Intestinal Microeukaryotes in Fish: A Concise Review of an Underexplored Component of the Microbiota
Abstract
1. Introduction
2. Diversity of Microeukaryotes in the Intestinal Microbiota
Fish Species | Microeukaryote Composition | Habitat and Feeding Habits | Ribosomal Gene Region | Reference |
---|---|---|---|---|
Zebrafish, Danio rerio | 87.5% Ascomycota and 6.8% Basidiomycota | Model study fish; omnivorous freshwater species | ITS2 | [45] |
Amazonian catfish, Panaque nigrolineatus | 40% Dothideomycetes and 36% Sordariomycetes | Freshwater, wood-eating fish | ITS1 | [62] |
Cobia Fish, Rachycentron canadum | 88% Ascomycota and 11% Basidiomycota | Carnivorous marine benthopelagic fish, Tropical fish | ITS2 | [63] |
Grass carp, Ctenopharyngodon idella | 68.2% Ascomycota, 13.4% Basidiomycota, 12.1% Mortierellomycota, and 0.5% Chytridiomycota | Aquatic macrophytes, algae, invertebrates, and vertebrates | ITS1 and ITS2 | [64] |
Black carp, Mylopharyngodon piceus | 68.6% Ascomycota, 12.3% Basidiomycota, 9.4% Mortierellomycota, and 1.07% Chytridiomycota | Mollusk-eating cyprinid fish native to eastern Asia | ITS1 and ITS2 | [64] |
Bighead carp, Aristichthys nobilis | 39.3% Ascomycota, 42% Rozellomycota, and 1.4% Basidiomycota | Filter-feeding freshwater fish from Hongchaojiang Reservoir in Guangxi, China | ITS | [65] |
Nile tilapia, Oreochromis niluticus | 48.9% Ascomycota, 2.4% Basidiomycota, and 0.6% Rozellomycota 90–98% Opisthokonta, 0.3–7.5% Bacillariophyta, and > 0.5% Archaeplastida | Wild tilapia from Lake Nasser, Egypt Feeding on plankton, some aquatic macrophytes, fish larvae, and decaying organic tissue | ITS 18S region V9 | [65] |
Mullet, Mugil cephalus | Gut content mainly by Rotifera and Copepoda, followed by Bacillariophyceae and Chlorophyceae. | Inhabit coastal temperate and tropical waters | 18S |
3. Fungi in the Intestinal Microbiota of Fish
Fungal Species | Function/Activity | Reference |
---|---|---|
Debaryomyces hansenii | Gut maturation, increasing amylase secretion, and probiotic potential | [45,72,73] |
Candida spp. | Associated with lipid metabolism and fermentation activities | [74] |
Aureobasidium pullulans | Active against pathogenic yeast strains | [71,73] |
Schizophyllum commune | Isolated from coral reef fish intestines; antimicrobial activity | [71] |
Pichia kudriavzevii | Extracellular enzyme-producing (amylase, protease, lipase, cellulase, xylanase, and phytase) | [74] |
Yarrowia lipolytica | Directing anti-Vibrio action and modulating the host’s innate immune system | [75] |
4. Protists in the Fish Intestinal Microbiota
5. Other Microeukaryotes in the Fish Intestinal Microbiota
6. Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.M.; Dourado, M.N.; Araújo, W.L. Microbial interactions: Ecology in a molecular perspective. Braz. J. Microbiol. 2016, 47 (Suppl. 1), 86–98. [Google Scholar] [CrossRef]
- Hentschel, U.; Steinert, M.; Hacker, J. Common molecular mechanisms of symbiosis and pathogenesis. Trends Microbiol. 2000, 8, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Krajmalnik-Brown, R.; Ilhan, Z.E.; Kang, D.W.; DiBaise, J.K. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 2012, 27, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, M.S.; Boutin, S.; Hoseinifar, S.H.; Derome, N. Teleost microbiomes: The state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front. Microbiol. 2014, 5, 207. [Google Scholar] [CrossRef]
- Perry, W.B.; Lindsay, E.; Payne, C.J.; Brodie, C.; Kazlauskaite, R. The role of the gut microbiome in sustainable teleost aquaculture. Proc. R. Soc. B Biol. Sci. 2020, 287, 20200184. [Google Scholar] [CrossRef]
- Xiong, J.; Dai, W.; Li, C. Advances, challenges, and directions in shrimp disease control: The guidelines from an ecological perspective. Appl. Microbiol. Biotechnol. 2016, 100, 6947–6954. [Google Scholar] [CrossRef]
