Lactobacillus acidophilus in Aquaculture: A Review
Simple Summary
Abstract
1. Introduction
2. The Relationship Between L. acidophilus and the Growth of Aquatic Animals
3. The Relationship Between L. acidophilus and the Intestinal Structure and Microbiota Composition of Aquatic Animals
4. The Relationship Between L. acidophilus and the Immune System of Aquatic Animals
5. The Prevention and Control Effect of L. acidophilus on Bacterial Diseases in Aquatic Animals
6. The Regulatory Effect of L. acidophilus on Water Environment
7. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Li, J.; Wang, B.; Xing, X. Application research progress of Lactobacillus acidophilus. J. Tradit. Chin. Vet. Med. 2023, 42, 41–44. [Google Scholar]
- Bull, M.; Plummer, S.; Marchesi, J.; Mahenthiralingam, E. The life history of Lactobacillus acidophilus as a probiotic: A tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol. Lett. 2013, 349, 77–87. [Google Scholar] [CrossRef]
- Alishahi, M.; Dezfuly, Z.T.; Mesbah, M.; Mohammadian, T. Effects of two probiotics, Lactobacillus plantarum and Lactobacillus bulgaricus on growth performance and intestinal lactic acid bacteria of Cyprinus carpio. Iran. J. Vet. Med. 2018, 12, 207–217. [Google Scholar]
- Foysal, M.J.; Fotedar, R.; Siddik, M.A.; Tay, A. Lactobacillus acidophilus and L. plantarum improve health status, modulate gut microbiota and innate immune response of marron (Cherax cainii). Sci. Rep. 2020, 10, 5916. [Google Scholar] [CrossRef]
- Jafarei, P.; Ebrahimi, M.T. Lactobacillus acidophilus cell structure and application. Afr. J. Microbiol. Res. 2011, 5, 4033–4042. [Google Scholar] [CrossRef]
- Wang, L.; Pan, D.; Yang, Y.; Wu, Z.; Zeng, X. Isolation and functional analysis of Lactobacillus acidophilus from fish intestine. J. Chin. Inst. Food Sci. Technol. 2014, 14, 20–25. [Google Scholar]
- Al-Dohail, M.A. Effects of Probiotic, Lactobacillus acidophilus on Pathogenic Bacteria, Growth, Hematological Parameters, and Histopathology of African Catfish (Clarias gariepinus). Ph.D. Thesis, Universiti Sains Malaysia, Pulau Pinang, Malaysia, 2010. [Google Scholar]
- Al-Dohail, M.A.; Hashim, R.; Aliyu-Paiko, M. Effects of the probiotic, Lactobacillus acidophilus, on the growth performance, haematology parameters and immunoglobulin concentration in African Catfish (Clarias gariepinus, Burchell 1822) fingerling. Aquac. Res. 2009, 40, 1642–1652. [Google Scholar] [CrossRef]
- Xing, Z.; Fu, X.; Huang, H.; Xu, Y.; Wei, L.; Shan, C.; Du, Y. Recent advances in Lactobacillus plantarum fermentation in modifying fruit-based products: Flavor property, bioactivity, and practical production applications. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70160. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Li, Y.; Hao, J.; Lu, H.; He, Y.; Wei, L.; Ai, L.; Wang, S. Co-culture of Lactobacillus bulgaricus with Streptococcus thermophilus and Bifidobacterium impact the metabolism and flavor of fermented milk. Food Sci. Nutr. 2025, 13, e70182. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, K.; Zhang, A.; Chang, W.; Zheng, A.; Chen, Z.; Cai, H.; Liu, G. Effects of Lactobacillus acidophilus on the growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157. Poult. Sci. 2021, 100, 101323. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, W.; Ci, W.; Zheng, Y.; Han, X.; Huang, J.; Zhu, J. Effects of dietary supplementation with Lactobacillus acidophilus and Bacillus subtilis on mucosal immunity and intestinal barrier are associated with its modulation of gut metabolites and microbiota in late-phase laying hens. Probiotics Antimicrob. Proteins 2023, 15, 912–924. [Google Scholar] [CrossRef]
