Rabbit Models for Infectious Diseases Caused by Staphylococcus aureus
Abstract
:1. Introduction
2. Pneumonia
3. Skin and Soft Tissue Infections
4. Osteomyelitis
Author | Rabbit Species | Strain and Source | Dose | Inoculation Mode | Wound Management |
---|---|---|---|---|---|
Kishor [38] | Rabbits | MRSA isolated from patients | 5 × 106 CFU/mL 0.01 mL | Inoculation by intramedullary injection | Covered with sterile bandage |
Jacqueline [42] | New Zealand rabbits | MRSA | 1 × 108 CFUs | Intracavitary inoculation of the knee | Not provided |
Joosten [43] | New Zealand rabbits | SCV-A22616/3 MRSA-W23, isolated from patients | 3 × 106 CFUs | Inoculation by intramedullary injection through an opening | Closed with sutures |
Zahar [46] | New Zealand rabbit | MRSA isolated from patients | 1 × 108 CFUs | Inoculation by intramedullary injection through a bone deficit | Closed with sutures and nylon sutures |
Xu [39] | New Zealand rabbit | ATCC 43300 | 1 × 106 CFU/mL 0.1 mL | Inoculation by intramedullary injection through a hole | Closed with 4/0 vicryl |
Yan [44] | New Zealand rabbit | ATCC 25923 | 3 × 108 CFU/mL 0.2 mL | Inoculation by intramedullary injection through a hole | Closed with layered sutures |
Crémieux [37] | New Zealand rabbit | USA300 LAC | 8 × 105 CFUs 4 × 108 CFUs | Inoculation by intramedullary injection | Not provided |
Hriouech [41] | New Zealand rabbit | MRSA isolated from patients | 1 × 109 CFUs | Inoculation by intramedullary injection | Not provided |
Muñoz [47] | New Zealand rabbit | S. aureus UASM-1 | 2 × 106 CFUs | Inoculation by marrow space injection | Sutured after bone restored |
Amador [48] | New Zealand rabbit | MRSA obtained from blood cultures with an MIC of 1 g/mL vancomycin | 1 × 109 CFUs | Inoculation by knee cavity injection | Not provided |
5. Keratitis
Author | Rabbit Species | Strain | Dose | Inoculation Mode |
---|---|---|---|---|
McCormick [52] | New Zealand White rabbit | S. aureus 83254 | 100 CFUs | Inoculation by corneal stroma injection |
Ikemoto [53] | Japanese white rabbit | ATCC 25923 | 4.7 × 106 CFU/mL, 30 μL | Inoculation by corneal stroma injection |
Marino [54] | Normal rabbit eyes | S. aureus-7786, 815, 74CCH | 5 × 105 CFU/mL 0.05 mL | Inoculation by intrastromal injection |
Sanders [55] | New Zealand White rabbit | MRSA 1131 | 100 CFUs | Inoculation by corneal stroma injection |
Rhem [56] | New Zealand White rabbit | S. aureus | Not provided | Inoculation by applying specially treated contact lenses |
Aghamollaei [60] | New Zealand White rabbit | MRSA | 100 CFUs | Inoculation by injection to the cornea |
Barequet [58] | New Zealand White rabbit | MSSA, MRSA | 1000 organisms | Inoculation by intrastromal injection to the center of the cornea |
6. Rhinosinusitis
Author | Rabbit Species | Infectious Agents | Dose | Inoculation Mode |
---|---|---|---|---|
Karasen [73] | New Zealand White rabbit | inactivated S. aureus | 1.1 × 109 0.2 mL | Inoculation by percutaneously applying to the maxillary sinus |
Min [69] | New Zealand White rabbit | enterotoxin A (SEA) of S. aureus | 0.3 ng/mL 2 mL 30 ng/mL 2 mL | Inoculation by percutaneously injecting |
Uslu [74] | New Zealand White rabbit | S. aureus CMF-1 | 108 CFU/mL 0.2 mL | Inoculation by percutaneously injecting to maxillary sinus cavity |
Sütbeyaz [71] | New Zealand albino rabbit | ATCC 25923 | 9 × 108 CFU/mL 0.5 mL | Inoculation by injecting to maxillary cavity |
Dong [75] | New Zealand rabbit | ATCC 25923 | 1 × 108 CFU/mL | Inoculation by injecting to maxillary sinus |
Bleier [70] | New Zealand White rabbit | S. aureus | 4.0 × 108 CFUs | Inoculation by instilling into the sinus |
Jia [67,72] | New Zealand White rabbit | S. aureus 006 | 1 × 106 CFU/mL 0.5 mL | Inoculation through the hole of maxillary sinus |
7. Meningitis
Author | Rabbit Species | Strain | MIC | Dose | Inoculation Mode |
---|---|---|---|---|---|
Ostergaard [79] | New Zealand White rabbit | S. aureus E2371 | Fusidic acid 0.125 mg/L | 1 × 107 CFUs | Inoculation by intracisternal injection |
Sipahi [77] | New Zealand White rabbit | S. aureus ATCC 43300 | Vancomycin 1 mg/L | 1 × 107 CFU/mL 0.3 mL | Inoculation by injecting into the cisterna magna |
Cabellos [82] | New Zealand White rabbit | MRSA-COL strain-GISA (Mu50, ATCC 700699) | Vancomycin 1 mg/L, Vancomycin 8 mg/L | 1 × 108 CFU/mL | Inoculation by injecting into the cisterna magna |
Gerber [83] Stucki [76] | New Zealand rabbit | MSSA 1112 | Vancomycin 1 mg/L | 1 × 105 CFUs | Inoculation by injecting into the subarachnoid space |
Bardak-Ozcem [84] Calik [81] | New Zealand White rabbit | S. aureus ATCC-43300 | Vancomycin 1 mg/L | 1 × 106 CFU/mL 0.5 mL | Inoculation by injecting into the cisterna magna |
Mermer [78] | New Zealand rabbit | S. aureus ATCC-43300 | Vancomycin 1 mg/L | 2 × 107 CFU/mL 0.3 mL | Inoculation by intracisternal injection |
