA-48-like carbapenemases: The phantom menace. J. Antimicrob. Chemother. 2012, 67, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, B.W.; Nayak, R.; Boothe, D.M. Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States. Antimicrob. Agents Chemother. 2013, 57, 2902–2903. [Google Scholar] [CrossRef] [PubMed]
- Yousfi, M.; Mairi, A.; Bakour, S.; Touati, A.; Hassissen, L.; Hadjadj, L.; Rolain, J.-M. First report of NDM-5-producing Esche-richia coli ST1284 isolated from dog in Bejaia, Algeria. New Microbes New Infect. 2015, 8, 17. [Google Scholar] [CrossRef]
- Melo, L.C.; Boisson, M.N.; Saras, E.; Médaille, C.; Boulouis, H.-J.; Madec, J.-Y.; Haenni, M. OXA-48-producing ST372 Escherichia coli in a French dog. J. Antimicrob. Chemother. 2017, 72, 1256–1258. [Google Scholar]
- Ktari, S.; Arlet, G.; Mnif, B.; Gautier, V.; Mahjoubi, F.; Ben Jmeaa, M.; Bouaziz, M.; Hammami, A. Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-β-lactamase, CTX-M-15 extended-spectrum β-lactamase, and CMY-4 AmpC β-lactamase in a Tunisian university hospital. Antimicrob. Agents Chemother. 2006, 50, 4198–4201. [Google Scholar] [CrossRef] [PubMed]
- Nasri, E.; Subirats, J.; Sànchez-Melsió, A.; Mansour, H.B.; Borrego, C.M.; Balcázar, J.L. Abundance of carbapenemase genes (blaKPC, blaNDM and blaOXA-48) in wastewater effluents from Tunisian hospitals. Environ. Pollut. 2017, 229, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Dziri, O.; Dziri, R.; El Salabi, A.A.; Chouchani, C. Carbapenemase producing Gram-Negative bacteria in tunisia: History of thirteen years of challenge. Infect. Drug Resist. 2020, 13, 4177. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Rodríguez, I.; Schmoger, S.; Friese, A.; Roesler, U.; Helmuth, R.; Guerra, B. Escherichia coli producing VIM-1 carbapenemase isolated on a pig farm. J. Antimicrob. Chemother. 2012, 67, 1793–1795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-J.; Lu, Z.; Schwarz, S.; Zhang, R.-M.; Wang, X.-M.; Si, W.; Yu, S.; Chen, L.; Liu, S. Complete sequence of the bla NDM-1-carrying plasmid pNDM-AB from Acinetobacter baumannii of food animal origin. J. Antimicrob. Chemother. 2013, 68, 1681–1682. [Google Scholar] [CrossRef] [PubMed]
- Lengliz, S.; Benlabidi, S.; Raddaoui, A.; Cheriet, S.; Ben Chehida, N.; Najar, T.; Abbassi, M. High occurrence of carbapenem-resistant Escherichia coli isolates from healthy rabbits (Oryctolagus cuniculus): First report of bla IMI and bla VIM type genes from livestock in Tunisia. Lett. Appl. Microbiol. 2021, 73, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Mani, Y.; Mansour, W.; Mammeri, H.; Denamur, E.; Saras, E.; Boujâafar, N.; Bouallègue, O.; Madec, J.-Y.; Haenni, M. KPC-3-producing ST167 Escherichia coli from mussels bought at a retail market in Tunisia. J. Antimicrob. Chemother. 2017, 72, 2403–2404. [Google Scholar] [CrossRef] [PubMed]