- Zhang, Y.-G.; Malo, M.E.; Tschirhart, T.; Xia, Y.; Wang, Z.; Dadachova, E.; Sun, J. Effects of Melanized Bacteria and Soluble Melanin on the Intestinal Homeostasis and Microbiome In Vivo. Toxics 2023, 11, 13. [Google Scholar] [CrossRef]
- Kers, J.G.; Velkers, F.C.; Fischer, E.A.J.; Hermes, G.D.A.; Lamot, D.M.; Stegeman, J.A.; Smidt, H. Take care of the environment: Housing conditions affect the interplay of nutritional interventions and intestinal microbiota in broiler chickens. Anim. Microbiome 2019, 1, 10. [Google Scholar] [CrossRef]
- Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 2005, 5, 243–251. [Google Scholar] [CrossRef]
- Wiles, T.J.; Jemielita, M.; Baker, R.P.; Schlomann, B.H.; Logan, S.L.; Ganz, J.; Melancon, E.; Eisen, J.S.; Guillemin, K.; Parthasarathy, R. Host Gut Motility Promotes Competitive Exclusion within a Model Intestinal Microbiota. PLoS Biol. 2016, 14, e1002517. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S. Do an Altered Gut Microbiota and an Associated Leaky Gut Affect COVID-19 Severity? mBio 2021, 12, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Albores, F.; Martínez-Córdova, L.R.; Hernández-Mendoza, A.; Cicala, F.; Lago-Leston, A.; Martínez-Porchas, M. Therapeutic modulation of fish gut microbiota, a feasible strategy for aquaculture? Aquaculture 2021, 544, 737050. [Google Scholar] [CrossRef]
- Meehan, C.J.; Beiko, R.G. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol. Evol. 2014, 6, 703–713. [Google Scholar] [CrossRef]
- Li, X.; Yu, Y.; Li, C.; Yan, Q. Comparative study on the gut microbiotas of four economically important Asian carp species. Sci. China Life Sci. 2018, 61, 696–705. [Google Scholar] [CrossRef]
- Matamoros, S.; Gras-Leguen, C.; Le Vacon, F.; Potel, G.; de La Cochetiere, M.F. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol. 2013, 21, 167–173. [Google Scholar] [CrossRef]
- Younes, A.; Saito, H.; Tani, S.; Ikeo, R.; Kawai, K. Metagenomic analysis of gut microbiome from tilapia species across several regions in Japan. Aquaculture 2023, 576, 739809. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Y.; Li, H.; Qiao, F.; Wu, J.; Du, Z.Y.; Zhang, M. Influence of Endogenous and Exogenous Estrogenic Endocrine on Intestinal Microbiota in Zebrafish. PLoS ONE 2016, 11, e0163895. [Google Scholar] [CrossRef]
- Zhou, L.; Limbu, S.M.; Shen, M.; Zhai, W.; Qiao, F.; He, A.; Du, Z.Y.; Zhang, M. Environmental concentrations of antibiotics impair zebrafish gut health. Environ. Pollut. 2018, 235, 245–254. [Google Scholar] [CrossRef]
- Nie, Z.; Xu, X.; Shao, N.; He, J.; Li, P.; Xu, P.; Hu, J.; Qin, W.; Wang, B.; Xu, G. Integrative analysis of microbiome and metabolome reveals the linkage between gut microbiota and carp growth. Environ. Res. 2023, 220, 115133. [Google Scholar] [CrossRef] [PubMed]
- Medina-Félix, D.; Garibay-Valdez, E.; Vargas-Albores, F.; Martínez-Porchas, M. Fish disease and intestinal microbiota: A close and indivisible relationship. Rev. Aquac. 2023, 15, 820–839. [Google Scholar] [CrossRef]
- Li, Z.; Lv, J.; Chen, J.; Sun, F.; Sheng, R.; Qin, Y.; Rao, L.; Lu, T.; Sun, L. Comparative study of gut content microbiota in freshwater fish with different feeding habits: A case study of an urban lake. J. Fish Biol. 2025, 106, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Nyholm, L.; Odriozola, I.; Martin Bideguren, G.; Aizpurua, O.; Alberdi, A. Gut microbiota differences between paired intestinal wall and digesta samples in three small species of fish. PeerJ 2022, 10, e12992. [Google Scholar] [CrossRef] [PubMed]
- Gaci, N.; Borrel, G.; Tottey, W.; O’Toole, P.W.; Brugère, J.-F. Archaea and the human gut: New beginning of an old story. World J. Gastroenterol. WJG 2014, 20, 16062. [Google Scholar] [CrossRef]
