Bacterial Foodborne Diseases in Central America and the Caribbean: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy
2.3. Identification of Studies
2.4. Selection Process and Quality Assessment
2.5. Data Collection and Analysis
3. Results
3.1. Study Selection
3.2. Data Extraction
3.3. Foodborne Diseases Caused by Bacteria in CAC
Diseases | Symptoms | Causal Agent | Countries | Sources of Pollution | References |
---|---|---|---|---|---|
Salmonellosis | Diarrhea, fever, abdominal pain, nausea, vomiting | Salmonella spp. (Gram-negative bacilli) | Guatemala, Trinidad and Tobago | Egg, meat, poultry, milk | [28,44,45] |
Enteric infections: urinary, cerebrospinal fluid (CSF), lung tissue or bloodstream, hemolytic uremic syndrome, bacteremia, septicemia, meningitis, peritonitis, mastitis | Abdominal cramps, diarrhea (hemorrhagic colitis), fever, vomiting | Escherichia coli | Salvador | Contaminated foods, such as raw or undercooked ground meat products, raw milk, contaminated raw vegetables, and sprouts | [31,32] |
Inflammatory bowel diseases, Barrett’s esophagus, colorectal cancer. Gastroenteritis and bacteremia. Thrombophlebitis, endocarditis, abscesses, mycotic aneurysm, peritonitis, arthritis, meningitis | Acute watery or bloody diarrhea, fever, weight loss, cramps | Campylobacter spp. | Guatemala, Costa Rica | Consumption of undercooked or contaminated food, through contact with animals. Tap, well, and pond water. Person-to-person transmission may occur (fecal–oral or through fomites) | [33,46] |
Shigellosis (bacillary dysentery) | Watery or bloody diarrhea, fever, nausea and sometimes toxemia, vomiting, colic, tenesmus | Shigella spp. | Cuba | By fecal–oral route or by direct person-to-person contact, contaminated food or water | [37,38,39] |
Disease caused by the following: bacteremia (infectious endocarditis, etc.), direct invasion of organs (cellulitis, mastitis, nosocomial pneumonia, among others), exotoxins (gastroenteritis, etc.) | Chills, persistent fever, gastrointestinal pain | Staphylococcus spp. | Cuba | Raw milk, the processing environment and handlers, and contaminated foods | [47,48] |
Listeriosis | Septicemia, meningitis, pregnancy complications (miscarriage), neurological symptoms in vulnerable populations Note: Invasive listeriosis (septicemia/meningitis) mainly affects vulnerable populations, while the gastrointestinal form is less severe and self-limiting | Listeria spp. | Costa Rica | Contaminated foods (fresh and home-produced products, such as unpasteurized cheese and milk, as well as ice cream and fish), meat, and poultry products | [35,36] |
Septicemia, endocarditis, peritonitis, gastroenteritis | Diarrhea | Aliarcobacter spp. | Costa Rica | Water, animals (chicken, pork, beef), human clinical samples, food (fresh and pre-cut vegetables, milk, mollusks), and food facilities | [34] |
Enterocolitis | Abdominal pain, diarrhea, fever | Clostridium difficile | Honduras, Costa Rica | Health institutions, in the environment and food | [49,50,51] |
Countries | Disease | Strategies | |||
Guatemala, Trinidad and Tobago | Salmonellosis | Establish an integrated surveillance system in collaboration with agricultural and health authorities to identify and assess the risk and implement control practices to reduce the burden of salmonellosis [28]. Regulate the access to and use of antimicrobial agents by establishing a surveillance system [37]. | |||
El Salvador | Enteric infections: urinary, cerebrospinal fluid | The Central American Technical Regulation (RTCA) 67.04.50:80 [52] is used for the surveillance and inspection of various food groups, with distinct microbiological criteria. Additionally, the Mandatory Salvadoran Standard NSO 67.02.13:98 [53] sets limits for the microbiological characteristics that meat products must meet [54]. | |||
Guatemala, Costa Rica, países de América | Inflammatory bowel diseases, Barrett’s esophagus, and colorectal cancer | Inflammatory bowel diseases, Barrett’s esophagus, and colorectal cancer Establish effective surveillance and control strategies to prevent the spread of Campylobacter throughout the production chain [15]. Early diagnosis for adequate treatment, especially in immunosuppressed individuals [55]. | |||
Cuba, Guatemala | Shigellosis | Strengthen active surveillance with increased support for laboratory work [56,57]. | |||
Cuba | Diseases caused by bacteremia, direct invasion of organs, exotoxins | The Cuban government created mandatory standards to control the quality of milk and dairy products. Implement good manufacturing practices that contribute to the greater safety of fresh artisanal cheeses [54]. | |||
Costa Rica | Listeriosis | Improve existing surveillance systems to ensure an appropriate flow of information to facilitate the confirmation of an outbreak of foodborne diseases, as well as identification of its cause. Consider expanding the list of notifiable diseases according to the country’s needs. In 2015, the Ministry of Health published the Protocol for the Surveillance of Food and Waterborne Diseases for the detection and intervention of outbreaks. Conduct a risk assessment from the production stage to food consumption [54]. | |||
Costa Rica | Septicemia, endocarditis, peritonitis, gastroenteritis | Conduct future research to design control strategies for bacteria at both the industrial and domestic levels [42]. | |||