- Selmi, R.; Tayh, G.; Srairi, S.; Mamlouk, A.; Chehida, F.B.; Lahmar, S.; Bouslama, M.; Daaloul-Jedidi, M.; Messadi, L. Prevalence, risk factors and emergence of extended-spectrum β-lactamase producing-, carbapenem-and colistin-resistant Enterobacterales isolated from wild boar (Sus scrofa) in Tunisia. Microb. Pathog. 2022, 163, 105385. [Google Scholar] [CrossRef]
- Guerra, B.; Fischer, J.; Helmuth, R. An emerging public health problem: Acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet. Microbiol. 2014, 171, 290–297. [Google Scholar] [CrossRef]
- Grönthal, T.; Österblad, M.; Eklund, M.; Jalava, J.; Nykäsenoja, S.; Pekkanen, K.; Rantala, M. Sharing more than friendship–transmission of NDM-5 ST167 and CTX-M-9 ST69 Escherichia coli between dogs and humans in a family, Finland, 2015. Euro Surveill. 2018, 23, 1700497. [Google Scholar] [CrossRef]
- Yousfi, M.; Touati, A.; Mairi, A.; Brasme, L.; Gharout-Sait, A.; Guillard, T.; De Champs, C. Emergence of carbapenemase-producing Escherichia coli isolated from companion animals in Algeria. Microb. Drug Resist. 2016, 22, 342–346. [Google Scholar] [CrossRef] [PubMed]
- González-Torralba, A.; Oteo, J.; Asenjo, A.; Bautista, V.; Fuentes, E.; Alós, J.-I. Survey of carbapenemase-producing Enterobacteriaceae in companion dogs in Madrid, Spain. Antimicrob. Agents Chemother. 2016, 60, 2499–2501. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global prevalence and molecular characterization of extended-spectrum β-lactamase producing-Escherichia coli in dogs and cats–a scoping review and meta-analysis. Int. J. One Health 2021, 12, 100236. [Google Scholar] [CrossRef] [PubMed]
- Puño-Sarmiento, J.; Medeiros, L.; Chiconi, C.; Martins, F.; Pelayo, J.; Rocha, S.; Blanco, J.; Blanco, M.; Zanutto, M.; Kobayashi, R. Detection of diarrheagenic Escherichia coli strains isolated from dogs and cats in Brazil. Vet. Microbiol. 2013, 166, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Yousif, A.; Alwan, M. Detection of virulent genes in E. coli O157: H7 isolated from puppies and adult dogs by polymerase chain reaction. Res. J. Vet. Pract 2016, 4, 1–6. [Google Scholar] [CrossRef]
- Trabulsi, L.R.; Keller, R.; Gomes, T.A.T. Typical and Atypical Enteropathogenic Escherichia coli. Emerging Infect. Dis. 2002, 8, 508. [Google Scholar] [CrossRef]
- Mainil, J. Escherichia coli virulence factors. Vet. Immunol. Immunopathol. 2013, 152, 2–12. [Google Scholar] [CrossRef]
Primers | Target | Primer Sequences (5′–3′) | Tm | PCR Product (bp) |
---|---|---|---|---|
blaCTX-M1-F | blaCTX-M1 | ATGGTTAAAAAATCACTGCG | 49 °C | 876 |
blaCTX-M1-R | TTACAAACCGTCGGTGAC | |||
blaCTX-M-15-F | BlaCTX-M-15 | CACACGTGGAATTTAGGGACT | 55 °C | 996 |
blaCTX-M-15-R | GCCGTCTAAGGCGATAAACA | |||
blaCTX-M9-F | blaCTX-M9 | GTGACAAAGAGAGTGCAACGG | 60 °C | 856 |
blaCTX-M9-R | ATGATTCTCGCCGCTGAAGCC | |||
blaSHV-F | blaSHV | CACTCAAGGATGTATTGTG | 54 °C | 885 |
blaSHV-R | TTAGCGTTGCCAGTGCTCG | |||
blaTEM-F | blaTEM | ATTCTTGAAGACGAAAGGGC | 50 °C | 1150 |
blaTEM-R | ACGCTCAGTGGAACGAAAAC | |||