- Chuphal, N.; Singha, K.P.; Sardar, P.; Sahu, N.P.; Shamna, N.; Kumar, V. Scope of archaea in fish feed: A new chapter in aquafeed probiotics? Probiotics Antimicrob. Proteins 2021, 13, 1668–1695. [Google Scholar] [CrossRef]
- Scanlan, P.D.; Marchesi, J.R. Micro-eukaryotic diversity of the human distal gut microbiota: Qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J. 2008, 2, 1183–1193. [Google Scholar] [CrossRef]
- del Campo, J.; Bass, D.; Keeling, P.J. The eukaryome: Diversity and role of microeukaryotic organisms associated with animal hosts. Funct. Ecol. 2020, 34, 2045–2054. [Google Scholar] [CrossRef]
- Wegener Parfrey, L.; Walters, W.A.; Knight, R. Microbial Eukaryotes in the Human Microbiome: Ecology, Evolution, and Future Directions. Front. Microbiol. 2011, 2, 153. [Google Scholar] [CrossRef]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef]
- Nagpal, N.; Wang, J.; Zeng, J.; Lo, E.; Moon, D.H.; Luk, K.; Braun, R.O.; Burroughs, L.M.; Keel, S.B.; Reilly, C.; et al. Small-Molecule PAPD5 Inhibitors Restore Telomerase Activity in Patient Stem Cells. Cell Stem Cell 2020, 26, 896–909.e898. [Google Scholar] [CrossRef] [PubMed]
- Rowan-Nash, A.D.; Korry, B.J.; Mylonakis, E.; Belenky, P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol. Mol. Biol. Rev. MMBR 2019, 83, 10–1128. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, R.M.; Gao, Z.M.; Bougouffa, S.; Qian, P.-Y. Optimal Eukaryotic 18S and Universal 16S/18S Ribosomal RNA Primers and Their Application in a Study of Symbiosis. PLoS ONE 2014, 9, e90053. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Chi, L.; Zhu, Y.; Shi, X.; Tu, P.; Li, B.; Yin, J.; Gao, N.; Shen, W.; Schnabl, B. An Introduction to Next Generation Sequencing Bioinformatic Analysis in Gut Microbiome Studies. Biomolecules 2021, 11, 530. [Google Scholar] [CrossRef]
- Santi, I.; Kasapidis, P.; Karakassis, I.; Pitta, P. A Comparison of DNA Metabarcoding and Microscopy Methodologies for the Study of Aquatic Microbial Eukaryotes. Diversity 2021, 13, 180. [Google Scholar] [CrossRef]
- Heravi, F.S.; Zakrzewski, M.; Vickery, K.; Hu, H. Host DNA depletion efficiency of microbiome DNA enrichment methods in infected tissue samples. J. Microbiol. Methods 2020, 170, 105856. [Google Scholar] [CrossRef]
- Langsiri, N.; Meyer, W.; Irinyi, L.; Worasilchai, N.; Pombubpa, N.; Wongsurawat, T.; Jenjaroenpun, P.; Luangsa-ard, J.J.; Chindamporn, A. Optimizing fungal DNA extraction and purification for Oxford Nanopore untargeted shotgun metagenomic sequencing from simulated hemoculture specimens. mSystems 2025, 10, e01166-24. [Google Scholar] [CrossRef] [PubMed]
- Patchett, A.L.; Rigby, M.L.; Wynne, J.W. Improved 18S rDNA profiling of parasite communities in salmonid tissues using a host blocking primer. Parasitol. Res. 2024, 123, 124. [Google Scholar] [CrossRef] [PubMed]
- Lukeš, J.; Stensvold, C.R.; Jirků-Pomajbíková, K.; Wegener Parfrey, L. Are Human Intestinal Eukaryotes Beneficial or Commensals? PLOS Pathog. 2015, 11, e1005039. [Google Scholar] [CrossRef]
- Keeling, P.J.; Campo, J.D. Marine Protists Are Not Just Big Bacteria. Curr. Biol. 2017, 27, R541–R549. [Google Scholar] [CrossRef]
- Jahangiri, L.; Shinn, A.P.; Pratoomyot, J.; Bastos Gomes, G. Unveiling associations between ciliate parasites and bacterial microbiomes under warm-water fish farm conditions—A review. Rev. Aquac. 2021, 13, 1097–1118. [Google Scholar] [CrossRef]
- Vargas-Albores, F.; Garibay-Valdez, E.; Medina-Félix, D.; Martínez-Porchas, M. The micro-eukaryotic community: An underrated component of the mammalian gut microbiota? Front. Microbiol. 2023, 14, 1123513. [Google Scholar] [CrossRef]
- Audebert, C.; Even, G.; Cian, A.; Loywick, A.; Merlin, S.; Viscogliosi, E.; Chabé, M. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci. Rep. 2016, 6, 25255. [Google Scholar] [CrossRef] [PubMed]