Honduras, Costa Rica | Enterocolitis | Increased surveillance |
3.3.1. Salmonella spp.
3.3.2. Escherichia coli
3.3.3. Campylobacter spp.
3.3.4. Shigella spp.
3.3.5. Staphylococcus spp.
3.3.6. Listeria spp.
3.3.7. Aliarcobacter spp.
3.3.8. Clostridium difficile
3.4. Diagnostic and Treatment
Economic Impact
3.5. Main Challenges in Controlling FBDs in CAC
3.6. Strategies to Prevent and Control FBDs in CAC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnes, J.; Whiley, H.; Ross, K.; Smith, J. Defining Food Safety Inspection. Int. J. Environ. Res. Public Health 2022, 19, 789. [Google Scholar] [CrossRef] [PubMed]
- Guerra, M.M.M.; de Almeida, A.M.; Willingham, A.L. An Overview of Food Safety and Bacterial Foodborne Zoonoses in Food Production Animals in the Caribbean Region. Trop. Anim. Health Prod. 2016, 48, 1095–1108. [Google Scholar] [CrossRef]
- Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage Applications for Food Production and Processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Bintsis, T. Foodborne Pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Ishaq, A.R.; Manzoor, M.; Hussain, A.; Altaf, J.; Rehman, S.U.; Javed, Z.; Afzal, I.; Noor, A.; Noor, F. Prospect of Microbial Food Borne Diseases in Pakistan: A Review. Braz. J. Biol. 2021, 81, 940–953. [Google Scholar] [CrossRef]
- Anvar, A.A.; Ahari, H.; Ataee, M. Antimicrobial Properties of Food Nanopackaging: A New Focus on Foodborne Pathogens. Front. Microbiol. 2021, 12, 690706. [Google Scholar] [CrossRef] [PubMed]
- Lee, B. Foodborne Disease and the Need for Greater Foodborne Disease Surveillance in the Caribbean. Vet. Sci. 2017, 4, 40. [Google Scholar] [CrossRef]
- Taylor, E.; Kastner, J.; Renter, D. Challenges Involved in the Salmonella saintpaul Outbreak and Lessons Learned. J. Public Health Manag. Pract. 2010, 16, 221–231. [Google Scholar] [CrossRef]
- Molina, A.; Thye, T.; Muñoz-Vargas, L.; Zamora-Sanabria, R.; Chercos, D.H.; Hernández-Rojas, R.; Robles, N.; Aguilar, D.; May, J.; Dekker, D. Molecular Characterization of Antibiotic Resistant Salmonella Enterica across the Poultry Production Chain in Costa Rica: A Cross-Sectional Study. Int. J. Food Microbiol. 2024, 416, 110663. [Google Scholar] [CrossRef]
- Akeda, Y. Food Safety and Infectious Diseases. J. Nutr. Sci. Vitaminol. 2015, 61, S95. [Google Scholar] [CrossRef]
- Indar-Harrinauth, L.; Daniels, N.; Prabhakar, P.; Brown, C.; Baccus-Taylor, G.; Comissiong, E.; Hospedales, J. Emergence of Salmonella Enteritidis phage type 4 in the Caribbean: Case-control study in Trinidad and Tobago, West Indies. J. Food Prot. 2001, 64, 2059–2064. [Google Scholar] [CrossRef] [PubMed]
- Teshome, E.; Forsido, S.F.; Rupasinghe, H.P.V.; Olika Keyata, E. Potentials of Natural Preservatives to Enhance Food Safety and Shelf Life: A Review. Sci. World J. 2022, 2022, 9901018. [Google Scholar] [CrossRef]
- D’angelantonio, D.; Scattolini, S.; Boni, A.; Neri, D.; Di Serafino, G.; Connerton, P.; Connerton, I.; Pomilio, F.; Di Giannatale, E.; Migliorati, G.; et al. Bacteriophage Therapy to Reduce Colonization of Campylobacter Jejuni in Broiler Chickens before Slaughter. Viruses 2021, 13, 1428. [Google Scholar] [CrossRef]
- Fung, F.; Wang, H.S.; Menon, S. Food Safety in the 21st Century. Biomed. J. 2018, 41, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Lazo-Lascarez, S.; Gutierrez, L.Z.; Duarte-Martínez, F.; Zuniga, J.J.R.; Echandi, M.L.A.; Munoz-Vargas, L. Antimicrobial Resistance and Genetic Diversity of Campylobacter spp. Isolated from Broiler Chicken at Three Levels of the Poultry Production Chain in Costa Rica. J. Food Prot. 2021, 84, 2143–2150. [Google Scholar] [CrossRef]
- Pariza, T.; Cho, M.J. Food Safety in Latin American Informal Food Establishments. Front. Sustain. 2023, 4, 1325059. [Google Scholar] [CrossRef]
- WHO. Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- López, A.; Burgos, T.; Diáz, M.; Mejía, R.; Quinteros, E. Contaminación Microbiológica de La Carne de Pollo En 43 Supermercados de El Salvador. ALERTA Rev. Científica Inst. Nac. Salud 2018, 1, 45–52. [Google Scholar] [CrossRef]
- Chlebicz, A.; Śliżewska, K. Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Diseases: A Review. Int. J. Environ. Res. Public Health 2018, 15, 863. [Google Scholar] [CrossRef]