- María Remes-Troche, J.; Coss-Adame, E.; Ángel Valdovinos-Díaz, M.; Gómez-Escudero, O.; Eugenia Icaza-Chávez, M.; Antonio Chávez-Barrera, J.; Zárate-Mondragón, F.; Antonio Velarde-Ruíz Velasco, J.; Rafael Aceves-Tavares, G.; Antonio Lira-Pedrín, M. Lactobacillus acidophilus LB: A useful pharmabiotic for the treatment of digestive disorders. Ther. Adv. Gastroenterol. 2020, 13, 1756284820971201. [Google Scholar] [CrossRef]
- Yan, M.; Zhu, L.; Guo, R.; Cui, S.; Lu, W.; Yang, L.; Lu, J.; Sun, X.; Zhao, L.; He, F. Anti-allergic effects of Lactobacillus acidophilus La28 and L.plantoplantum LP45 in mice. Acta Microbiol. Sin. 2022, 62, 797–805. [Google Scholar]
- Kim, H.S.; Gilliland, S.E. Lactobacillus acidophilus as a dietary adjunct for milk to aid lactose digestion in humans. J. Dairy Sci. 1983, 66, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Anjum, N.; Maqsood, S.; Masud, T.; Ahmad, A.; Sohail, A.; Momin, A. Lactobacillus acidophilus: Characterization of the species and application in food production. Crit. Rev. Food Sci. Nutr. 2014, 54, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Hassaan, M.S.; El-Sayed, A.; Mohammady, E.Y.; Zaki, M.A.; Elkhyat, M.M.; Jarmołowicz, S.; El-Haroun, E.R. Eubiotic effect of a dietary potassium diformate (KDF) and probiotic (Lactobacillus acidophilus) on growth, hemato-biochemical indices, antioxidant status and intestinal functional topography of cultured Nile tilapia Oreochromis niloticus fed diet free fishmeal. Aquaculture 2021, 533, 736147. [Google Scholar] [CrossRef]
- Mousa, M.; El-Keredy, A.M.; Rashed, M.A. Using Lactobacillus acidophilus in fish feed to improve disease resistance and immune status of cultured Nile tilapia. Alex. J. Vet. Sci. 2021, 70, 15–28. [Google Scholar]
- Akter, N.; Hashim, R.; Sutriana, A.; Mohd Nor, S.A.; Janaranjani, M. Lactobacillus acidophilus supplementation improves the innate immune response and disease resistance of striped catfish (Pangasianodon hypophthalmus Sauvage, 1878) juveniles against Aeromonas hydrophila. Trends Sci. 2023, 20, 4932. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, W.; Wu, P.; Liu, Y.; Ma, Y.; Ren, H.; Jin, X.; Jiang, J.; Zhang, R.; Li, H.; et al. Probiotic efficacy of Cetobacterium somerae (CGMCC No. 28843): Promoting intestinal digestion, absorption, and structural integrity in juvenile grass carp (Ctenopharyngodon idella). J. Anim. Sci. Biotechnol. 2025, 16, 103. [Google Scholar] [CrossRef]
- Akter, M.N.; Hashim, R.; Sutriana, A.; Siti Azizah, M.N.; Asaduzzaman, M. Effect of Lactobacillus acidophilus supplementation on growth performances, digestive enzyme activities and gut histomorphology of striped catfish (Pangasianodon hypophthalmus Sauvage, 1878) juveniles. Aquac. Res. 2019, 50, 786–797. [Google Scholar] [CrossRef]
- Weng, Z. Effect of probiotics on growth performance of Penaeus vannamei. Henan Aquat. Prod. 2022, 21–22+30. [Google Scholar]
- Liu, D.; Dong, X.; Tan, B.; Yang, Q.; Chi, S.; Liu, H.; Zhang, S. Effects of Lactobacillus acidophilus on growth performance, immunity and disease resistance in Pacific white leg shrimp Litopenaeus vannamei. Fish. Sci. 2016, 35, 37–42. [Google Scholar]