- Kou, Y.; Meng, L.; Zhang, S.; Zheng, X.; Liu, M.; Xu, S.; Jing, Q.; Wang, H.; Han, J.; Liu, Z.; et al. A Murine Commensal Protozoan Influences Host Glucose Homeostasis by Facilitating Free Choline Generation. Appl. Environ. Microbiol. 2022, 88, e02413-21. [Google Scholar] [CrossRef]
- Siriyappagouder, P.; Kiron, V.; Lokesh, J.; Rajeish, M.; Kopp, M.; Fernandes, J. The Intestinal Mycobiota in Wild Zebrafish Comprises Mainly Dothideomycetes While Saccharomycetes Predominate in Their Laboratory-Reared Counterparts. Front. Microbiol. 2018, 9, 387. [Google Scholar] [CrossRef] [PubMed]
- Gantois, N.; Lamot, A.; Seesao, Y.; Creusy, C.; Li, L.L.; Monchy, S.; Benamrouz-Vanneste, S.; Karpouzopoulos, J.; Bourgain, J.L.; Rault, C.; et al. First Report on the Prevalence and Subtype Distribution of Blastocystis sp. in Edible Marine Fish and Marine Mammals: A Large Scale-Study Conducted in Atlantic Northeast and on the Coasts of Northern France. Microorganisms 2020, 8, 460. [Google Scholar] [CrossRef]
- Elsaied, H.E.; Soliman, T.; Abu-Taleb, H.T.; Goto, H.; Jenke-Kodam, H. Phylogenetic characterization of eukaryotic and prokaryotic gut flora of Nile tilapia, Oreochromis niloticus, along niches of Lake Nasser, Egypt, based on rRNA gene high-throughput sequences. Ecol. Genet. Genom. 2019, 11, 100037. [Google Scholar] [CrossRef]
- Elsaied, H.; Taleb, H.; Wassel, M.; Rashed, M. Composition of eukaryotic and prokaryotic rRNA gene phylotypes in guts of adults and fingerlings of Mugil Cephalus inhabiting an Egyptian Mediterranean Estuary. J. Phylogenetics Evol. Biol. 2021, 4, 164. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Bae, H. The diversity of fungal genome. Biol. Proced. Online 2015, 17, 8. [Google Scholar] [CrossRef]
- Koduru, S.K. Chapter 24—The Impact of Bioinformatics Tools in the Development of Antimicrobial Drugs and Other Agents. In Recent Developments in Applied Microbiology and Biochemistry; Buddolla, V., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 335–347. [Google Scholar] [CrossRef]
- Huseyin, C.E.; O’Toole, P.W.; Cotter, P.D.; Scanlan, P.D. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol. Rev. 2017, 41, 479–511. [Google Scholar] [CrossRef]
- Stensvold, C.R. Pinning down the role of common luminal intestinal parasitic protists in human health and disease—Status and challenges. Parasitology 2019, 146, 695–701. [Google Scholar] [CrossRef]
- Caruffo, M.; Navarrete, N.; Salgado, O.; Díaz, A.; López, P.; García, K.; Feijóo, C.G.; Navarrete, P. Potential probiotic yeasts isolated from the fish gut protect zebrafish (Danio rerio) from a Vibrio anguillarum challenge. Front. Microbiol. 2015, 6, 1093. [Google Scholar] [CrossRef]
- Tovar-Ramírez, D.; Mazurais, D.; Gatesoupe, J.; Quazuguel, P.; Cahu, C.; Zambonino-Infante, J. Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (Dicentrarchus labrax) larvae. Aquaculture 2010, 300, 142–147. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Rook, G.A.; Raison, C.L.; Lowry, C.A. Microbial ‘old friends’, immunoregulation and socioeconomic status. Clin. Exp. Immunol. 2014, 177, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Iliev, I.D.; Leonardi, I. Fungal dysbiosis: Immunity and interactions at mucosal barriers. Nat. Rev. Immunol. 2017, 17, 635–646. [Google Scholar] [CrossRef]
- Li, X.V.; Leonardi, I.; Iliev, I.D. Gut Mycobiota in Immunity and Inflammatory Disease. Immunity 2019, 50, 1365–1379. [Google Scholar] [CrossRef]
- Chabé, M.; Lokmer, A.; Ségurel, L. Gut protozoa: Friends or foes of the human gut microbiota? Trends Parasitol. 2017, 33, 925–934. [Google Scholar] [CrossRef]
- Bu, X.; Li, Z.; Zhao, W.; Zeng, Q.; Chen, Y.; Li, W.; Zou, H.; Li, M.; Wang, G. Alterations of gut microbiota and short-chain fatty acids induced by Balantidium polyvacuolum in the hindgut of Xenocyprinae fishes providing new insights into the relationship among protozoa, gut microbiota and host. Front. Microbiol. 2023, 14, 1295456. [Google Scholar] [CrossRef]