- Nehra, M.; Kumar, V.; Kumar, R.; Dilbaghi, N.; Kumar, S. Current Scenario of Pathogen Detection Techniques in Agro-Food Sector. Biosensors 2022, 12, 489. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, J.; Shi, Z.; Cao, A.; Fang, W.; Yan, D.; Wang, Q.; Li, Y. Molecular Methods for Identification and Quantification of Foodborne Pathogens. Molecules 2022, 27, 8262. [Google Scholar] [CrossRef]
- White, A.E.; Garman, K.N.; Hedberg, C.; Pennell-Huth, P.; Smith, K.E.; Sillence, E.; Baseman, J.; Scallan Walter, E. Improving Foodborne Disease Surveillance and Outbreak Detection and Response Using Peer Networks—The Integrated Food Safety Centers of Excellence. J. Public Health Manag. Pract. 2023, 29, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Warmate, D.; Onarinde, B.A. Food Safety Incidents in the Red Meat Industry: A Review of Foodborne Disease Outbreaks Linked to the Consumption of Red Meat and Its Products, 1991 to 2021. Int. J. Food Microbiol. 2023, 398, 110240. [Google Scholar] [CrossRef]
- Cherry, C.; Mohr, A.H.; Lindsay, T.; Diez-Gonzalez, F.; Hueston, W.; Sampedro, F. Knowledge and Perceived Implementation of Food Safety Risk Analysis Framework in Latin America and the Caribbean Region. J. Food Prot. 2014, 77, 2098–2105. [Google Scholar] [CrossRef]
- Apruzzese, I.; Song, E.; Bonah, E.; Sanidad, V.S.; Leekitcharoenphon, P.; Medardus, J.J.; Abdalla, N.; Hosseini, H.; Takeuchi, M. Investing in Food Safety for Developing Countries: Opportunities and Challenges in Applying Whole-Genome Sequencing for Food Safety Management. Foodborne Pathog. Dis. 2019, 16, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.; Bianchini, A.; Chaves, B.D. A Review of Salmonella Prevalence and Salmonellosis Burden in the Caribbean Community Member Countries. Food Prot. Trends 2022, 42, 194–201. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Jarquin, C.; Alvarez, D.; Morales, O.; Morales, A.J.; López, B.; Donado, P.; Valencia, M.F.; Arévalo, A.; Muñoz, F.; Walls, I.; et al. Salmonella on Raw Poultry in Retail Markets in Guatemala: Levels, Antibiotic Susceptibility, and Serovar Distribution. J. Food Prot. 2015, 78, 1642–1650. [Google Scholar] [CrossRef]
- Maroto Martín, L.O.; Franco de Los Santos, E.F.; Rodríguez de Francisco, L.E. Situación de la Inocuidad Alimentaria en República Dominicana: Perspectiva INTEC; Instituto Tecnológico de Santo Domingo: Santo Domingo, Dominican Republic, 2022; p. 28. ISBN 978-9945-511-07-9. Available online: https://ediciones.intec.edu.do/index.php/edintec/catalog/view/semper2022/semper2022/44-1 (accessed on 20 January 2025).
- Persad, A.K.; LeJeune, J. A Review of Current Research and Knowledge Gaps in the Epidemiology of Shiga Toxin-Producing Escherichia Coli and Salmonella Spp. in Trinidad and Tobago. Vet. Sci. 2018, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Webb, H.E.; Kim, J.Y.; Tagg, K.A.; Kapsak, C.J.; Tobolowsky, F.; Birhane, M.G.; Francois Watkins, L.; Folster, J.P. Fourteen Mcr -1-Positive Salmonella Enterica Isolates Recovered from Travelers Returning to the United States from the Dominican Republic. Microbiol. Resour. Announc. 2022, 11, 1–4. [Google Scholar] [CrossRef]
- Johnson, L.R.; Gould, L.H.; Dunn, J.R.; Berkelman, R.; Mahon, B.E. Salmonella Infections Associated with International Travel: A Foodborne Diseases Active Surveillance Network (FoodNet) Study. Foodborne Pathog. Dis. 2011, 8, 1031–1037. [Google Scholar] [CrossRef]
- Kendall, M.E.; Crim, S.; Fullerton, K.; Han, P.V.; Cronquist, A.B.; Shiferaw, B.; Ingram, L.A.; Rounds, J.; Mintz, E.D.; Mahon, B.E. Travel-Associated Enteric Infections Diagnosed after Return to the United States, Foodborne Diseases Active Surveillance Network (FoodNet), 2004–2009. Clin. Infect. Dis. 2012, 54, S480–S487. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.; Benoit, S.R.; Arvelo, W.; Lindblade, K.; López, B.; McCracken, J.P.; Bernart, C.; Roldan, A.; Bryan, J.P. Burden of Laboratory-Confirmed Shigellosis Infections in Guatemala 2007–2012: Results from a Population-Based Surveillance System. BMC Public Health 2019, 19, 474. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Pérez, W.; Barquero-Calvo, E.; Zamora-Sanabria, R. Salmonella Contamination Risk Points in Broiler Carcasses during Slaughter Line Processing. J. Food Prot. 2014, 77, 2031–2034. [Google Scholar] [CrossRef]