8. Endocarditis
Author | Rabbit Species | Strain | Dose | Inoculation Mode | Catheter Location and Duration |
---|---|---|---|---|---|
Huang [88] | Rabbit | MRSA MW2 | 2 × 105 CFUs | Inoculation by intravenously injecting | left ventricle 48 h |
Spaulding [85] | New Zealand white rabbit | USA200, USA300, USA400, FRI1169, Newman, COL | Not provided | Inoculation by intravenously injecting after removing catheter | aortic valve 2 h |
Chambers [89] | New Zealand white rabbit | S. aureus-76, HIP5836 | 106 CFUs | Inoculation by intravenously injecting | aortic valve 48 h |
Madrigal [93] | New Zealand white rabbit | MRSA-COL, HIP 5836 | 106 CFUs | Inoculation by intravenously injecting | aortic valve 48 h |
Bastien [87] | New Zealand white rabbit | S. aureus isolated from non-IE SAB patients | 1–4 × 107 or 4.5–5.2 × 108 CFUs | Inoculation by ear marginal vein injection after the removal of the catheter | aortic valve 2 h |
Chan [95] | New Zealand White rabbit | S. aureus COL | 107–108 CFUs | Inoculation by intravenously injecting | left ventricle 48 h |
Asseray [96] | New Zealand rabbit | MecA+ MecA− | 108 CFUs | Inoculation by intravenously injecting | left ventricle 24 h |
Shah [94] | New Zealand White rabbit | MRSA MW2 | 5 × 105 CFUs | Inoculation by intravenously injecting | left ventricle 48 h |
Castañeda [91] | New Zealand White rabbit | MSSA-678, 277 | 105 CFU/mL 1 mL | Inoculation by intravenously injecting | left ventricle 24 h |
Chambers [97] | New Zealand White rabbit | S. aureus CB5054 | 107 CFUs | Inoculation by ear marginal vein injection | left ventricle 48 h |
Wang [90] | New Zealand White rabbit | ATCC 29213 | 8 × 107 CFUs | Inoculation by ear marginal vein injection | tricuspid valve |
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salgado-Pabón, W.; Schlievert, P.M. Models Matter: The Search for an Effective Staphylococcus aureus Vaccine. Nat. Rev. Microbiol. 2014, 12, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Missiakas, D.; Schneewind, O. Mouse Models for Infectious Diseases Caused by Staphylococcus aureus. J. Immunol. Methods 2014, 410, 88–99. [Google Scholar] [PubMed]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [PubMed]
- Spaulding, A.R.; Salgado-Pabón, W.; Merriman, J.A.; Stach, C.S.; Ji, Y.; Gillman, A.N.; Peterson, M.L.; Schlievert, P.M. Vaccination Against Staphylococcus aureus Pneumonia. J. Infect. Dis. 2014, 209, 1955–1962. [Google Scholar] [CrossRef]
- Chambers, H.F.; DeLeo, F.R. Waves of Resistance: Staphylococcus aureus in the Antibiotic Era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar]
- Zhen, X.; Lundborg, C.S.; Zhang, M.; Sun, X.; Li, Y.; Hu, X.; Gu, S.; Gu, Y.; Wei, J.; Dong, H. Clinical and Economic Impact of Methicillin-Resistant Staphylococcus aureus: A Multicentre Study in China. Sci. Rep. 2020, 10, 3900. [Google Scholar] [CrossRef]
- Nandhini, P.; Kumar, P.; Mickymaray, S.; Alothaim, A.S.; Somasundaram, J.; Rajan, M. Recent Developments in Methicillin-Resistant Staphylococcus aureus (MRSA) Treatment: A Review. Antibiotics 2022, 11, 606. [Google Scholar] [CrossRef]
- Muñoz-Silvestre, A.; Penadés, M.; Selva, L.; Pérez-Fuentes, S.; Moreno-Grua, E.; García-Quirós, A.; Pascual, J.J.; Arnau-Bonachera, A.; Barragán, A.; Corpa, J.M.; et al. Pathogenesis of Intradermal Staphylococcal Infections: Rabbit Experimental Approach to Natural Staphylococcus aureus Skin Infections. Am. J. Pathol. 2020, 190, 1188–1210. [Google Scholar]
- Duranthon, V.; Beaujean, N.; Brunner, M.; Odening, K.E.; Santos, A.N.; Kacskovics, I.; Hiripi, L.; Weinstein, E.J.; Bosze, Z. On the Emerging Role of Rabbit as Human Disease Model and the Instrumental Role of Novel Transgenic Tools. Transgenic Res. 2012, 21, 699–713. [Google Scholar]
- Berube, B.J.; Bubeck Wardenburg, J. Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue. Toxins 2013, 5, 1140–1166. [Google Scholar] [CrossRef]
- Diep, B.A.; Hilliard, J.J.; Le, V.T.M.; Tkaczyk, C.; Le, H.N.; Tran, V.G.; Rao, R.L.; Dip, E.C.; Pereira-Franchi, E.P.; Cha, P.; et al. Targeting Alpha Toxin To Mitigate Its Lethal Toxicity in Ferret and Rabbit Models of Staphylococcus aureus Necrotizing Pneumonia. Antimicrob. Agents Chemother. 2017, 61, e02456-16. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Liu, X.; Li, X.; Hu, J.; Li, X.; Xiao, J.; Dai, Y.; He, M.; Liu, X.; Jiang, Y.; et al. Mesenchymal Stem Cells Significantly Improved Treatment Effects of Linezolid on Severe Pneumonia in a Rabbit Model. Biosci. Rep. 2019, 39, BSR20182455. [Google Scholar] [CrossRef]
- Strandberg, K.L.; Rotschafer, J.H.; Vetter, S.M.; Buonpane, R.A.; Kranz, D.M.; Schlievert, P.M. Staphylococcal Superantigens Cause Lethal Pulmonary Disease in Rabbits. J. Infect. Dis. 2010, 202, 1690–1697. [Google Scholar] [CrossRef] [PubMed]