- Wei, Y.; Gao, J.; Kou, Y.; Meng, L.; Zheng, X.; Liang, M.; Sun, H.; Liu, Z.; Wang, Y. Commensal bacteria impact a protozoan’s integration into the murine gut microbiota in a dietary nutrient-dependent manner. Appl. Environ. Microbiol. 2020, 86, e00303-20. [Google Scholar] [CrossRef]
- Marden, C.L.; McDonald, R.; Schreier, H.J.; Watts, J.E.M. Investigation into the fungal diversity within different regions of the gastrointestinal tract of Panaque nigrolineatus, a wood-eating fish. AIMS Microbiol. 2017, 3, 749–761. [Google Scholar] [CrossRef]
- Reinoso, S.; Gutiérrez, M.S.; Reyes-Jara, A.; Toro, M.; García, K.; Reyes, G.; Argüello-Guevara, W.; Bohórquez-Cruz, M.; Sonnenholzner, S.; Navarrete, P. Feed Regime Slightly Modifies the Bacterial but Not the Fungal Communities in the Intestinal Mucosal Microbiota of Cobia Fish (Rachycentron canadum). Microorganisms 2023, 11, 2315. [Google Scholar] [CrossRef] [PubMed]
- Long, C.-X.; Wu, J.-Q.; Liu, J.-L.; Tan, Z.-J. Association of Fungi in the Intestine of Black Carp and Grass Carp Compared with their Cultured Water. Aquac. Res. 2023, 2023, 1–10. [Google Scholar] [CrossRef]
- Zhou, L.; Han, Y.; Wang, D.; Li, Y.; Huang, X.; He, A. Comparison of fungal community composition within different intestinal segments of tilapia and bighead carp. J. Oceanol. Limnol. 2021, 39, 1961–1971. [Google Scholar] [CrossRef]
- Purvis, A.; Hector, A. Getting the measure of biodiversity. Nature 2000, 405, 212–219. [Google Scholar] [CrossRef]
- Schmit, J.P.; Mueller, G.M. An estimate of the lower limit of global fungal diversity. Biodivers. Conserv. 2007, 16, 99–111. [Google Scholar] [CrossRef]
- Maas, E.; Penders, J.; Venema, K. Fungal-Bacterial Interactions in the Human Gut of Healthy Individuals. J. Fungi 2023, 9, 139. [Google Scholar] [CrossRef]
- Satala, D.; Bras, G.; Kozik, A.; Rapala-Kozik, M.; Karkowska-Kuleta, J. More than Just Protein Degradation: The Regulatory Roles and Moonlighting Functions of Extracellular Proteases Produced by Fungi Pathogenic for Humans. J. Fungi 2023, 9, 121. [Google Scholar] [CrossRef]
- Huffnagle, G.B.; Noverr, M.C. The emerging world of the fungal microbiome. Trends Microbiol. 2013, 21, 334–341. [Google Scholar] [CrossRef]
- Liao, X.; Yang, J.; Zhou, Z.; Wu, J.; Xu, D.; Yang, Q.; Zhong, S.; Zhang, X. Diversity and Antimicrobial Activity of Intestinal Fungi from Three Species of Coral Reef Fish. J. Fungi 2023, 9, 613. [Google Scholar] [CrossRef]
- Tovar, D.; Zambonino, J.; Cahu, C.; Gatesoupe, F.J.; Vázquez-Juárez, R.; Lésel, R. Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture 2002, 204, 113–123. [Google Scholar] [CrossRef]
- Wang, L.; Yue, L.; Chi, Z.; Wang, X. Marine killer yeasts active against a yeast strain pathogenic to crab Portunus trituberculatus. Dis. Aquat. Org. 2008, 80, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Ghosh, K. Enumeration of gut associated extracellular enzyme-producing yeasts in some freshwater fishes. J. Appl. Ichthyol. 2014, 30, 986–993. [Google Scholar] [CrossRef]
- Caruffo, M.; Navarrete, N.C.; Salgado, O.A.; Faúndez, N.B.; Gajardo, M.C.; Feijóo, C.G.; Reyes-Jara, A.; García, K.; Navarrete, P. Protective yeasts control V. anguillarum pathogenicity and modulate the innate immune response of challenged zebrafish (Danio rerio) larvae. Front. Cell. Infect. Microbiol. 2016, 6, 127. [Google Scholar] [CrossRef] [PubMed]
- Raggi, P.; Lopez, P.; Diaz, A.; Carrasco, D.; Silva, A.; Velez, A.; Opazo, R.; Magne, F.; Navarrete, P.A. Debaryomyces hansenii and Rhodotorula mucilaginosa comprised the yeast core gut microbiota of wild and reared carnivorous salmonids, croaker and yellowtail. Environ. Microbiol. 2014, 16, 2791–2803. [Google Scholar] [CrossRef]
- Gatesoupe, F. Live yeasts in the gut: Natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture 2007, 267, 20–30. [Google Scholar] [CrossRef]