- Li, J.; Yang, Q.; Tan, B.; Dong, X.; Chi, S.; Liu, H.; Zhang, S.; Zhang, H. Effects of Lactobacillus acidophilus supplementation on the growth, enzyme activities, and mRNA expression of disease-resistance related enzymes of juvenile Litopenaeus vannamei. J. Fish. Sci. China 2018, 25, 1022–1031. [Google Scholar] [CrossRef]
- Ma, X.; Wu, X.; Hu, L. Effects of two species of dietary viable bacteria on microbiota in water and intestinal of juvenile red crucian carp Carassius auratus. Fish. Sci. 2018, 37, 316–323. [Google Scholar]
- Li, J.; Wang, M.; Tian, X.; Liu, L.; Li, H.; Li, L.; Dong, S.; Xue, L. Effects of different Lactic acid bacteria added to feed on the growth performance, disease resistance and intestinal microflora of Litopenaeus vannamei. Period. Ocean Univ. China 2021, 51, 44–54. [Google Scholar]
- Li, J.; Yang, Q.; Tan, B.; Dong, X.; Chi, S.; Liu, H.; Zhang, S.; Zhang, H. Effects of Lactobacillus acidophilus (gim:1.730) on growth, digestive capacity, disease resistance of juvenile, epinephelus coioides. Acta Hydrobiol. Sin. 2019, 43, 992–1000. [Google Scholar]
- Gao, F.; Guo, W.; Pan, L.; Hu, F.; Jian, Y.; Zhang, S.; Wang, X. Effects of dietary probiotics on growth and digestive enzyme activities of juvenile Scophthal musmaximus. Mar. Sci. 2011, 35, 10–16. [Google Scholar]
- Xu, Q. Preparation and Application of Lactobacillus acidophilus Microecological Preparations. Master’s Thesis, Xihua University, Chengdu, China, 2015. [Google Scholar]
- Wu, Z.; Wang, Y.; Hu, F.; Guan, J.; Nie, A.; Sun, F. Study on the effect of Lactobacillus acidophilus on promoting growth of turbot Scophthalmus maximus (Linnaeus). Fish. Mod. 2013, 40, 28–31+50. [Google Scholar]
- Khalafalla, M.M.; Zayed, N.F.A.; Amer, A.A.; Soliman, A.A.; Zaineldin, A.I.; Gewaily, M.S.; Hassan, A.M.; Van Doan, H.; Tapingkae, W.; Dawood, M.A.O. Dietary Lactobacillus acidophilus ATCC 4356 relieves the impacts of aflatoxin B(1) toxicity on the growth performance, hepatorenal functions, and antioxidative capacity of thinlip grey mullet (Liza ramada) (Risso 1826). Probiotics Antimicrob Proteins 2022, 14, 189–203. [Google Scholar] [CrossRef]
- Abidin, Z.; Huang, H.T.; Hu, Y.F.; Chang, J.J.; Huang, C.Y.; Wu, Y.S.; Nan, F.H. Effect of dietary supplementation with Moringa oleifera leaf extract and Lactobacillus acidophilus on growth performance, intestinal microbiota, immune response, and disease resistance in whiteleg shrimp (Penaeus vannamei). Fish Shellfish Immunol. 2022, 127, 876–890. [Google Scholar] [CrossRef]
- Nikiforov-Nikishin, A.; Nikiforov-Nikishin, D.; Kochetkov, N.; Smorodinskaya, S.; Klimov, V. The influence of probiotics of different microbiological composition on histology of the gastrointestinal tract of juvenile Oncorhynchus mykiss. Microsc. Res. Tech. 2022, 85, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian, T.; Nasirpour, M.; Tabandeh, M.R.; Heidary, A.A.; Ghanei-Motlagh, R.; Hosseini, S.S. Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish Shellfish Immunol. 2019, 86, 269–279. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Z.; Guan, X.; Dong, Y.; Zhao, Z.; Jiang, J.; Li, S.; Jiang, B.; Wang, B.; Zhang, G. Effects of dietary Lactobacillus acidophilus and tussah immunoreactive substances supplementation on physiological and immune characteristics of sea cucumber (Apostichopus japonicus). Aquaculture 2021, 542, 736897. [Google Scholar] [CrossRef]