blaCMY-F | blaCMY | ATGATGAAAAAATCGATATG | 55 °C | 1146 |
blaCMY-R | TTATTGCAGTTTTTCAAGAATG | |||
OXA48-F | blaOXA48 | GCGTGGTTAAGGATGAACAC | 56 °C | 438 |
OXA48-R | CATCAAGTTCAACCCAACCG | |||
NDM-1-F | blaNDM-1 | GGTTTGGCGATCTGGTTTTC | 52 °C | 621 |
NDM-1-R | CGGAATGGCTCATCACGATC | |||
IMP-F | blaIMP | GGAATAGAGTGGCTTAAYTCTC | 52 °C | 203 |
IMP-R | GGTTTAAYAAAACAACCACC | |||
VIM-F | blaVIM | GATGGTGTTTGGTCGCATA | 52 °C | 390 |
VIM-R | CGAATGCGCAGCACCAG | |||
aac(3)-II-F | aac(3)-II | ACTGTGATGGGATACGCGTC | 57 °C | 200 |
aac(3)-II-R | CTCCGTCAGCGTTTCAGCTA | |||
tetA-F | tetA | GTAATTCTGAGCACTGTCGC | 62 °C | 937 |
tetA-R | CTGCCTGGACAACATTGCTT | |||
tetB-F | tetB | CTCAGTATTCCAAGCCTTTG | 57 °C | 416 |
tetB-R | CTAAGCACTTGTCTCCTGTT | |||
tetC-F | tetC | TCTAACAATGCGCTCATCGT | 56 °C | 570 |
tetC-R | GGTTGAAGGCTCTCAAGGGC | |||
sul1-F | sul1 | TGGTGACGGTGTTCGGCATTC | 62 °C | 789 |
sul1-R | GCGAGGGTTTCCGAGAAGGTG | |||
sul-2F | sul2 | CGGCATCGTCAACATAACC | 50 °C | 722 |
sul2-R | GTGTGCGGATGAAGTGAG | |||
sul3-F | sul3 | CATTCTAGAAAACAGTCGTAGTTCG | 51 °C | 990 |
sul3-R | CATCTGCAGCTAACCTAGGGCTTTGGA | |||
Multiplex PCR qnrA-F | qnrA | AGAGGATTTCTCACGCCAGG | 55 °C | 580 |
qnrA-R | TGCCAGGCACAGATCTTGAC | |||
qnrB-F | qnrB | GCMATHGAAATTCGCCACTG | 264 | |
qnrB-R | TTTGCYGYYCGCCAGTCGAA | |||
qnrS-F | qnrS | GCAAGTTCATTGAACAGGGT | 428 | |
qnrS-R | TCTAAACCGTCGAGTTCGGCG | |||
chuA-F | chuA | GACGAACCAACGGTCAGGAT | 65 °C | 279 |
chuA-R | TGCCGCCACTACCAAAGACA | |||
yji-A-F | yjiA | TGAAGTGTCAGGAGACGCTG | 211 | |
yji-A-R | ATGGAGAATGCGTTCCTCAAC | |||
TSPE4-F | TSPE4 | GAGTAATGTCGGGGCATTCA | 154 | |
TSPE4-R | CGCGCCAACAAAGTATTACG |
Primers | Target | Primer Sequences (5′–3′) | PCR | Tm | PCR Product (bp) |
---|---|---|---|---|---|
Stx1-F | stx1 | CAGTTAATGTGGTGGCGAAGG | Multiplex PCR | 56 °C | 348 |
Stx1-R | CACCAGACAATGTAACCGCTG | ||||
Stx2-F | stx2 | ATCCTATTCCCGGGAGTTTACG | 584 | ||
Stx2-R | GCGTCATCGTATACACAGGAGC | ||||
eae-F | eae | TGCGGCACAACAGGCGGCGA | 629 | ||
eae-R | CGGTCGCCGCACCAGGATTC | ||||
ehxA-F | ehxA | GCATCATCAAGCGTACGTTCC | 534 | ||
ehxA-R | AATGAGCCAAGCTGGTTAAGCT | ||||
fimH-F | fimH | TGCAGAACGGATAAGCCGTGG | 56 °C | 508 | |
fimH-R | GCAGTCACCTGCCCTCCGGTA | ||||
traT-F | traT | GGTGTGGTGCGATGAGCACAG | 57 °C | 290 | |
traT-R | CACGGTTCAGCCATCCCTGAG | ||||
aer-F | aer | TACCGGATTGTCATATGCAGACCG | 56 °C | 602 | |
aer-R | AATATCTTCCTCCAGTCCGGAGAAG | ||||
papA-F | papA | ATGGCAGTGGTGTCTTTTGGTG | 63 °C | 717 | |
papA-R | CGTCCCACCATACGTGCTCTTC | ||||
hly F | hly | GAGCGAGCTAAGCAGCTTG | Multiplex PCR | 56 °C | 889 |
hly R | CCTGCTCCAGAATAAACCACA | ||||
cnf1-F | cnf1 | GGGGGAAGTACAGAAGAATTA | 1111 | ||
cnf1-R | TTGCCGTCCACTCTCTCACCAGT | ||||
cdt3-F | cdt3 | GAAAATAAATGGAATATAAATGTCCG | 555 | ||
cdt3-R | TTTGTGTCGGTGCAGCAGGGAAAA | ||||
iutA-F | iutA | GGCTGGACATCATGGGAACTGG | Duplex PCR | 63 °C | 300 |
iutA-R | CGTCGGGAACGGGTAGAATCG | ||||
fyuA-F | fyuA | TGATTAACCCCGCGACGGGAA | 880 | ||