- Li, P.; Gatlin, D.M., III. Nucleotide nutrition in fish: Current knowledge and future applications. Aquaculture 2006, 251, 141–152. [Google Scholar] [CrossRef]
- Lokesh, J.; Fernandes, J.M.; Korsnes, K.; Bergh, O.; Brinchmann, M.F.; Kiron, V. Transcriptional regulation of cytokines in the intestine of Atlantic cod fed yeast derived mannan oligosaccharide or β-glucan and challenged with Vibrio anguillarum. Fish Shellfish Immunol. 2012, 33, 626–631. [Google Scholar] [CrossRef]
- Fernández-Reiriz, M.J.; Labarta, U.; Ferreiro, M.J. Effects of commercial enrichment diets on the nutritional value of the rotifer (Brachionus plicatilis). Aquaculture 1993, 112, 195–206. [Google Scholar] [CrossRef]
- Hamre, K. Nutrient profiles of rotifers (Brachionus sp.) and rotifer diets from four different marine fish hatcheries. Aquaculture 2016, 450, 136–142. [Google Scholar] [CrossRef]
- Valderrama, B.; Ruiz, J.J.; Gutiérrez, M.S.; Alveal, K.; Caruffo, M.; Oliva, M.; Flores, H.; Silva, A.; Toro, M.; Reyes-Jara, A.; et al. Cultivable Yeast Microbiota from the Marine Fish Species Genypterus chilensis and Seriolella violacea. J. Fungi 2021, 7, 515. [Google Scholar] [CrossRef] [PubMed]
- Gajardo, K.; Rodiles, A.; Kortner, T.M.; Krogdahl, Å.; Bakke, A.M.; Merrifield, D.L.; Sørum, H. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): A basis for comparative gut microbial research. Sci. Rep. 2016, 6, 30893. [Google Scholar] [CrossRef]
- Chi, Z.; Chi, Z.; Zhang, T.; Liu, G.; Li, J.; Wang, X. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol. Adv. 2009, 27, 236–255. [Google Scholar] [CrossRef]
- Ghosh, K.; Harikrishnan, R.; Mukhopadhyay, A.; Ringø, E. Fungi and Actinobacteria: Alternative Probiotics for Sustainable Aquaculture. Fishes 2023, 8, 575. [Google Scholar] [CrossRef]
- Sanahuja, I.; Ruiz, A.; Firmino, J.P.; Reyes-López, F.E.; Ortiz-Delgado, J.B.; Vallejos-Vidal, E.; Tort, L.; Tovar-Ramírez, D.; Cerezo, I.M.; Moriñigo, M.A.; et al. Debaryomyces hansenii supplementation in low fish meal diets promotes growth, modulates microbiota and enhances intestinal condition in juvenile marine fish. J. Anim. Sci. Biotechnol. 2023, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Naya-Català, F.; Piazzon, M.C.; Calduch-Giner, J.A.; Sitjà-Bobadilla, A.; Pérez-Sánchez, J. Diet and Host Genetics Drive the Bacterial and Fungal Intestinal Metatranscriptome of Gilthead Sea Bream. Front. Microbiol. 2022, 13, 883738. [Google Scholar] [CrossRef]
- Nayak, S.K. Role of gastrointestinal microbiota in fish. Aquac. Res. 2010, 41, 1553–1573. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, L.; Hao, J.; Cai, W.; Qin, M.; Gao, Q.; Nie, M.; Qi, D.; Ma, R. Effects of plant-derived protein and rapeseed oil on growth performance and gut microbiomes in rainbow trout. BMC Microbiol. 2023, 23, 255. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Li, G.; Huang, P.; Liu, Z.; Zhao, B. The Gut Microbiota and Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2017, 58, 1–15. [Google Scholar] [CrossRef]
- Hayer, S.S.; Hwang, S.; Clayton, J.B. Antibiotic-induced gut dysbiosis and cognitive, emotional, and behavioral changes in rodents: A systematic review and meta-analysis. Front. Neurosci. 2023, 17, 1237177. [Google Scholar] [CrossRef]
- Burki, F.; Sandin, M.M.; Jamy, M. Diversity and ecology of protists revealed by metabarcoding. Curr. Biol. 2021, 31, R1267–R1280. [Google Scholar] [CrossRef]
- Issa, R. Non-pathogenic protozoa. Int. J. Pharm. Pharm. Sci. 2014, 6, 30–40. [Google Scholar]
- Verma, A.K. Protozoans: Animals or Protists? Int. J. Life Sci. 2021, 9, 41–44. [Google Scholar]
- Morrison, D.A. Evolution of the Apicomplexa: Where are we now? Trends Parasitol. 2009, 25, 375–382. [Google Scholar] [CrossRef]