- Rodrigo, S.; Adesiyun, A.; Asgarali, Z.; Swanston, W. Occurrence of selected foodborne pathogens on poultry and poultry giblets from small retail processing operations in Trinidad. J. Food Saf. 2006, 69, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.S.; Georges, K.; Rahaman, S.; Abebe, W.; Adesiyun, A.A. Characterization of Salmonella Isolates Recovered from Stages of the Processing Lines at Four Broiler Processing Plants in Trinidad and Tobago. Microorganisms 2021, 9, 1048. [Google Scholar] [CrossRef]
- Kumar, N.; Mohan, K.; Georges, K.; Dziva, F.; Adesiyun, A.A. Prevalence, Serovars, and Antimicrobial Resistance of Salmonella in Cecal Samples of Chickens Slaughtered in Pluck Shops in Trinidad. J. Food Prot. 2019, 82, 1560–1567. [Google Scholar] [CrossRef]
- Khan, A.S.; Georges, K.; Rahaman, S.; Abebe, W.; Adesiyun, A.A. Occurrence, Risk Factors, Serotypes, and Antimicrobial Resistance of Salmonella Strains Isolated from Imported Fertile Hatching Eggs, Hatcheries, and Broiler Farms in Trinidad and Tobago. J. Food Prot. 2022, 85, 266–277. [Google Scholar] [CrossRef]
- Fletcher, S.M.; Maharaj, S.R.; James, K. Description of the Food Safety System in Hotels and How It Compares with HACCP Standards. J. Travel Med. 2009, 16, 35–41. [Google Scholar] [CrossRef]
- Hull-Jackson, C.; Adesiyun, A.A. Foodborne Disease Outbreaks in Barbados (1998–2009): A 12-Year Review. J. Infect. Dev. Ctries. 2019, 13, 1–10. [Google Scholar] [CrossRef]
- Martínez-Vasallo, A.; Ribot-Enríquez, A.; Riverón-Alemán, Y.; Remón-Díaz, D.; Martínez-García, Y.A.; Jacsens, L.; Uyttendaele, M. Staphylococcus aureus in the Production Chain of Artisanal Fresh Cheese. Anim. Health J. 2019, 41, 1–7. [Google Scholar]
- Google Bacterial Foodborne Diseases Reported in Countries from Central America and the Caribbean. Available online: https://www.google.com/maps/d/edit?mid=1NOQWhh7EQrWnol8jsEr8Yv9G7K5nYtw&usp=sharing (accessed on 24 October 2024).
- Butaye, P.; Halliday-Simmonds, I.; Van Sauers, A. Salmonella in Pig Farms and on Pig Meat in Suriname. Antibiotics 2021, 10, 1495. [Google Scholar] [CrossRef] [PubMed]
- Peterson, R.; Hariharan, H.; Matthew, V.; Chappell, S.; Davies, R.; Parker, R.; Sharma, R. Prevalence, Serovars, and Antimicrobial Susceptibility of Salmonella Isolated from Blue Land Crabs (Cardisoma guanhumi) in Grenada, West Indies. J. Food Prot. 2013, 76, 1270–1273. [Google Scholar] [CrossRef]
- Khan, A.S.; Georges, K.; Rahaman, S.; Abdela, W.; Adesiyun, A.A. Prevalence and Serotypes of Salmonella spp. on Chickens Sold at Retail Outlets in Trinidad. PLoS ONE 2018, 13, e0202108. [Google Scholar] [CrossRef] [PubMed]
- Adesiyun, A.; Offiah, N.; Seepersadsingh, N.; Rodrigo, S.; Lashley, V.; Musai, L.; Georges, K. Microbial Health Risk Posed by Table Eggs in Trinidad. Epidemiol. Infect. 2005, 133, 1049–1056. [Google Scholar] [CrossRef]
- Adesiyun, A.; Carson, A.; Mcadoo, K.; Bailey, C. Molecular Analysis of Salmonella Enteritidis Isolates from the Caribbean by Pulsed-Field Gel Electrophoresis. Rev. Panam. Salud Pública 2000, 8, 342–347. [Google Scholar] [CrossRef]
- Calvo-Arrieta, K.; Matamoros-Montoya, K.; Arias-Echandi, M.L.; Huete-Soto, A.; Redondo-Solano, M. Presence of Listeria Monocytogenes in Ready-to-Eat Meat Products Sold at Retail Stores in Costa Rica and Analysis of Contributing Factors. J. Food Prot. 2021, 84, 1729–1740. [Google Scholar] [CrossRef] [PubMed]
- Fallas-Padilla, K.L.; Rodríguez-Rodríguez, C.E.; Jaramillo, H.F.; Echandi, M.L.A. Arcobacter: Comparison of Isolation Methods, Diversity, and Potential Pathogenic Factors in Commercially Retailed Chicken Breast Meat from Costa Rica. J. Food Prot. 2014, 77, 880–884. [Google Scholar] [CrossRef]
- Villalobos, E.G.; Jaramillo, H.F.; Ulate, C.C.; Echandi, M.L.A. Isolation and Identification of Zoonotic Species of Genus Arcobacter from Chicken Viscera Obtained from Retail Distributors of the Metropolitan Area of San José, Costa Rica. J. Food Prot. 2013, 76, 879–882. [Google Scholar] [CrossRef] [PubMed]
- RTCA. RTCA 67.04.50:80. Reglamento Técnico Centroamericano; Ministerio de Economía, MINECO; Organismo Salvadoreño de Reglamentación Técnica, OSARTEC; Ministerio de Fomento, Industria y Comercio, MIFIC: Managua, Nicaragua, 2005.