- Paharik, A.E.; Salgado-Pabon, W.; Meyerholz, D.K.; White, M.J.; Schlievert, P.M.; Horswill, A.R. The Spl Serine Proteases Modulate Staphylococcus aureus Protein Production and Virulence in a Rabbit Model of Pneumonia. mSphere 2016, 1, e00208-16. [Google Scholar] [CrossRef]
- Diep, B.A.; Chan, L.; Tattevin, P.; Kajikawa, O.; Martin, T.R.; Basuino, L.; Mai, T.T.; Marbach, H.; Braughton, K.R.; Whitney, A.R.; et al. Polymorphonuclear Leukocytes Mediate Staphylococcus aureus Panton-Valentine leukocidin-Induced Lung Inflammation and Injury. Proc. Natl. Acad. Sci. USA 2010, 107, 5587–5592. [Google Scholar] [CrossRef]
- Sharma-Kuinkel, B.K.; Ahn, S.H.; Rude, T.H.; Zhang, Y.; Tong, S.Y.C.; Ruffin, F.; Genter, F.C.; Braughton, K.R.; DeLeo, F.R.; Barriere, S.L.; et al. Presence of Genes Encoding Panton-Valentine Leukocidin Is Not the Primary Determinant of Outcome in Patients with Hospital-Acquired Pneumonia Due to Staphylococcus aureus. J. Clin. Microbiol. 2012, 50, 848–856. [Google Scholar] [CrossRef]
- Shallcross, L.J.; Fragaszy, E.; Johnson, A.M.; Hayward, A.C. The Role of the Panton-Valentine Leucocidin Toxin in Staphylococcal Disease: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2013, 13, 43–54. [Google Scholar] [CrossRef]
- Pivard, M.; Caldelari, I.; Brun, V.; Croisier, D.; Jaquinod, M.; Anzala, N.; Gilquin, B.; Teixeira, C.; Benito, Y.; Couzon, F.; et al. Complex Regulation of Gamma-Hemolysin Expression Impacts Staphylococcus aureus Virulence. Microbiol. Spectr. 2023, 11, e01073-23. [Google Scholar] [CrossRef]
- Hua, L.; Cohen, T.S.; Shi, Y.; Datta, V.; Hilliard, J.J.; Tkaczyk, C.; Suzich, J.; Stover, C.K.; Sellman, B.R. MEDI4893* Promotes Survival and Extends the Antibiotic Treatment Window in a Staphylococcus aureus Immunocompromised Pneumonia Model. Antimicrob. Agents Chemother. 2015, 59, 4526–4532. [Google Scholar] [CrossRef]
- Hua, L.; Hilliard, J.J.; Shi, Y.; Tkaczyk, C.; Cheng, L.I.; Yu, X.; Datta, V.; Ren, S.; Feng, H.; Zinsou, R.; et al. Assessment of an Anti-Alpha-Toxin Monoclonal Antibody for Prevention and Treatment of Staphylococcus aureus-Induced Pneumonia. Antimicrob. Agents Chemother. 2014, 58, 1108–1117. [Google Scholar] [CrossRef]
- Rouha, H.; Badarau, A.; Visram, Z.C.; Battles, M.B.; Prinz, B.; Magyarics, Z.; Nagy, G.; Mirkina, I.; Stulik, L.; Zerbs, M.; et al. Five Birds, One Stone: Neutralization of α-Hemolysin and 4 Bi-Component Leukocidins of Staphylococcus aureus with a Single Human Monoclonal Antibody. mAbs 2015, 7, 243–254. [Google Scholar] [PubMed]
- Foletti, D.; Strop, P.; Shaughnessy, L.; Hasa-Moreno, A.; Casas, M.G.; Russell, M.; Bee, C.; Wu, S.; Pham, A.; Zeng, Z.; et al. Mechanism of Action and in Vivo Efficacy of a Human-Derived Antibody against Staphylococcus aureus α-Hemolysin. J. Mol. Biol. 2013, 425, 1641–1654. [Google Scholar] [PubMed]
- Croisier-Bertin, D.; Hayez, D.; Da Silva, S.; Labrousse, D.; Biek, D.; Badiou, C.; Dumitrescu, O.; Guerard, P.; Charles, P.-E.; Piroth, L.; et al. In Vivo Efficacy of Ceftaroline Fosamil in a Methicillin-Resistant Panton-Valentine Leukocidin-Producing Staphylococcus aureus Rabbit Pneumonia Model. Antimicrob. Agents Chemother. 2014, 58, 1855–1861. [Google Scholar] [PubMed]
- Diep, B.A.; Afasizheva, A.; Le, H.N.; Kajikawa, O.; Matute-Bello, G.; Tkaczyk, C.; Sellman, B.; Badiou, C.; Lina, G.; Chambers, H.F. Effects of Linezolid on Suppressing in Vivo Production of Staphylococcal Toxins and Improving Survival Outcomes in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia. J. Infect. Dis. 2013, 208, 75–82. [Google Scholar]
- Kobayashi, S.D.; Malachowa, N.; DeLeo, F.R. Pathogenesis of Staphylococcus aureus Abscesses. Am. J. Pathol. 2015, 185, 1518–1527. [Google Scholar]
- Linz, M.S.; Mattappallil, A.; Finkel, D.; Parker, D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics 2023, 12, 557. [Google Scholar] [CrossRef]
- Le, V.T.M.; Tkaczyk, C.; Chau, S.; Rao, R.L.; Dip, E.C.; Pereira-Franchi, E.P.; Cheng, L.; Lee, S.; Koelkebeck, H.; Hilliard, J.J.; et al. Critical Role of Alpha-Toxin and Protective Effects of Its Neutralization by a Human Antibody in Acute Bacterial Skin and Skin Structure Infections. Antimicrob. Agents Chemother. 2016, 60, 5640–5648. [Google Scholar]
- Li, M.; Cheung, G.Y.C.; Hu, J.; Wang, D.; Joo, H.-S.; DeLeo, F.R.; Otto, M. Comparative Analysis of Virulence and Toxin Expression of Global Community-Associated Methicillin-Resistant Staphylococcus aureus Strains. J. Infect. Dis. 2010, 202, 1866–1876. [Google Scholar]
- Kobayashi, S.D.; Malachowa, N.; Whitney, A.R.; Braughton, K.R.; Gardner, D.J.; Long, D.; Wardenburg, J.B.; Schneewind, O.; Otto, M.; DeLeo, F.R. Comparative Analysis of USA300 Virulence Determinants in a Rabbit Model of Skin and Soft Tissue Infection. J. Infect. Dis. 2011, 204, 937–941. [Google Scholar] [CrossRef]