- Munir, M.B.; Hashim, R.; Abdul Manaf, M.S.; Nor, S.A. Dietary prebiotics and probiotics influence the growth performance, feed utilisation, and body indices of snakehead (Channa striata) fingerlings. Trop. Life Sci. Res. 2016, 27, 111–125. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Roosta, Z.; Hajimoradloo, A.; Vakili, F. The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri). Fish Shellfish Immunol. 2015, 42, 533–538. [Google Scholar] [CrossRef]
- Yitbarek, A.; Rodriguez-Lecompte, J.C.; Echeverry, H.M.; Munyaka, P.; Barjesteh, N.; Sharif, S.; Camelo-Jaimes, G. Performance, histomorphology, and toll-like receptor, chemokine, and cytokine profile locally and systemically in broiler chickens fed diets supplemented with yeast-derived macromolecules. Poult. Sci. 2013, 92, 2299–2310. [Google Scholar] [CrossRef]
- Hernández-Coronado, A.C.; Cervantes, M.; González, F.; Valle, A.; Arce, N.; Vásquez, N.; Bernal, H.; Morales, A. Effect of probiotic supplementation on productive performance and epithelial intestinal integrity of broiler chickens exposed to heat stress. Trop. Anim. Health Prod. 2025, 57, 235. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.X.H.; Tan, L.T.H.; Law, J.W.F.; Khaw, K.Y.; Zengin, G.; Chan, K.G.; Letchumanan, V.; Lee, L.H.; Goh, B.H. Probiotics: Comprehensive exploration of the growth promotion mechanisms in shrimps. Prog. Microbes Mol. Biol. 2023, 6, a0000324. [Google Scholar] [CrossRef]
- Adeshina, I.; Abubakar, M.I.O.; Ajala, B.E. Dietary supplementation with Lactobacillus acidophilus enhanced the growth, gut morphometry, antioxidant capacity, and the immune response in juveniles of the common carp, Cyprinus carpio. Fish Physiol. Biochem. 2020, 46, 1375–1385. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, Y.; Huang, J.; Ou, G.; Wen, Z.; Li, Y.; Ma, Q.; Chen, G. Effects of compound probiotics on growth performance, antioxidant capacity and intestinal health of hybrid grouper (Epinephelus fuscogutatus ♀ × Epinephelus polyphekadion ♂). J. Guangdong Ocean Univ. 2023, 43, 81–91. [Google Scholar]
- Cai, Y.; Wu, G.; Yang, H.; Fang, Y.; Chen, Z.; Zhan, X. Mechanisms of action and current applications of probiotics in animal health management. Chin. J. Anim. Sci. Vet. Med. 2025, 52, 2101–2114. [Google Scholar]
- Kim, Y.; Kim, S.H.; Whang, K.Y.; Kim, Y.J.; Oh, S. Inhibition of Escherichia coli O157:H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells. J. Microbiol. Biotechnol. 2008, 18, 1278–1285. [Google Scholar]
- Neves, N.O.D.S.; De Dea Lindner, J.; Stockhausen, L.; Delziovo, F.R.; Bender, M.; Serzedello, L.; Cipriani, L.A.; Ha, N.; Skoronski, E.; Gisbert, E. Fermentation of Plant-Based Feeds with Lactobacillus acidophilus Improves the Survival and Intestinal Health of Juvenile Nile Tilapia (Oreochromis niloticus) Reared in a Biofloc System. Animals 2024, 14, 332. [Google Scholar] [CrossRef]
- Li, C.; Tian, Y.; Wang, L.; Zhang, B.; Ma, Q. Effects of replacing fishmeal by raw or Lactobacillus acidophilus-fermented soybean meal on growth, intestinal digestive and immune-related enzyme activities, morphology, and microbiota in turbot (Scophthalmus maximus L.). Aquac. Nutr. 2022, 2022, e2643235. [Google Scholar] [CrossRef]
- Bi, Y. Preliminary Study on Intestinal Microflora Response of Yellow River Carp Based on Probiotics Regulation. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2016. [Google Scholar]