- NSO. 1998. NSO 67.02.13; Carne y Productos Carnicos. Embutidos. Crudos y Cocidos. Ministerio de Economia, Direccion de Normas y Regulaciones Tecnicas: San Salvador, El Salvador, 1998.
- Díaz, S.L.; Jarquin, C.; Morales, A.J.; Morales, M. Salmonellosis and Shigellosis Burden in Four Departments of Guatemala, 2010. Rev. Panam. Salud Publica 2015, 38, 45–51. [Google Scholar]
- Hernandez-Milian, A.; Payeras-Cifre, A. What Is New in Listeriosis? BioMed Res. Int. 2014, 2014, 358051. [Google Scholar] [CrossRef]
- Campos, M.; Herrera, M.; Vargas, A.; Herrera, J. Campylobacter sp. Bacteremia in a Patient with X-linked Agammaglobulinemia (XLA): First Reported Case in Costa Rica. J. Natl. Children’s Hosp. Dr. Carlos Sáez Herrera 2000, 35, 1–2. [Google Scholar]
- Duarte, R.A.; Hernández del Sol, C.R.; Mesa Delgado, Z.; García Gómez, D.; Bermúdez Alemán, R.I.; Meras Jáuregui, R.M. Antimicrobial Resistance of Shigella Strains Isolated at the José Luis Miranda University Pediatric Hospital. Acta Méd. Del Centro 2021, 15, 270–279. [Google Scholar]
- Arias Echandi, M.L.; Huete Soto, A.; Castillo Blanco, J.M.; Fernández, F.; Fernandez Jaramillo, H. Occurrence of Aliarcobacter Spp. in Fresh and Pre-Cut Vegetables of Common Use in San José, Costa Rica. Ital. J. Food Saf. 2023, 12, 10344. [Google Scholar] [CrossRef]
- Quesada-Gómez, C.; Mulvey, M.R.; Vargas, P.; Del Mar Gamboa-Coronado, M.; Rodríguez, C.; Rodríguez-Cavillini, E. Isolation of a Toxigenic and Clinical Genotype of Clostridium Difficile in Retail Meats in Costa Rica. J. Food Prot. 2013, 76, 348–351. [Google Scholar] [CrossRef]
- González Flores, T.; Rojas Herrera, R.H. Enfermedades Transmitidas por Alimentos y PCR: Prevención y Diagnóstico; Salud Pública Méx: Cuernavaca, Mexico, 2005; Volume 47, pp. 388–390. ISSN 0036-3634. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342005000500010&lng=es&nrm=iso (accessed on 10 February 2025).
- Elbehiry, A.; Abalkhail, A.; Marzouk, E.; Elmanssury, A.E.; Almuzaini, A.M.; Alfheeaid, H.; Alshahrani, M.T.; Huraysh, N.; Ibrahem, M.; Alzaben, F.; et al. An Overview of the Public Health Challenges in Diagnosing and Controlling Human Foodborne Pathogens. Vaccines 2023, 11, 725. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Diagnosis and Management of Foodborne Illnesses—A Primer for Physicians and Other Health Care Professionals. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr204a1.htm (accessed on 10 February 2025).