- Malachowa, N.; McGuinness, W.; Kobayashi, S.D.; Porter, A.R.; Shaia, C.; Lovaglio, J.; Smith, B.; Rungelrath, V.; Saturday, G.; Scott, D.P.; et al. Toward Optimization of a Rabbit Model of Staphylococcus aureus (USA300) Skin and Soft Tissue Infection. Microbiol. Spectr. 2022, 10, e02716-21. [Google Scholar]
- So-In, C.; Sunthamala, N. Treatment Efficacy of Thunbergia laurifolia, Curcuma longa, Garcinia mangostana, and Andrographis paniculata Extracts in Staphylococcus aureus-Induced Rabbit Dermatitis Model. Vet. World 2022, 15, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.-Y.; Lin, C.-C.; Liao, I.-C.; Yao, Y.-C.; Shen, F.-C.; Liu, C.-C.; Lin, C.-F. Panton-Valentine Leukocidin Facilitates the Escape of Staphylococcus aureus From Human Keratinocyte Endosomes and Induces Apoptosis. J. Infect. Dis. 2014, 209, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Malachowa, N.; Kobayashi, S.D.; Sturdevant, D.E.; Scott, D.P.; DeLeo, F.R. Insights into the Staphylococcus aureus-Host Interface: Global Changes in Host and Pathogen Gene Expression in a Rabbit Skin Infection Model. PLoS ONE 2015, 10, e0117713. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.-Y.; Calhoun, J.H.; Thomas, J.K.; Shapiro, S.; Schmitt-Hoffmann, A. Efficacies of Ceftobiprole Medocaril and Comparators in a Rabbit Model of Osteomyelitis Due to Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2008, 52, 1618–1622. [Google Scholar] [CrossRef]
- Kavanagh, N.; Ryan, E.J.; Widaa, A.; Sexton, G.; Fennell, J.; O’Rourke, S.; Cahill, K.C.; Kearney, C.J.; O’Brien, F.J.; Kerrigan, S.W. Staphylococcal Osteomyelitis: Disease Progression, Treatment Challenges, and Future Directions. Clin. Microbiol. Rev. 2018, 31, e00084-17. [Google Scholar]
- Pimentel de Araujo, F.; Monaco, M.; Del Grosso, M.; Pirolo, M.; Visca, P.; Pantosti, A. Staphylococcus aureus Clones Causing Osteomyelitis: A Literature Review (2000–2020). J. Glob. Antimicrob. Resist. 2021, 26, 29–36. [Google Scholar] [CrossRef]
- Crémieux, A.-C.; Dumitrescu, O.; Lina, G.; Vallee, C.; Côté, J.-F.; Muffat-Joly, M.; Lilin, T.; Etienne, J.; Vandenesch, F.; Saleh-Mghir, A. Panton–Valentine Leukocidin Enhances the Severity of Community-Associated Methicillin-Resistant Staphylococcus aureus Rabbit Osteomyelitis. PLoS ONE 2009, 4, e7204. [Google Scholar]
- Kishor, C.; Mishra, R.R.; Saraf, S.K.; Kumar, M.; Srivastav, A.K.; Nath, G. Phage Therapy of Staphylococcal Chronic Osteomyelitis in Experimental Animal Model. Indian J. Med. Res. 2016, 143, 87–94. [Google Scholar]
- Xu, C.-P.; Chen, Y.; Sun, H.-T.; Cui, Z.; Yang, Y.-J.; Huang, L.; Yu, B.; Wang, F.-Z.; Yang, Q.-P.; Qi, Y. Efficacy of NEMO-Binding Domain Peptide Used to Treat Experimental Osteomyelitis Caused by Methicillin-Resistant Staphylococcus aureus: An in-Vivo Study. Antimicrob. Resist. Infect. Control 2019, 8, 182. [Google Scholar] [CrossRef]
- Lazzarini, L.; Mader, J.T.; Calhoun, J.H. Osteomyelitis in Long Bones. J. Bone Jt. Surg. Am. 2004, 86, 2305. [Google Scholar]
- Hriouech, S.; Akhmouch, A.A.; Mzabi, A.; Chefchaou, H.; Tanghort, M.; Oumokhtar, B.; Chami, N.; Remmal, A. The Antistaphylococcal Activity of Amoxicillin/Clavulanic Acid, Gentamicin, and 1,8-Cineole Alone or in Combination and Their Efficacy through a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Osteomyelitis. Evid. -Based Complement. Altern. Med. Ecam 2020, 2020, 4271017. [Google Scholar]
- Jacqueline, C.; Caillon, J.; Meyer, O.; Dailly, E.; Simonsson, C.; Lenaerts, V.; Asehnoune, K.; Reghal, A.; Potel, G. Efficacy of Nanoencapsulated Daptomycin in an Experimental Methicillin-Resistant Staphylococcus aureus Bone and Joint Infection Model. Antimicrob. Agents Chemother. 2021, 65, e00768-21. [Google Scholar] [PubMed]
- Joosten, U.; Joist, A.; Gosheger, G.; Liljenqvist, U.; Brandt, B.; von Eiff, C. Effectiveness of Hydroxyapatite-Vancomycin Bone Cement in the Treatment of Staphylococcus aureus Induced Chronic Osteomyelitis. Biomaterials 2005, 26, 5251–5258. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Jiang, D.-M.; Cao, Z.-D.; Wu, J.; Wang, X.; Wang, Z.-L.; Li, Y.-J.; Yi, Y.-F. Treatment of Staphylococcus aureus-Induced Chronic Osteomyelitis with Bone-like Hydroxyapatite/Poly Amino Acid Loaded with Rifapentine Microspheres. Drug Des. Dev. Ther. 2015, 9, 3665–3676. [Google Scholar] [CrossRef]
- Lulu, G.A.; Karunanidhi, A.; Mohamad Yusof, L.; Abba, Y.; Mohd Fauzi, F.; Othman, F. In Vivo Efficacy of Tobramycin-Loaded Synthetic Calcium Phosphate Beads in a Rabbit Model of Staphylococcal Osteomyelitis. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 46. [Google Scholar]
- Zahar, A.; Kocsis, G.; Citak, M.; Puskás, G.; Domahidy, M.; Hajdú, M.; Antal, I.; Szendrői, M. Use of Antibiotic-Impregnated Bone Grafts in a Rabbit Osteomyelitis Model. Technol. Health Care 2017, 25, 929–938. [Google Scholar]