- Liu, G.; Hu, X.; Su, H.; Xu, W.; Xu, Y.; Wen, G.; Cao, Y. Antagonism of Lactobacillus acidophilus against three Vibrio species and its influence on gut microbiota of Litopenaeus vannamei. South China Fish. Sci. 2024, 20, 83–91. [Google Scholar]
- Ehsannia, S.; Ahari, H.; Kakoolaki, S.; Anvar, S.A.; Yousefi, S. Effects of probiotics on Zebrafish model infected with Aeromonas hydrophila: Spatial distribution, antimicrobial, and histopathological investigation. BMC Microbiol. 2022, 22, 167. [Google Scholar] [CrossRef]
- Wang, T.; Dai, M.Z.; Liu, F.S.; Cao, B.B.; Guo, J.; Shen, J.Q.; Li, C.Q. Probiotics modulate intestinal motility and inflammation in Zebrafish models. Zebrafish 2020, 17, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z. Application of probiotics in livestock husbandry. China Swine Ind. 2023, 18, 44–47. [Google Scholar]
- Hosseini, M.; Miandare, H.; Hoseinifar, S.; Yarahmadi, P. Dietary Lactobacillus acidophilus modulated skin mucus protein profile, immune and appetite genes expression in gold fish (Carassius auratus gibelio). Fish Shellfish Immunol. 2016, 59, 149–154. [Google Scholar] [CrossRef]
- Kayama, H.; Takeda, K. Manipulation of epithelial integrity and mucosal immunity by host and microbiota-derived metabolites. Eur. J. Immunol. 2020, 50, 921–931. [Google Scholar] [CrossRef]
- Wang, W.S.; Wu, H.; Chen, Z.X.; Liu, J.Y. Mechanisms of action of microecological preparations and their effects on immune function in livestock and poultry. Feed Res. 2024, 47, 143–147. [Google Scholar]
- Kayama, H.; Okumura, R.; Takeda, K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu. Rev. Immunol. 2020, 38, 23–48. [Google Scholar] [CrossRef]
- Xu, Q.; Li, R.; Wang, G. Research progress of the effect of probiotics on mucosal immunity of fish. Feed Ind. 2022, 43, 5–8. [Google Scholar]
- Ye, L.L. Study on the Mechanism of Regulating Wnt/β-Catenin Signaling Pathway by Lactobacillus acidophilus to Maintain Intestinal Mucosal Barrier. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2018. [Google Scholar]
- Weiss, G.; Rasmussen, S.; Zeuthen, L.H.; Nielsen, B.N.; Jarmer, H.; Jespersen, L.; Frøkiær, H. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism. Immunology 2010, 131, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cao, J.; Kuang, Z.; Wang, G.; Wu, C.; Fu, J.; Mo, W.; Huang, Y. Effect of dietary Lactobacillus on growth performance, non-specific immune enzymes activities and intestinal microflora of Oreochromis niloticu. Guangdong Agric. Sci. 2013, 40, 123–126. [Google Scholar]
- Abu-Braka, A.Z.; Zaki, M.S.; Abbas, H.H.; Ismail, N.; Khalil, R.; Tanekhy, M.; Saad, T. Filed studies on some probiotics to minimize hazard effects of prevailing heavy metals contamination for improving immunity and growth performance of Oreochromis niloticus. Electron Physician 2017, 9, 4138–4144. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ren, P.; He, S.; Xu, L.; Yang, Y.; Gu, Z.; Zhou, Z. Comparison of adhesive gut bacteria composition, immunity, and disease resistance in juvenile hybrid tilapia fed two different Lactobacillus strains. Fish Shellfish Immunol. 2013, 35, 54–62. [Google Scholar] [CrossRef]
- Ina-Salwany, M.; Al-saari, N.; Mohamad, A.; Mursidi, F.A.; Mohd-Aris, A.; Amal, M.; Kasai, H.; Mino, S.; Sawabe, T.; Zamri-Saad, M. Vibriosis in fish: A review on disease development and prevention. J. Aquat. Anim. Health 2019, 31, 3–22. [Google Scholar] [CrossRef]