fyuA-R | CGCAGTAGGCACGATGTTGTA |
E. coli Isolates | β-Lactamase Genes | Resistance to Non β-Lactam Antibiotics | Non β-Lactam Resistance Genes | Virulence Genes | Phylogroup |
---|---|---|---|---|---|
CM1 CTX | blaCTX-M15 blaTEM | A, PRL, CTX, CPM, TIM, ATM, KF, CAZ, GN, S, NA, FFC, C, TET | traT, fimH, aer, fyuA, iutA | D | |
CM2 CTX | blaCTX-M15 blaTEM | A, PRL, CTX, CPM, ATM, KF, NA, ENF, TET | traT, fimH, aer, iutA | D | |
CM6 CTX | blaCTX-M1 blaCTX-M9 blaTEM | A, PRL, CTX, ATM, KF, CAZ, GN, S, FFC, C, TET, TS | sul1, aac(3)II | traT, fimH, fyuA | A |
CM8 CTX | blaCTX-M15 blaSHV | A, PRL, CTX, CPM, TIM, ATM, KF, CAZ, NA, C, ENF, TET | tetA | traT, fimH, aer, iutA | A |
CM17 CTX | blaCTX-M15 | A, PRL, CTX, CPM, ATM, CXM, KF, CAZ, S, NA, FFC, C, ENF, TET, TS | tetA | traT, fimH, fyuA, iutA | B1 |
CM21 CTX | blaCTX-M15 | A, PRL, CTX, CPM, TIM, ATM, CXM, KF, S, NA, TET, TS | traT, fimH, iutA | A | |
CM22 CTX | A, PRL, CTX, CPM, TIM, KF, CXM, CAZ | traT | D | ||
CM24 CTX | A, PRL, CTX, CAZ, NA, ENF | fimH | A | ||
CM25 | A, PRL, CTX, CPM, TIM, AUG, ATM, CAZ, S, NA, FFC, ENF, TET, C, TS | fimH | A | ||
CM27 CTX | blaCMY | A, PRL, CTX, FOX, TIM, AUG, CAZ, TET | traT, fimH | A | |
CM28 CTX | TIM, CAZ, FFC, C, TET, TS | sul2 | traT, fimH, fyuA | D | |
CM29 CTX | blaCTX-M1 | A, PRL, CTX, TIM, ATM, CAZ, S | fimH, eae | A | |
CM32 CTX | blaCTX-M15 | A, PRL, CTX, CPM, TIM, ATM, CAZ, GN, S, NA, C, ENF, TET, TS | sul2, aac(3)II | traT, fimH, aer, iutA | |
CM33 CTX | blaCTX-M9 | A, TIM, AUG, CAZ, GN, S, NA, ENF, TET, TS, NA, FFC, C, TS | sul2 | aer | D |
CM40 CTX | blaCTX-M1 | A, PRL, CTX, CPM, ATM, S, ENF, TET | fimH, aer | A | |
CM45 CTX | blaCTX-M15 | A, PRL, CTX, CPM, TIM, ATM, CAZ, S, NA, FFC, C, ENF, TET, TS | traT, fimH, aer, bfpA, iutA | A | |
CM29A | A, PRL, TIM, S, NA, FFC, ENF, TET, TS | sul1, sul2 | fimH | A | |
CM38CTXA | A, PRL, S, TET, TS | tetA | traT, fimH, aer | D | |
CM53 CTXA | blaCTX-M15 | A, PRL, CTX, S, TET, TS | tetA | traT, fimH, aer | D |
CM57 CTXA | blaIMP | A, PRL, CTX, CPM, TIM, AUG, ATM, CAZ, ETP, GN, S, NA, ENF, FFC, C, TET, TS | tetA | traT, aer, fyuA, iutA | A |
CM58 CTXA | blaCTX-M15 | A, PRL, CTX, CPM, TIM, ATM, CAZ, ETP, GN, S, TET, TS | sul1 | aer | A |
CM85 CTXA | blaCTX-M15 | A, PRL, CTX, CPM, TIM, ATM, CAZ, NA, ENF, TET, TS | traT, fimH, aer, iutA | A | |
CM89 CTXA | blaCTX-M1 | A, PRL, CTX, CPM, TIM, AUG, ATM, CAZ, TET, TS | sul2 | traT, fimH, aer, fyuA | A |
CM91 CTXA | blaCTX-M1 blaCMY, blaIMP | A, PRL, CTX, FOX, TIM, AUG, ATM, CAZ, NA, FFC, C, ENF, TET, TS | traT, fimH, aer, iutA | A | |
CM100 CTXA | blaCTX-M15 | A, PRL, CTX, CPM, TIM, ATM, KF, CXM, CAZ, ETP, NA, FFC, C, ENF, TET, TS | traT, fimH, aer, iutA | A |
Antibiotics | Susceptible (S) | Intermediate (I) | Resistant (R) | |||
---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | |
Amoxicillin | 0 | 0 | 1 | 4 | 24 | 96 |
Piperacillin | 0 | 0 | 2 | 8 | 23 | 92 |