- Muñoz, N.M.; Minhaj, A.A.; Dupuis, C.J.; Ensor, J.E.; Golardi, N.; Jaso, J.M.; Dixon, K.A.; Figueira, T.A.; Galloway-Peña, J.R.; Hill, L.; et al. What Are the Effects of Irreversible Electroporation on a Staphylococcus aureus Rabbit Model of Osteomyelitis? Clin. Orthop. 2019, 477, 2367–2377. [Google Scholar]
- Amador, G.; Gautier, H.; Le Mabecque, V.; Miegeville, A.F.; Potel, G.; Bouler, J.-M.; Weiss, P.; Caillon, J.; Jacqueline, C. In Vivo Assessment of the Antimicrobial Activity of a Calcium-Deficient Apatite Vancomycin Drug Delivery System in a Methicillin-Resistant Staphylococcus aureus Rabbit Osteomyelitis Experimental Model. Antimicrob. Agents Chemother. 2010, 54, 950–952. [Google Scholar] [CrossRef]
- Song, X.; Xie, L.; Tan, X.; Wang, Z.; Yang, Y.; Yuan, Y.; Deng, Y.; Fu, S.; Xu, J.; Sun, X.; et al. A Multi-Center, Cross-Sectional Study on the Burden of Infectious Keratitis in China. PLoS ONE 2014, 9, e113843. [Google Scholar] [CrossRef]
- Tuft, S.; Somerville, T.F.; Li, J.-P.O.; Neal, T.; De, S.; Horsburgh, M.J.; Fothergill, J.L.; Foulkes, D.; Kaye, S. Bacterial Keratitis: Identifying the Areas of Clinical Uncertainty. Prog. Retin. Eye Res. 2022, 89, 101031. [Google Scholar]
- Lin, W.; Zhao, L.; Tan, Q.; Lin, D. Treatment of Severe Acute Bacterial Keratitis in Rabbits Using Continuous Topical Ocular Instillation with Norvancomycin. Drug Des. Dev. Ther. 2021, 15, 617–628. [Google Scholar] [CrossRef]
- McCormick, C.C.; Caballero, A.R.; Balzli, C.L.; Tang, A.; O’Callaghan, R.J. Chemical Inhibition of Alpha-Toxin, a Key Corneal Virulence Factor of Staphylococcus aureus. Investig. Ophth. Vis. Sci. 2009, 50, 2848–2854. [Google Scholar]
- Ikemoto, K.; Kobayashi, S.; Haranosono, Y.; Kozai, S.; Wada, T.; Tokushige, H.; Kawamura, A. Contribution of Anti-Inflammatory and Anti-Virulence Effects of Azithromycin in the Treatment of Experimental Staphylococcus aureus Keratitis. BMC Ophthalmol. 2020, 20, 89. [Google Scholar]
- Marino, A.; Blanco, A.R.; Ginestra, G.; Nostro, A.; Bisignano, G. Ex Vivo Efficacy of Gemifloxacin in Experimental Keratitis Induced by Methicillin-Resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 2016, 48, 395–400. [Google Scholar]
- Sanders, M.E.; Norcross, E.W.; Moore, Q.C.; Shafiee, A.; Marquart, M.E. Efficacy of Besifloxacin in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Keratitis. Cornea 2009, 28, 1055–1060. [Google Scholar]
- Rhem, M.N.; Lech, E.M.; Patti, J.M.; McDevitt, D.; Höök, M.; Jones, D.B.; Wilhelmus, K.R. The Collagen-Binding Adhesin Is a Virulence Factor in Staphylococcus aureus Keratitis. Infect. Immun. 2000, 68, 3776–3779. [Google Scholar]
- Dajcs, J.J.; Thibodeaux, B.A.; Marquart, M.E.; Girgis, D.O.; Traidej, M.; O’Callaghan, R.J. Effectiveness of Ciprofloxacin, Levofloxacin, or Moxifloxacin for Treatment of Experimental Staphylococcus aureus Keratitis. Antimicrob. Agents Chemother. 2004, 48, 1948–1952. [Google Scholar]
- Barequet, I.S.; Ben Simon, G.J.; Safrin, M.; Ohman, D.E.; Kessler, E. Pseudomonas aeruginosa LasA Protease in Treatment of Experimental Staphylococcal Keratitis. Antimicrob. Agents Chemother. 2004, 48, 1681–1687. [Google Scholar]
- Nguyen, D.D.; Lue, S.J.; Lai, J.-Y. Tailoring Therapeutic Properties of Silver Nanoparticles for Effective Bacterial Keratitis Treatment. Colloids Surf. B 2021, 205, 111856. [Google Scholar]
- Aghamollaei, H.; Safabakhsh, H.; Moosazadeh Moghaddam, M.; Zare, H.; Bakherad, H.; Jadidi, K. Evaluation of a Cationic Antimicrobial Peptide as the New Antibiotic Candidate to Treat Staphylococcus aureus Keratitis. Int. J. Pept. Res. Ther. 2021, 27, 755–762. [Google Scholar]
- Dajcs, J.J.; Thibodeaux, B.A.; Girgis, D.O.; O’Callaghan, R.J. Corneal Virulence of Staphylococcus aureus in an Experimental Model of Keratitis. DNA Cell Biol. 2002, 21, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Soler, Z.M.; Wittenberg, E.; Schlosser, R.J.; Mace, J.C.; Smith, T.L. Health State Utility Values in Patients Undergoing Endoscopic Sinus Surgery. Laryngoscope 2011, 121, 2672–2678. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, N. Incremental Health Care Utilization and Expenditures for Chronic Rhinosinusitis in the United States. Ann. Otol. Rhinol. Laryngol. 2011, 120, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.A.; Valera, F.C.P.; Faria, F.M.; Rossato, M.; Murashima, A.A.B.; Fantucci, M.Z.; Aragon, D.C.; Queiroz, D.L.C.; Anselmo-Lima, W.T.; Tamashiro, E. An Experimental Model of Eosinophilic Chronic Rhinosinusitis Induced by Bacterial Toxins in Rabbits. Am. J. Rhinol. Allergy 2019, 33, 737–750. [Google Scholar]
- Fastenberg, J.H.; Hsueh, W.D.; Mustafa, A.; Akbar, N.A.; Abuzeid, W.M. Biofilms in Chronic Rhinosinusitis: Pathophysiology and Therapeutic Strategies. World J. Otorhinolaryngol. Head Neck Surg. 2016, 2, 219–229. [Google Scholar] [CrossRef]