- Vandaan, H.; Hoseinifar, S.H.; Ringø, E.; Angeles Esteban, M.; Dadar, M.; Dawood, M.A.; Faggio, C. Host-associated probiotics: A key factor in sustainable aquaculture. Rev. Fish. Sci. Aquac. 2020, 28, 16–42. [Google Scholar] [CrossRef]
- Liu, W.Q.; Jin, Y.Q.; Dong, H.X.; Mai, Q.Y.; Sun, D.L.; Wu, Y.L.; Lai, M.J.; Zeng, W.W. Application of probiotics in disease prevention and control in aquaculture. Prog. Vet. Med. 2023, 44, 112–116. [Google Scholar]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Patel, A.K.; Ahire, J.J.; Pawar, S.P.; Chaudhari, B.L.; Shouche, Y.S.; Chincholkar, S.B. Evaluation of probiotic characteristics of siderophoregenic Bacillus spp. isolated from dairy waste. Appl. Biochem. Biotechnol. 2010, 160, 140–155. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, P.; Kumar, R.S.; Yuvaraj, N.; Paari, K.A.; Pattukumar, V.; Arul, V. Probiotics and its functionally valuable products-A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 641–658. [Google Scholar] [CrossRef]
- Hong, M.; Liu, Y.Z.; Shi, B.J. Antibacterial activity and characteristics of a Lactobacillus acidophilus strain. Heilongjiang Anim. Sci. Vet. Med. 2017, 18, 122–124. [Google Scholar]
- Aly, S.M.; Ahmed, Y.A.G.; Ghareeb, A.A.A.; Mohamed, M.F. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol. 2008, 25, 128–136. [Google Scholar] [CrossRef]
- Alinejad Moallem, S. Investigation of antagonistic effect of Lactobacillus acidophilus isolated from the gastrointestinal tract of oscar fish (Astronotus ocellatus) on Pseudomonas aeruginosa. Int. J. Mol. Clin. Microbiol. 2021, 11, 1464–1470. [Google Scholar]
- Wu, Z.K. Probiotic effects of Lactobacillus acidophilus in broilers and its mechanisms. Chin. Acad. Agric. Sci. 2021. [Google Scholar] [CrossRef]
- Villamil, L.; Reyes, C.; Martínez-Silva, M. In vivo and in vitro assessment of Lactobacillus acidophilus as probiotic for tilapia (Oreochromis niloticus, Perciformes: Cichlidae) culture improvement. Aquac. Res. 2014, 45, 1116–1125. [Google Scholar] [CrossRef]
- Khalil, R.; Talaat, T.; Tenikhy, M.; Sherif, A.; Amina, S. Effect of Lactobacillus acidophilus on the growth and immune response in cultured Oreochromis niloticus. Glob. J. Fish. Aquac. Res. 2014, 1, 57–69. [Google Scholar]
- Adeshina, I. The effect of Lactobacillus acidophilus as a dietary supplement on nonspecific immune response and disease resistance in juvenile common carp, Cyprinos carpio. Int. Food Res. J. 2018, 25, 2345–2351. [Google Scholar]
- Oliveira, N.S.d.; Ha, N.; Cunha, L.d.; Cipriani, L.A.; Neto, A.T.; Skoronski, E.; Gisbert, E.; Fabregat, T.E.H.P. Fermentation of soybean meal with Lactobacillus acidophilus allows greater inclusion of vegetable protein in the diet and can reduce vibrionacea in the intestine of the south American catfish (Rhamdia quelen). Animals 2022, 12, 690. [Google Scholar] [CrossRef]
- Khan, S.; Mahmud, S. The impact of probiotic bacterium Lactobacillus acidophilus in growth and survival of the juvenile fresh water river prawn (Macrobrachium rosenbergii) infected with pathogenic Vibrio spp. J. Microbiol. Biotechnol. Food Sci. 2015, 5, 225–229. [Google Scholar] [CrossRef]
- Al-Dohail, M.A.; Hashim, R.; Aliyu-Paiko, M. Evaluating the use of Lactobacillus acidophilus as a biocontrol agent against common pathogenic bacteria and the effects on the haematology parameters and histopathology in African catfish Clarias gariepinus juveniles. Aquac. Res. 2011, 42, 196–209. [Google Scholar] [CrossRef]