- Fleckenstein, J.M.; Matthew Kuhlmann, F.; Sheikh, A. Acute Bacterial Gastroenteritis. Gastroenterol. Clin. N. Am. 2021, 50, 283–304. [Google Scholar] [CrossRef]
- Kabiraz, M.P.; Majumdar, P.R.; Mahmud, M.M.C.; Bhowmik, S.; Ali, A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023, 9, e15482. [Google Scholar] [CrossRef]
- Priyanka, B.; Patil, R.K.; Dwarakanath, S. A review on detection methods used for foodborne pathogens. Indian J Med Res. 2016, 144, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Ray, L.C.; Griffin, P.M.; Wymore, K.; Wilson, E.; Hurd, S.; LaClair, B.; Wozny, S.; Eikmeier, D.; Nicholson, C.; Burzlaff, K.; et al. Changing Diagnostic Testing Practices for Foodborne Pathogens, Foodborne Diseases Active Surveillance Network, 2012–2019. Open Forum Infect. Dis. 2022, 9, ofac344. [Google Scholar] [CrossRef]
- Vidić, J.; Vizzini, P.; Manzano, M.; Kavanaugh, D.; Ramarao, N.; Zivkovic, M.; Radonic, V.; Knezevic, N.; Giouroudi, I.; Gadjanski, I. Point-of-Need DNA Testing for Detection of Foodborne Pathogenic Bacteria. Sensors 2019, 19, 1100. [Google Scholar] [CrossRef]
- Oleastro, M.; Botelho, A. Editorial for Special Issue Foodborne Pathogens: Infections and Pathogenesis. Microorganisms 2023, 11, 1544. [Google Scholar] [CrossRef]
- Çelik, C.; Pınar, O.; Sipahi, N. The Prevalence of Aliarcobacter Species in the Fecal Microbiota of Farm Animals and Potential Effective Agents for Their Treatment: A Review of the Past Decade. Microorganisms 2022, 10, 1230. [Google Scholar] [CrossRef]
- Hotez, P.; Woc-Colburn, L.; Bottazzi, M. Neglected Tropical Diseases in Central America and Panama: Review of Their Prevalence, Populations at Risk and Impact on Regional Development. Int. J. Parasitol. 2014, 44, 597–603. [Google Scholar] [CrossRef]
- Hernández-Moreno, A.; Vásquez-Palma, O.; Gutiérrez-Gutiérrez, F.; Cordero-Ahiman, O.; Celedón-Celis, N.; Hochstetter-Diez, J. Analysis of Food Security of Older Rural Indigenous People in Latin America and the Caribbean. Foods 2024, 13, 1772. [Google Scholar] [CrossRef]
- Kopper, G.; Calderón, G.; Schneider, S.; Domínguez, W.; Gutiérrez, G.; Rosell, C.; Mejía, D. Enfermedades Transmitidas por Alimentos y su Impacto Socioeconómico; FAO: Rome, Italy, 2009; Volume 6, pp. 1–194. [Google Scholar]
- Food and Agriculture Organization of the United Nations; Pan American Health Organization. WHO Food Handler Manual: Student; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: https://openknowledge.fao.org/handle/20.500.14283/i7321en (accessed on 20 January 2025).
- Pires, S.M.; Vieira, A.R.; Perez, E.; Wong, D.L.F.; Hald, T. Attributing Human Foodborne Illness to Food Sources and Water in Latin America and the Caribbean Using Data from Outbreak Investigations. Int. J. Food Microbiol. 2012, 152, 129–138. [Google Scholar] [CrossRef]
- CDC in Central America. Available online: https://www.cdc.gov/global-health/countries/central-america.html (accessed on 30 October 2024).
- CDC in the Dominican Republic. Available online: https://www.cdc.gov/global-health/countries/dominican-republic.html (accessed on 30 October 2024).
- Pan American Health Organization Pan American Commission on Food Safety (COPAIA 6). In Proceedings of the 6th Meeting of the Pan American Commission on Food Safety, Santiago, Chile, 24 July 2012.
- Chinen, I.; Campos, J.; Dorji, T.; Pérez Gutiérrez, E. PulseNet Latin America and the Caribbean Network: Present and Future. Foodborne Pathog. Dis. 2019, 16, 489–497. [Google Scholar] [CrossRef]
- Khan, A.S.; Pierneef, R.E.; Gonzalez-Escalona, N.; Maguire, M.; Georges, K.; Abebe, W.; Adesiyun, A.A. Phylogenetic Analyses of Salmonella Detected along the Broiler Production Chain in Trinidad and Tobago. Poult. Sci. 2023, 102, 102322. [Google Scholar] [CrossRef]
- Nadon, C.; Van Walle, I.; Gerner-Smidt, P.; Campos, J.; Chinen, I.; Concepcion-Acevedo, J.; Gilpin, B.; Smith, A.M.; Kam, K.M.; Perez, E.; et al. Pulsenet International: Vision for the Implementation of Whole Genome Sequencing (WGS) for Global Foodborne Disease Surveillance. Eurosurveillance 2017, 22, 30544. [Google Scholar] [CrossRef]
- Khan, A.S.; Pierneef, R.E.; Gonzalez-Escalona, N.; Maguire, M.; Li, C.; Tyson, G.H.; Ayers, S.; Georges, K.; Abebe, W.; Adesiyun, A.A. Molecular Characterization of Salmonella Detected along the Broiler Production Chain in Trinidad and Tobago. Microorganisms 2022, 10, 570. [Google Scholar] [CrossRef]
- Baker, K.S.; Campos, J.; Pichel, M.; Della Gaspera, A.; Duarte-Martínez, F.; Campos-Chacón, E.; Bolaños-Acuña, H.M.; Guzmán-Verri, C.; Mather, A.E.; Diaz Velasco, S.; et al. Whole Genome Sequencing of Shigella Sonnei through PulseNet Latin America and Caribbean: Advancing Global Surveillance of Foodborne Illnesses. Clin. Microbiol. Infect. 2017, 23, 845–853. [Google Scholar] [CrossRef]
- Ruiz, M.J. Isolation and Identification of Lactic Acid Bacteria with Inhibitory Activity Against Bacteria Involved in Foodborne Illnesses. 2019. Available online: https://ri.conicet.gov.ar/handle/11336/103805 (accessed on 12 January 2025).