- Wood, A.J.; Fraser, J.D.; Swift, S.; Patterson-Emanuelson, E.A.C.; Amirapu, S.; Douglas, R.G. Intramucosal Bacterial Microcolonies Exist in Chronic Rhinosinusitis without Inducing a Local Immune Response. Am. J. Rhinol. Allergy 2012, 26, 265–270. [Google Scholar] [CrossRef]
- Jia, M.; Chen, Z.; Du, X.; Guo, Y.; Sun, T.; Zhao, X. A Simple Animal Model of Staphylococcus aureus Biofilm in Sinusitis. Am. J. Rhinol. Allergy 2014, 28, e115–e119. [Google Scholar]
- Wu, X.; Zhang, Y.; Chen, X.; Chen, J.; Jia, M. Inflammatory Immune Response in Rabbits with Staphylococcus aureus Biofilm–Associated Sinusitis. Int. Forum Allergy Rhinol. 2018, 8, 1226–1232. [Google Scholar] [CrossRef]
- Min, Y.-G.; Jun Oh, S.; Won, T.-B.; Kim, Y.M.; Shim, W.S.; Rhee, C.-S.; Min, J.-Y.; Dhong, H.-J. Effects of Staphylococcal Enterotoxin on Ciliary Activity and Histology of the Sinus Mucosa. Acta Otolaryngol. 2006, 126, 941–947. [Google Scholar] [CrossRef]
- Bleier, B.S.; Kofonow, J.M.; Hashmi, N.; Chennupati, S.K.; Cohen, N.A. Antibiotic Eluting Chitosan Glycerophosphate Implant in the Setting of Acute Bacterial Sinusitis: A Rabbit Model. Am. J. Rhinol. Allergy 2010, 24, 129–132. [Google Scholar]
- Sütbeyaz, Y.; Aktan, B.; Yoruk, O.; Özdemir, H.; Gundogdu, C. Treatment of Sinusitis with Corticosteroids in Combination with Antibiotics in Experimentally Induced Rhinosinusitis. Ann. Otol. Rhinol. Laryngol. 2008, 117, 389–394. [Google Scholar] [PubMed]
- Jia, M.; Chen, Z.; Guo, Y.; Chen, X.; Zhao, X. Efficacy of Silk Fibroin-Nano Silver against Staphylococcus aureus Biofilms in a Rabbit Model of Sinusitis. Int. J. Nanomed. 2017, 12, 2933–2939. [Google Scholar]
- Karasen, R.M.; Uslu, C.; Taysi, S.; Gundogdu, C.; Akcay, F. Effect of Web 2170 Bs, Platelet Activating Factor Receptor Inhibitor, in the Rabbit Model of Sinusitis. Ann. Otol. Rhinol. Laryngol. 2004, 113, 477–482. [Google Scholar]
- Uslu, C.; Karasen, R.M.; Sahin, F.; Taysi, S.; Akcay, F. Effect of Aqueous Extracts of Ecballium elaterium Rich, in the Rabbit Model of Rhinosinusitis. Int. J. Pediatr. Otorhinolaryngol. 2006, 70, 515–518. [Google Scholar]
- Dong, Y.; Zhou, B.; Huang, Z.; Huang, Q.; Cui, S.; Li, Y.; Fan, E.; Li, Y.; Wang, X. Evaluating Bone Remodeling by Measuring Hounsfield Units in a Rabbit Model of Rhinosinusitis: Is It Superior to Measuring Bone Thickness? Int. Forum Allergy Rhinol. 2018, 8, 1342–1348. [Google Scholar]
- Stucki, A.; Gerber, P.; Acosta, F.; Cottagnoud, M.; Cottagnoud, P. Efficacy of Telavancin against Penicillin-Resistant Pneumococci and Staphylococcus aureus in a Rabbit Meningitis Model and Determination of Kinetic Parameters. Antimicrob. Agents Chemother. 2006, 50, 770–773. [Google Scholar]
- Sipahi, O.R.; Arda, B.; Yurtseven, T.; Sipahi, H.; Ozgiray, E.; Suntur, B.M.; Ulusoy, S. Vancomycin versus Teicoplanin in the Therapy of Experimental Methicillin-Resistant Staphylococcus aureus (MRSA) Meningitis. Int. J. Antimicrob. Agents 2005, 26, 412–415. [Google Scholar]
- Mermer, S.; Turhan, T.; Bolat, E.; Aydemir, S.; Yamazhan, T.; Pullukcu, H.; Arda, B.; Sipahi, H.; Ulusoy, S.; Sipahi, O.R. Ceftaroline versus Vancomycin in the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) in an Experimental MRSA Meningitis Model. J. Glob. Antimicrob. Resist. 2020, 22, 147–151. [Google Scholar]
- Ostergaard, C. Evaluation of Fusidic Acid in Therapy of Experimental Staphylococcus aureus Meningitis. J. Antimicrob. Chemother. 2003, 51, 1301–1305. [Google Scholar]
- Myrianthefs, P.; Markantonis, S.L.; Vlachos, K.; Anagnostaki, M.; Boutzouka, E.; Panidis, D.; Baltopoulos, G. Serum and Cerebrospinal Fluid Concentrations of Linezolid in Neurosurgical Patients. Antimicrob Agents Chemother 2006, 50, 3971–3976. [Google Scholar]
- Calik, S.; Turhan, T.; Yurtseven, T.; Sipahi, O.R.; Buke, C. Vancomycin versus Linezolid in the Treatment of Methicillin-Resistant Staphylococcus aureus Meningitis in an Experimental Rabbit Model. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2012, 18, SC5–SC8. [Google Scholar]
- Cabellos, C.; Garrigós, C.; Taberner, F.; Force, E.; Pachón-Ibañez, M.E. Experimental Study of the Efficacy of Linezolid Alone and in Combinations against Experimental Meningitis due to Staphylococcus aureus strains with Decreased Susceptibility to Beta-lactams and Glycopeptides. J. Infect. Chemother. 2014, 20, 563–568. [Google Scholar] [PubMed]
- Gerber, P.; Stucki, A.; Acosta, F.; Cottagnoud, M.; Cottagnoud, P. Daptomycin Is More Efficacious than Vancomycin against a Methicillin-Susceptible Staphylococcus aureus in Experimental Meningitis. J. Antimicrob. Chemother. 2006, 57, 720–723. [Google Scholar] [PubMed]
- Bardak-Ozcem, S.; Turhan, T.; Sipahi, O.R.; Arda, B.; Pullukcu, H.; Yamazhan, T.; Isikgoz-Tasbakan, M.; Sipahi, H.; Ulusoy, S. Daptomycin versus Vancomycin in Treatment of Methicillin-Resistant Staphylococcus aureus Meningitis in an Experimental Rabbit Model. Antimicrob. Agents Chemother. 2013, 57, 1556–1558. [Google Scholar]