Cefotaxime | 1 | 4 | 3 | 12 | 21 | 84 |
Cefoxitin | 19 | 76 | 4 | 16 | 2 | 8 |
Cefepim | 9 | 36 | 1 | 4 | 15 | 60 |
Ticarcillin/clavulanic acid | 3 | 12 | 4 | 16 | 18 | 72 |
Amoxicillin/clavulanic acid | 8 | 32 | 14 | 56 | 3 | 12 |
Aztreonam | 1 | 4 | 7 | 28 | 17 | 68 |
Cephalothin | 0 | 0 | 2 | 8 | 23 | 92 |
Cefuroxime | 0 | 0 | 1 | 4 | 24 | 96 |
Ceftazidime | 2 | 8 | 4 | 16 | 19 | 76 |
Ertapenem | 18 | 72 | 4 | 16 | 3 | 12 |
Gentamicin | 18 | 72 | 2 | 8 | 5 | 20 |
Streptomycin | 0 | 0 | 12 | 48 | 13 | 52 |
Colistin | 25 | 100 | - | - | 0 | 0 |
Nalidixic acid | 5 | 20 | 5 | 20 | 15 | 60 |
Enrofloxacin | 10 | 40 | 3 | 12 | 12 | 48 |
Chloramphenicol | 10 | 40 | 4 | 16 | 11 | 44 |
Florfenicol | 13 | 52 | 3 | 12 | 9 | 36 |
Tetracyclin | 0 | 0 | 2 | 8 | 23 | 92 |
Trimethoprim/sulfomethoxazole | 8 | 32 | 0 | 0 | 17 | 68 |
Risk Factors | Categories | Total Tested | ESBL Producers No. (%) | p-Value |
---|---|---|---|---|
Gender | Male | 58 | 15 (25.9%) | 0.544 |
Female | 48 | 10 (20.8%) | ||
Age | <6 months | 32 | 9 (28.1%) | 0.482 |
6–12 months | 34 | 9 (26.5%) | ||
12–24 months | 15 | 4 (26.7%) | ||
>24 months | 25 | 3 (12.0%) | ||
Season | Autumn | 10 | 5 (50.0%) | 0.011 |
Summer | 4 | 3 (75.0%) | ||
Winter | 41 | 7 (17.1%) | ||
Spring | 51 | 10 (19.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahia, A.B.H.; Tayh, G.; Landolsi, S.; Maazaoui, A.; Chehida, F.B.; Mamlouk, A.; Dâaloul-Jedidi, M.; Messadi, L. Characterization of Extended-Spectrum β-Lactamase Producing- and Carbapenem–Resistant Escherichia coli Isolated from Diarrheic Dogs in Tunisia: First Report of blaIMP Gene in Companion Animals. Microbiol. Res. 2024, 15, 1119-1133. https://doi.org/10.3390/microbiolres15030075
Yahia ABH, Tayh G, Landolsi S, Maazaoui A, Chehida FB, Mamlouk A, Dâaloul-Jedidi M, Messadi L. Characterization of Extended-Spectrum β-Lactamase Producing- and Carbapenem–Resistant Escherichia coli Isolated from Diarrheic Dogs in Tunisia: First Report of blaIMP Gene in Companion Animals. Microbiology Research. 2024; 15(3):1119-1133. https://doi.org/10.3390/microbiolres15030075
Chicago/Turabian StyleYahia, Asma Ben Haj, Ghassan Tayh, Sarrah Landolsi, Ala Maazaoui, Faten Ben Chehida, Aymen Mamlouk, Monia Dâaloul-Jedidi, and Lilia Messadi. 2024. "Characterization of Extended-Spectrum β-Lactamase Producing- and Carbapenem–Resistant Escherichia coli Isolated from Diarrheic Dogs in Tunisia: First Report of blaIMP Gene in Companion Animals" Microbiology Research 15, no. 3: 1119-1133. https://doi.org/10.3390/microbiolres15030075
APA StyleYahia, A. B. H., Tayh, G., Landolsi, S., Maazaoui, A., Chehida, F. B., Mamlouk, A., Dâaloul-Jedidi, M., & Messadi, L. (2024). Characterization of Extended-Spectrum β-Lactamase Producing- and Carbapenem–Resistant Escherichia coli Isolated from Diarrheic Dogs in Tunisia: First Report of blaIMP Gene in Companion Animals. Microbiology Research, 15(3), 1119-1133. https://doi.org/10.3390/microbiolres15030075