Search Blocks | Keyword and Phrases |
---|---|
Foodborne Diseases | “Foodborne disease” OR “Foodborne illness” OR “Foodborne infections” OR “Food Contamination” OR “Food Poisoning” |
Microbiological Terms | Microbiological OR Bacteria*OR Pathogen* OR Salmonella OR E. coli OR Campylobacter OR Vibrio OR Staphylococcus OR Shigella OR Helicobacter OR Listeria |
Prevalence/Epidemiology | Prevalence OR Incidence OR Epidemiology OR Outbreak* OR “Temperature related” OR “Geographical distribution” OR “Seasonal patterns” OR Statistics OR Report* |
Challenges in Controlling FBDs | Barriers OR Challenges OR Limitations OR Obstacles OR Deficiencies OR “Knowledge gaps” OR “Lack of knowledge” OR “Research gaps” OR “Inadequate practices” OR “Unhygienic practices” OR “Socioeconomic factors” |
Control Systems and Public Health | “Food safety” OR “Food inspection” OR “Public health” OR Regulation* OR Infrastructure OR “Control systems” OR Intervention OR Policy OR Surveillance OR “Food handling” OR “Food preparation” OR Sanitation OR Hygiene OR Awareness OR Education OR “Disease control” OR Monitoring |
Strategies to Prevent and Control FBDs | Strategies OR Techniques OR Practices OR Solutions OR Innovation OR Advances OR Technologies OR Enhancing OR Improvement OR Strengthening OR Prevention OR “Education programs” OR “Detection methods” OR “Control measures” OR “Multisectoral approach” OR Regulation OR Infrastructure OR “Control systems” OR Policies OR Surveillance OR “Food handling” OR “Food preparation” OR Sanitation OR Hygiene OR Awareness OR Education OR “Disease control” OR Monitoring OR Interventions OR “Risk management” OR “Public awareness” OR Research |
Geographic Scope | “Central America” OR “Caribbean” OR “The Antilles” OR “Tropical countries” OR “Tropical climates” OR “Hispanic countries” OR Panama OR “Costa Rica” OR Nicaragua OR Honduras OR “El Salvador” OR Guatemala OR Belize OR “Antigua and Barbuda” OR “The Bahamas” OR Barbados OR Dominica OR “Dominican Republic” OR Grenada OR Guyana OR Haiti OR Jamaica OR “Saint Lucia” OR “St. Kitts and Nevis” OR “St. Vincent and the Grenadines” OR Suriname OR “Trinidad and Tobago” |
Bacteria | Species and Serotypes | Sources | Country | References |
---|---|---|---|---|
Shigella spp. | Shigella flexneri, S. sonnei | Stool samples | Guatemala | [34] |
Salmonella spp. | S. Paratyphi B, S. Heidelberg, S. Derby, S. Enteritidis, S. Albert, S. Budapest, S. Dublin, S. Essen, S. Haifa, S. Israel, S. Stanley, S. Typhimurium, S. Saintpaul | Chicken carcasses | [28] | |
S. Anatum, S. Ohio, monophasic Typhimurium, Brandenburg, Javaniana | Pigs in farms | Suriname | [44] | |
S. Saintpaul, S. Montevideo, S. Newport | Blue land crabs | Grenada | [45] | |
Salmonella enterica | Poultry chicken | Dominican Republic | [31] | |
S. Enteritidis, S. Typhimurium, S. Newport, S. Javiana, S. Corvallis, S. Paratyphi A, S. Concord, S. Typhi | ND | Dominican Republic, the Bahamas, Costa Rica, and Jamaica | [32] | |
S. Enteritidis, S. Typhimurium, S. Newport, S. Paratyphi A, S. Paratyphi B, S. Paratyphi C | ND | Dominican Republic, the Bahamas, Costa Rica, Jamaica, Guatemala, and El Salvador | [33] | |
ND | Chicken carcasses at processing lines | Trinidad and Tobago | [35] | |
S. Javiana, S. Kentucky, S. Manhattan, S. subspecies enterica I, S. San Diego | Dressed chickens at cottage processors | [46] | ||
S. Enteritidis, S. Javiana, S. Infantis, S. Kentucky, S. Anatum, S. Schwarzengrund, S. Albany, S. Hindmarsh, S. Madjorio, S. Mbandaka, S. enterica subspecies Houtenae, Virchow, Weltevrden, Aberdeen, Alachua, Ayinde. | Broiler chickens at processing plants | [37] | ||
S. Westhampton, S. Group D | Imported fertile hatching eggs | [39] | ||
S. Enteritidis, S. Javiana, S. Ohio, S. Braenderup, S. Georgia, S. Caracas, S. Mbandaka, S. Group C1 | Table eggs | [47,48] | ||
S. Kiambu, S. Kentucky, S. Mbandaka | Broiler at processing lines | [36] | ||
S. Molade, S. enterica subsp. enterica I, S. Typhimurium, S. Group B | Poultry (cecal samples) | [38] | ||
Escherichia coli | NA | Table eggs | [47] | |
NA | Chicken carcasses, hearts, livers, and gizzards | [36] | ||
Campylobacter spp. | ND | Table eggs | [47] | |
ND | Chicken carcasses | [36] | ||
Staphylococcus spp. | ND | Poultry chicken and giblets | [36] | |
Listeria spp. | L. innocua, L. welshimeri, L. grayi, L. monocytogenes | Ready-to-eat meat products (bologna, sausages, chorizo, salami, queso de cerdo, and mortadela) | Costa Rica | [49] |
Aliarcobacter spp. | A. butzleri, A. skirrowii | Fresh vegetables | [58] | |
A. butzleri, A. cryaerophilus | Chicken breast | [50] | ||
A. butzleri, A. cryaerophilus, A. skirrowii | Chicken viscera | [51] | ||
Clostridium difficile | NA | Beef, pork, poultry | [59] |
Main Challenge | Description | Reference |
---|---|---|