- Spaulding, A.R.; Satterwhite, E.A.; Lin, Y.-C.; Chuang-Smith, O.N.; Frank, K.L.; Merriman, J.A.; Schaefers, M.M.; Yarwood, J.M.; Peterson, M.L.; Schlievert, P.M. Comparison of Staphylococcus aureus Strains for Ability to Cause Infective Endocarditis and Lethal Sepsis in Rabbits. Front. Cell. Infect. Microbiol. 2012, 2, 18. [Google Scholar]
- Tornos, P.; Gonzalez-Alujas, T.; Thuny, F.; Habib, G. Infective Endocarditis: The European Viewpoint. Curr. Probl. Cardiol. 2011, 36, 175–222. [Google Scholar]
- Bastien, S.; Meyers, S.; Salgado-Pabón, W.; Giulieri, S.G.; Rasigade, J.-P.; Liesenborghs, L.; Kinney, K.J.; Couzon, F.; Martins-Simoes, P.; Le Moing, V.; et al. All Staphylococcus aureus Bacteraemia-Inducing Strains Can Cause Infective Endocarditis: Results of GWAS and Experimental Animal Studies. J. Infect. 2023, 86, 123–133. [Google Scholar]
- Huang, D.B.; Gaukel, E.; Kerzee, N.; Borroto-Esoda, K.; Lowry, S.; Xiong, Y.Q.; Abdelhady, W.; Bayer, A.S. Efficacy of Antistaphylococcal Lysin LSVT-1701 in Combination with Daptomycin in Experimental Left-Sided Infective Endocarditis Due to Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2021, 65, e00508-21. [Google Scholar]
- Chambers, H.F. Evaluation of Ceftobiprole in a Rabbit Model of Aortic Valve Endocarditis Due to Methicillin-Resistant and Vancomycin-Intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 2005, 49, 884–888. [Google Scholar]
- Wang, M.; Zhang, Y.; Fan, M.; Guo, Y.; Ren, W.; Luo, E. A Rabbit Model of Right-Sided Staphylococcus aureus Endocarditis Created with Echocardiographic Guidance. Cardiovasc. Ultrasoun. 2013, 11, 3. [Google Scholar]
- Castañeda, X.; García-De-la-Mària, C.; Gasch, O.; Pericàs, J.M.; Soy, D.; Cañas-Pacheco, M.-A.; Falces, C.; García-González, J.; Hernández-Meneses, M.; Vidal, B.; et al. Effectiveness of Vancomycin plus Cloxacillin Compared with Vancomycin, Cloxacillin and Daptomycin Single Therapies in the Treatment of Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus in a Rabbit Model of Experimental Endocarditis. J. Antimicrob. Chemother. 2021, 76, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Abdelhady, W.; Bayer, A.S.; Gonzales, R.; Li, L.; Xiong, Y.Q. Telavancin Is Active against Experimental Aortic Valve Endocarditis Caused by Daptomycin- and Methicillin-Resistant Staphylococcus aureus Strains. Antimicrob. Agents Chemother. 2017, 61, e01877-16. [Google Scholar] [CrossRef] [PubMed]
- Madrigal, A.G.; Basuino, L.; Chambers, H.F. Efficacy of Telavancin in a Rabbit Model of Aortic Valve Endocarditis Due to Methicillin-Resistant Staphylococcus aureus or Vancomycin-Intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 2005, 49, 3163–3165. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.U.; Xiong, Y.Q.; Abdelhady, W.; Iwaz, J.; Pak, Y.; Schuch, R.; Cassino, C.; Lehoux, D.; Bayer, A.S. Effect of the Lysin Exebacase on Cardiac Vegetation Progression in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Endocarditis as Determined by Echocardiography. Antimicrob. Agents Chemother. 2020, 64, e00482-20. [Google Scholar] [CrossRef]
- Chan, L.C.; Basuino, L.; Dip, E.C.; Chambers, H.F. Comparative Efficacies of Tedizolid Phosphate, Vancomycin, and Daptomycin in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Endocarditis. Antimicrob. Agents Chemother. 2015, 59, 3252–3256. [Google Scholar] [CrossRef]
- Asseray, N.; Caillon, J.; Roux, N.; Jacqueline, C.; Bismuth, R.; Kergueris, M.F.; Potel, G.; Bugnon, D. Different Aminoglycoside-Resistant Phenotypes in a Rabbit Staphylococcus aureus Endocarditis Infection Model. Antimicrob. Agents Chemother. 2002, 46, 1591–1593. [Google Scholar] [CrossRef]
- Chambers, H.F.; Basuino, L.; Hamilton, S.M.; Choo, E.J.; Moise, P. Daptomycin–β-Lactam Combinations in a Rabbit Model of Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus Endocarditis. Antimicrob. Agents Chemother. 2016, 60, 3976–3979. [Google Scholar] [CrossRef]
- Emanuel, N.; Kozloski, G.A.; Nedvetzki, S.; Rosenfeld, S. Potent Antibacterial Activity in Surgical Wounds with Local Administration of D-PLEX100. Eur. J. Pharm. Sci. 2023, 188, 106504. [Google Scholar]
- Zhang, C.; Li, X.; Xiao, D.; Zhao, Q.; Chen, S.; Yang, F.; Liu, J.; Duan, K. Cu2+ Release from Polylactic Acid Coating on Titanium Reduces Bone Implant-Related Infection. J. Funct. Biomater. 2022, 13, 78. [Google Scholar] [CrossRef]
- Gordon, O.; Miller, R.J.; Thompson, J.M.; Ordonez, A.A.; Klunk, M.H.; Dikeman, D.A.; Joyce, D.P.; Ruiz-Bedoya, C.A.; Miller, L.S.; Jain, S.K. Rabbit Model of Staphylococcus aureus Implant-Associated Spinal Infection. Dis. Models Mech. 2020, 13, dmm045385. [Google Scholar] [CrossRef]