- Gomes, G.B.; Hutson, K.S.; Domingos, J.A.; Villamil, S.I.; Huerlimann, R.; Miller, T.L.; Jerry, D.R. Parasitic protozoan interactions with bacterial microbiome in a tropical fish farm. Aquaculture 2019, 502, 196–201. [Google Scholar] [CrossRef]
- Guzzo, G.L.; Mittinty, M.N.; Llamas, B.; Andrews, J.M.; Weyrich, L.S. Individuals with Inflammatory Bowel Disease Have an Altered Gut Microbiome Composition of Fungi and Protozoa. Microorganisms 2022, 10, 1910. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, L.; Quilichini, Y.; Marchand, B. Sparicotyle chrysophrii (Van Beneden and Hesse 1863) (Monogenea: Polyopisthocotylea) parasite of cultured Gilthead sea bream Sparus aurata (Linnaeus 1758) (Pisces: Teleostei) from Corsica: Ecological and morphological study. Parasitol. Res. 2010, 107, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Timur, G.; Karataş Steinum, S.; Akayli, T.; Demircan, M.D.; Yardimci, R. A histopathological study of Hexamitiasis in farmed rainbow trout (Oncorhynchus mykiss) fry in Turkey. Bull. Eur. Assoc. Fish Pathol. 2009, 29, 104–108. [Google Scholar]
- Morton, E.R.; Lynch, J.; Froment, A.; Lafosse, S.; Heyer, E.; Przeworski, M.; Blekhman, R.; Segurel, L. Variation in rural African gut microbiota is strongly correlated with colonization by Entamoeba and subsistence. PLoS Genet. 2015, 11, e1005658. [Google Scholar] [CrossRef]
- Zhao, W.; Bu, X.; Zhou, W.; Zeng, Q.; Qin, T.; Wu, S.; Li, W.; Zou, H.; Li, M.; Wang, G. Interactions between Balantidium ctenopharyngodoni and microbiota reveal its low pathogenicity in the hindgut of grass carp. BMC Microbiol. 2024, 24, 7. [Google Scholar] [CrossRef]
- Chudnovskiy, A.; Mortha, A.; Kana, V.; Kennard, A.; Ramirez, J.D.; Rahman, A.; Remark, R.; Mogno, I.; Ng, R.; Gnjatic, S. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 2016, 167, 444–456.e14. [Google Scholar] [CrossRef]
- Sardinha-Silva, A.; Alves-Ferreira, E.V.C.; Grigg, M.E. Intestinal immune responses to commensal and pathogenic protozoa. Front. Immunol. 2022, 13, 963723. [Google Scholar] [CrossRef]
- Scanlan, P.; Hill, C.; Ross, R.; Ryan, C.; Stanton, C.; Cotter, P. The intestinal protist Blastocystis is not a common member of the healthy infant gut microbiota in a Westernized country (Ireland). Parasitology 2018, 145, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
- Nieves-Ramírez, M.; Partida-Rodríguez, O.; Laforest-Lapointe, I.; Reynolds, L.; Brown, E.; Valdez-Salazar, A.; Morán-Silva, P.; Rojas-Velázquez, L.; Morien, E.; Parfrey, L. Asymptomatic intestinal colonization with protist Blastocystis is strongly associated with distinct microbiome ecological patterns. Msystems 2018, 3, 10–1128. [Google Scholar] [CrossRef]
- Romero, J.; Ringø, E.; Merrifield, D.L. The gut microbiota of fish. In Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics; Merrifield, D., Ringø, E., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 75–100. [Google Scholar]
- Kotob, M.H.; Menanteau-Ledouble, S.; Kumar, G.; Abdelzaher, M.; El-Matbouli, M. The impact of co-infections on fish: A review. Vet. Res. 2017, 47, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Leroux, N.; Sylvain, F.-E.; Holland, A.; Luis Val, A.; Derome, N. Gut microbiota of an Amazonian fish in a heterogeneous riverscape: Integrating genotype, environment, and parasitic infections. Microbiol. Spectr. 2023, 11, e02755-22. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Xiong, J.; Li, M.; Bu, X.; Jiang, C.; Wang, G.; Zhang, J.; Li, W.; Zou, H.; Miao, W. Genome assembly of a symbiotic balantidia (Balantidium ctenopharyngodoni) in fish hindgut. Sci. Data 2024, 11, 323. [Google Scholar] [CrossRef]
- Gaulke, C.A.; Martins, M.L.; Watral, V.G.; Humphreys, I.R.; Spagnoli, S.T.; Kent, M.L.; Sharpton, T.J. A longitudinal assessment of host-microbe-parasite interactions resolves the zebrafish gut microbiome’s link to Pseudocapillaria tomentosa infection and pathology. Microbiome 2019, 7, 10. [Google Scholar] [CrossRef]