Inadequate FBD surveillance | Underreporting of foodborne diseases due to limited diagnostic testing during sporadic cases. | [8] |
Lack of updated research | Outdated research on outbreaks and bacteria in food, especially for non-poultry livestock. | [30] |
Lack of comprehensive data | Inconsistent and incomplete reporting of FBD data across the region hinders comprehensive disease monitoring. | [30] |
Emerging pathogens | Detection of emerging pathogens such as Arcobacter highlights poor hygiene practices in food handling. | [50] |
Lack of HACCP implementation | Smaller establishments struggle with adopting and implementing effective HACCP protocols, causing poor food handling practices. | [40] |
Knowledge gaps among staff | Insufficient understanding of risk prevention analysis principles among food establishment staff members. | [40] |
Strategy | Description | Outcomes | Challenges | References |
---|---|---|---|---|
Center for Disease Control and Prevention (CDC) | Since the 1960s, the CDC has operated in Central America, strengthening public health systems. A regional office opened in Guatemala in 2003 to coordinate disease surveillance, lab capacity, emergency response, and One Health initiatives. | Improved disease detection and antimicrobial resistance tracking in the region. | Coordination across multiple countries and health systems. | [75,76] |
Pan-American Health Organization (PAHO). | PAHO promotes risk-based food safety frameworks, education, and contamination surveillance in the Americas, strengthening lab capacities and emergency response with partners like INFOSAN. | Enhanced FBD risk communication and response capacity in Latin American health systems. | Varying levels of infrastructure and legal frameworks. | [73,77] |
PulseNet Latin America and the Caribbean (PNLAC) | Established in 2003 to strengthen laboratory-based surveillance using standardized PFGE protocols. Countries contribute to a regional pathogen database maintained by PAHO, enhancing early outbreak detection and investigation. | Improved coordination in outbreak detection and response across 16 countries. | Variations in laboratory capacity, funding, and priority given to FBDs compared to other infectious diseases. | [78] |
Next-Generation Sequencing (NGS) Tools | Technologies like whole-genome sequencing (WGS) allow more efficient pathogen detection and characterization, facilitating the early recognition of international outbreaks. Supports the One Health concept through shared genome databases. | High-resolution pathogen tracking, including identification of serovars. Increased ability to detect genetic lineages. | Organizational challenges, especially in developing countries. Data management and harmonization challenges due to inadequate informatics systems. | [79,80] |
Molecular Detection Methods | Techniques such as a PCR-based method have been used to identify pathogens like Aliarcobacter spp., Listeria spp., and Salmonella spp. across studies in the region. | Improved detection of pathogens, allowing for quicker responses and more effective control strategies. | Need to expand access to molecular detection tools and trained personnel across the region. | [46] |
Global Microbial Identifier (GMI) | A shared database for genome sequencing data, allowing the identification of microorganisms in food, clinical, and environmental samples. | Enhanced sharing of sequencing data. Supports early outbreak recognition and provides critical information for public health institutions and policymakers. | Building and managing appropriate data informatics systems, particularly for developing countries. | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Severino, N.; Reyes, C.; Fernandez, Y.; Azevedo, V.; Francisco, L.E.D.; Ramos, R.T.; Maroto-Martín, L.O.; Franco, E.F. Bacterial Foodborne Diseases in Central America and the Caribbean: A Systematic Review. Microbiol. Res. 2025, 16, 78. https://doi.org/10.3390/microbiolres16040078
Severino N, Reyes C, Fernandez Y, Azevedo V, Francisco LED, Ramos RT, Maroto-Martín LO, Franco EF. Bacterial Foodborne Diseases in Central America and the Caribbean: A Systematic Review. Microbiology Research. 2025; 16(4):78. https://doi.org/10.3390/microbiolres16040078
Chicago/Turabian StyleSeverino, Nicole, Claudia Reyes, Yumeris Fernandez, Vasco Azevedo, Luis Enrique De Francisco, Rommel T. Ramos, Luis Orlando Maroto-Martín, and Edian F. Franco. 2025. "Bacterial Foodborne Diseases in Central America and the Caribbean: A Systematic Review" Microbiology Research 16, no. 4: 78. https://doi.org/10.3390/microbiolres16040078
APA StyleSeverino, N., Reyes, C., Fernandez, Y., Azevedo, V., Francisco, L. E. D., Ramos, R. T., Maroto-Martín, L. O., & Franco, E. F. (2025). Bacterial Foodborne Diseases in Central America and the Caribbean: A Systematic Review. Microbiology Research, 16(4), 78. https://doi.org/10.3390/microbiolres16040078