- Nguyen, N.T.Q.; Doan, T.N.M.; Sato, K.; Tkaczyk, C.; Sellman, B.R.; Diep, B.A. Monoclonal Antibodies Neutralizing Alpha-Hemolysin, Bicomponent Leukocidins, and Clumping Factor A Protected against Staphylococcus aureus-Induced Acute Circulatory Failure in a Mechanically Ventilated Rabbit Model of Hyperdynamic Septic Shock. Front Immunol 2023, 14, 1260627. [Google Scholar] [CrossRef] [PubMed]
- Oznurlu, Y.; Celik, I.; Sur, E.; Telatar, T.; Ozparlak, H. Comparative Skin Histology Of The White New Zealand And Angora Rabbits: Histometrical And Immunohistochemical Evaluations. J. Anim. Vet. Adv. 2009, 8, 1694–1701. [Google Scholar]
- Boudry, I.; Trescos, Y.; Vallet, V.; Cruz, C.; Lallement, G. Méthodes et modèles d’étude de l’absorption percutanée des composés organophosphorés. Pathol. Biol. 2008, 56, 292–299. [Google Scholar] [CrossRef]
- Spaulding, A.R.; Lin, Y.-C.; Merriman, J.A.; Brosnahan, A.J.; Peterson, M.L.; Schlievert, P.M. Immunity to Staphylococcus aureus Secreted Proteins Protects Rabbits from Serious Illnesses. Vaccine 2012, 30, 5099–5109. [Google Scholar] [CrossRef]
- Miller Wancket, L.; Bradley, A.; Himmel, L.E. Chapter 18—Animal Models in Toxicologic Research: Rabbit. In Haschek and Rousseaux’s Handbook of Toxicologic Pathology, 4th ed.; Haschek, W.M., Rousseaux, C.G., Wallig, M.A., Bolon, B., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 695–719. ISBN 978-0-12-821044-4. [Google Scholar]
- Schlievert, P.M. Cytolysins, Superantigens, and Pneumonia Due to Community-Associated Methicillin-Resistant Staphylococcus aureus. J. Infect. Dis. 2009, 200, 676–678. [Google Scholar] [CrossRef]
- Clements, P.J.M.; Bolon, B.; McInnes, E.; Mukaratirwa, S.; Scudamore, C. Chapter 17—Animal Models in Toxicologic Research: Rodents. In Haschek and Rousseaux’s Handbook of Toxicologic Pathology, 4th ed.; Haschek, W.M., Rousseaux, C.G., Wallig, M.A., Bolon, B., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 653–694. ISBN 978-0-12-821044-4. [Google Scholar]
Author | Rabbit Species | Dose | Strains | Inoculation Mode | Duration |
---|---|---|---|---|---|
Cruiser-Bertin [23] | New Zealand white rabbit | 3 × 109 CFU/mL 0.5 ml | USA300 | Inoculation via jugular catheter | 50 h |
Kong [12] | New Zealand white rabbit | 1 × 1010 CFUs | ATCC 33591 | Inoculation by bronchoscope | 7 d |
Strandberg [13] | Dutch belted rabbit | 2 × 109 CFUs | USA200 USA400 | Inoculation by tracheal intubation | 7 d |
Diep [24] | New Zealand white rabbit | 5–6 × 109 CFUs | USA300 SF8300 | Inoculation via pediatric endotracheal tube | 36 h |
Diep [15] | New Zealand white rabbit | 2–3 × 1010 CFU/mL 1.5 mL | USA300 SF8300 | Inoculation via pediatric endotracheal tube | 48 h |
Paharik [14] | Dutch belted rabbit | 2 × 109 CFUs | USA300 LAC | Inoculation via ventral midline tracheal cannula | 6 d |
Pivard [18] | New Zealand white rabbit | 9.49–9.61 log10 CFU/mL, 0.5 mL | USA300 ST80 PEN | Inoculation by intratracheal instillation | 48 h |
Diep [11] | New Zealand White outbred rabbits | Not provided | USA300 SF8300 | Inoculation via pediatric endotracheal tube | 96 h |
Author | Rabbit Species | Strains | Dose | Inoculation Mode | Duration |
---|---|---|---|---|---|
Le [27] | New Zealand White rabbit | SF8300 | 2.5–3.0 × 1010 CFU/mL 0.12 mL | Inoculation by intradermal injection | 7 d |
Li [28] | New Zealand White rabbit | SF8300 | 5 × 108 CFUs | Inoculation via intradermal injection | 14 d |
Malachowa [33] | New Zealand White rabbit | USA300 LAC | 5 × 108 CFUs | Inoculation via subcutaneous injection | 14 d |
Malachowa [30] | New Zealand White rabbit | ST121 dltB/Δrot | 1 × 106 CFUs | Inoculation via subcutaneous injection | 14 d |
Kobayashi [29] | New Zealand White rabbit | USA300 | 5 × 108 CFUs | Inoculation via subcutaneous injection | 14 d |
Muñoz-Silvestr [8] | Albino hybrid rabbit | FdltBr strains | 300 CFUs | Inoculation by Intradermal injection | 7 d |
So-In [31] | New Zealand White rabbit | ATCC 6538 | 1 × 106 CFUs | Inoculation by applying S. aureus to skin wound | 7 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, M.; Wang, Y.; Liu, F.; Long, J.; Yang, H. Rabbit Models for Infectious Diseases Caused by Staphylococcus aureus. Microbiol. Res. 2025, 16, 76. https://doi.org/10.3390/microbiolres16040076
Zeng M, Wang Y, Liu F, Long J, Yang H. Rabbit Models for Infectious Diseases Caused by Staphylococcus aureus. Microbiology Research. 2025; 16(4):76. https://doi.org/10.3390/microbiolres16040076
Chicago/Turabian StyleZeng, Minghang, Yadong Wang, Fang Liu, Jinzhao Long, and Haiyan Yang. 2025. "Rabbit Models for Infectious Diseases Caused by Staphylococcus aureus" Microbiology Research 16, no. 4: 76. https://doi.org/10.3390/microbiolres16040076
APA StyleZeng, M., Wang, Y., Liu, F., Long, J., & Yang, H. (2025). Rabbit Models for Infectious Diseases Caused by Staphylococcus aureus. Microbiology Research, 16(4), 76. https://doi.org/10.3390/microbiolres16040076