- Li, F.; Jiang, D.; Wang, Q.; Chang, O.; Yin, J.; Yu, M.; Pan, H. Host–Microbiota–Parasite Interactions in Grass Carp: Insights from Ichthyophthirius multifiliis Infection. Microorganisms 2025, 13, 872. [Google Scholar] [CrossRef]
- Correale, J.; Farez, M.F. Does helminth activation of toll-like receptors modulate immune response in multiple sclerosis patients? Front. Cell. Infect. Microbiol. 2012, 2, 112. [Google Scholar] [CrossRef]
- Li, X.; Yu, Y.; Feng, W.; Yan, Q.; Gong, Y. Host species as a strong determinant of the intestinal microbiota of fish larvae. J. Microbiol. 2012, 50, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Scholz, T.; Kuchta, R.; Oros, M. Tapeworms as pathogens of fish: A review. J. Fish Dis. 2021, 44, 1883–1900. [Google Scholar] [CrossRef] [PubMed]
- Moravec, F.; Nagasawa, K.; Madinabeitia, I. A new species of Capillaria (Nematoda: Capillariidae) from the intestine of the marine fish Acanthopagrus schlegelii schlegelii (Sparidae) from Japan. J. Parasitol. 2010, 96, 771–774. [Google Scholar] [CrossRef] [PubMed]
Protist Species | Function/Activity | Reference |
---|---|---|
Balantidium polyvacuolum, an obligate ciliate of Xenocyprinae fishes | The presence of B. polyvacuolum increases the diversity of the fish gut microbiota, notably increasing the relative abundance of Fusobacteria and Chloroflex. Increase of total short-chain fatty acids, acetic acid, isovaleric acid, propionic acid, isobutyric and butanoic acid. | [60] |
Balantidium ctenopharyngodoni, an obligate intestinal ciliate | Associated with carbohydrate metabolism (hydrolysis of starch and glycogen), related to herbivores diet fish. | [109] |
Nyctotherus sp., a ciliate endosymbiont in fish | Decrease the relative abundance of Proteobacteria and promote a high abundance of the methanogenic archaea Halobacterota. | [108] |
Pseudocapillaria tomentosa, a helminth of zebrafish | Disruption of the gut microbiome composition. No conclusive explanation for the interaction between the gut microbiome and P. tormentosa. | [110] |
Ichthyophthirius multifiliis, a ciliate ectoparasite of grass carp | A decrease of Actinobacteria and an increase of Proteobacteria, which is related to the promotion of opportunistic pathogens like Aeromonas. Functional prediction exhibits a reduction of the branched-chain amino acid ABC transporter, permease component. | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guirado-Flores, J.S.O.; Garibay-Valdez, E.; Medina-Félix, D.; Vargas-Albores, F.; Martínez-Córdova, L.R.; Mendez-Martínez, Y.; Martínez-Porchas, M. Intestinal Microeukaryotes in Fish: A Concise Review of an Underexplored Component of the Microbiota. Microbiol. Res. 2025, 16, 158. https://doi.org/10.3390/microbiolres16070158
Guirado-Flores JSO, Garibay-Valdez E, Medina-Félix D, Vargas-Albores F, Martínez-Córdova LR, Mendez-Martínez Y, Martínez-Porchas M. Intestinal Microeukaryotes in Fish: A Concise Review of an Underexplored Component of the Microbiota. Microbiology Research. 2025; 16(7):158. https://doi.org/10.3390/microbiolres16070158
Chicago/Turabian StyleGuirado-Flores, Jesús Salvador Olivier, Estefanía Garibay-Valdez, Diana Medina-Félix, Francisco Vargas-Albores, Luis Rafael Martínez-Córdova, Yuniel Mendez-Martínez, and Marcel Martínez-Porchas. 2025. "Intestinal Microeukaryotes in Fish: A Concise Review of an Underexplored Component of the Microbiota" Microbiology Research 16, no. 7: 158. https://doi.org/10.3390/microbiolres16070158
APA StyleGuirado-Flores, J. S. O., Garibay-Valdez, E., Medina-Félix, D., Vargas-Albores, F., Martínez-Córdova, L. R., Mendez-Martínez, Y., & Martínez-Porchas, M. (2025). Intestinal Microeukaryotes in Fish: A Concise Review of an Underexplored Component of the Microbiota. Microbiology Research, 16(7), 158. https://doi.org/10.3390/microbiolres16070158