- Faramarzi, M.; Kiaalvandi, S.; Lashkarbolooki, M.; Iranshahi, F. The investigation of Lactobacillus acidophilus as probiotics on growth performance and disease resistance of rainbow trout (Oncorhychus mykiss). Am. Eurasian J. Sci. Res. 2011, 6, 32–38. [Google Scholar]
- Guo, Y.; Yu, Q.; Yan, J.; Gao, Y.; Li, X.; Mao, X. Anti-infection and anti-inflammatory effects of compound probiotics on zebrafish. Mod. Food 2023, 29, 176–180+193. [Google Scholar]
- Akter, N.; Hashim, R.; Pham, H.Q.; Choi, S.D.; Lee, D.W.; Shin, J.H.; Rajagopal, K. Lactobacillus acidophilus antimicrobial peptide is antagonistic to Aeromonas hydrophila. Front. Microbiol. 2020, 11, 570851. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.B.; Hashim, R.; Nor, S.A.M.; Marsh, T.L. Effect of dietary prebiotics and probiotics on snakehead (Channa striata) health: Haematology and disease resistance parameters against Aeromonas hydrophila. Fish Shellfish Immunol. 2018, 75, 99–108. [Google Scholar] [CrossRef]
- Patel, B.; Kumar, P.; Banerjee, R.; Basu, M.; Pal, A.; Samanta, M.; Das, S. Lactobacillus acidophilus attenuates Aeromonas hydrophila induced cytotoxicity in catla thymus macrophages by modulating oxidative stress and inflammation. Mol. Immunol. 2016, 75, 69–83. [Google Scholar] [CrossRef]
- Tian, Q.; Guo, Z.; Ji, L.; He, S.; Liu, P.; Zhu, X.; Li, X. Research progress of probiotics in aquaculture. Ind. Microorg. 2019, 49, 50–55. [Google Scholar]
- Huang, Y. Research progress of probiotics in fish-farming. Chin. Feed 2023, 5–8. [Google Scholar] [CrossRef]
- Su, Z.; Li, Y.; Pan, L.; Xue, F. An investigation on the immunoassays of an ammonia nitrogen-degrading bacterial strain in aquatic water. Aquaculture 2016, 450, 17–22. [Google Scholar] [CrossRef]
- Liu, P.; Luo, J.; Gao, Q. Research progress of environmental microorganisms in aquaculture. Curr. Biotechnol. 2022, 12, 690–695. [Google Scholar]
- Mi, S.; Xu, J.; Li, J.; Zhang, Z.; Xian, J.; Wang, D. Research progress on the application of common probiotics in fish and shrimp culture. Fish. Hebei 2021, 39–44. [Google Scholar]
- Zhang, W. Screening of Lactobacillus acidophilus of Animal Origin and Its Preparation Technology. Master’s Thesis, Nanchang University, Nanchang, China, 2021. [Google Scholar]
- Zhang, Y.; Zhang, L.; Li, Y. Study on the growth inhibition of some pathogens by the L. Acidophilus B. infantis. J. Northeast Agric. Univ. 2004, 35, 208–211. [Google Scholar]
- Afsharian, Z.; Salavatifar, M.; Khosravi_Daranic, K. Impact of simulated microgravity on bioremoval of heavy-metals by Lactobacillus acidophilus ATCC 4356 from water. Heliyon 2022, 8, e12307. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.L.; Sarma, P. Removal of Arsenic (III) from waste water using Lactobacillus acidophilus. Bioremediation J. 2010, 14, 92–97. [Google Scholar] [CrossRef]
- Vellingiri, K.; Ramachandran, T.; Thirugnanasambantham, A. Isolation and purification of Lactobacillus acidophilus and analyzing its influence on effluent treatment. Int. J. Eng. Technol. 2015, 5, 66–74. [Google Scholar]
- Li, H.; Zhang, Z.; Ge, H.; Pan, B.; Yang, Z. Application of biofloc technology in desalination culture of Litopenaeus vannamei in ponds. J. Fish. Res. 2022, 44, 562. [Google Scholar]
Aquatic Organisms | Beneficial Effects (Compared to the Control Group) | References |
---|---|---|
Thinlip grey mullet (Liza ramada, Risso 1826) | Enhanced specific growth rate and weight gain; reduced feed conversion ratio | Khalafalla et al. [31] |
Whiteleg shrimp (Penaeus vannamei) | Enhanced specific growth rate, weight gain, and the activity of protease, lipase, and amylase in the intestine; reduced feed coefficient | Abidin et al. [32] |
Rainbow trout (Oncorhynchus mykiss) | Enhanced specific growth rate; enhanced the activity of digestive enzymes; promoted the colonization of lactic acid bacteria in intestine; improved the expression of insulin-like growth factor-1 (IGF-1), fatty acid transport protein (FATP), and gamma glutamyl transpeptidase (γ-GTP); reduced feed conversion ratio | Nikiforov-Nikishin et al. [33], Mohammadian et al. [34] |
Sea cucumber (Apostichopus japonicus) | Enhanced digestibility and food utilization | Wang et al. [35] |
Snakehead (Channa striata) | Enhanced specific growth rate and protein efficiency rate; reduced feed conversion rate | Munir et al. [36] |
Black swordtail (Xiphophorus helleri) | Enhanced specific growth rate and reduced feed conversion ratio | Hoseinifar et al. [37] |
Aquatic Organisms | Beneficial Effects (Compared to the Control Group) | References |
---|---|---|
Shrimp (Litopenaeus vannamei) | Enriched the structure of the intestinal microbiota | Liu et al. [48] |
Zebrafish (Danio rerio) | Increased the length of villi and the rate of goblet cells in intestinal tissues, facilitated intestinal motility | Ehsannia et al. [49], Wang et al. [50] |
Aquatic Organisms | Beneficial Effects (Compared to the Control Group) | References |
---|---|---|
Nile tilapia (Oreochromis niloticus) | Enhanced the activity of acid phosphatase, alkaline phosphatase, and superoxide dismutase; diminished the impact of cadmium on growth and health | Abu-Braka et al. [60] |
Hybrid tilapia (Oreochromis niloticus ♀ × Oreochromis aureus ♂) | Affected stress tolerance; interfered with gene expression (HSP70, IL-1b, TGF-b, and TNF-α) | Liu et al. [61] |
Aquatic Organisms | Bacterial Species | Beneficial Effects (Compared to the Control Group) | References |
---|---|---|---|
Snakehead (Channa striata) | Aeromonas hydrophila | Improved blood physiological and biochemical parameters; increased survival rates; enhanced lysozyme activity; strengthened disease resistance | Akter et al. [80], Munir et al. [81] |
Catla (Catla catla Hamilton) | Aeromonas hydrophila | Attenuated apoptosis induced by Aeromonas hydrophila; upregulating the expression of TNF-α and IL-10; downregulating the expression of cyclooxygenase2 (COX-2) | Patel et al. [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhou, J.; Huang, Z.; Zhao, H.; Zhao, Z.; Mou, C.; Feng, Y.; Li, H.; Li, Q.; Duan, Y. Lactobacillus acidophilus in Aquaculture: A Review. Microbiol. Res. 2025, 16, 174. https://doi.org/10.3390/microbiolres16080174
Zhang L, Zhou J, Huang Z, Zhao H, Zhao Z, Mou C, Feng Y, Li H, Li Q, Duan Y. Lactobacillus acidophilus in Aquaculture: A Review. Microbiology Research. 2025; 16(8):174. https://doi.org/10.3390/microbiolres16080174
Chicago/Turabian StyleZhang, Lu, Jian Zhou, Zhipeng Huang, Han Zhao, Zhongmeng Zhao, Chengyan Mou, Yang Feng, Huadong Li, Qiang Li, and Yuanliang Duan. 2025. "Lactobacillus acidophilus in Aquaculture: A Review" Microbiology Research 16, no. 8: 174. https://doi.org/10.3390/microbiolres16080174
APA StyleZhang, L., Zhou, J., Huang, Z., Zhao, H., Zhao, Z., Mou, C., Feng, Y., Li, H., Li, Q., & Duan, Y. (2025). Lactobacillus acidophilus in Aquaculture: A Review. Microbiology Research, 16(8), 174. https://doi.org/10.3390/microbiolres16080174