Tobacco Leaf-Surface Extracts: Antimicrobial Potential against Phytopathogenic Fungi and In Vitro Culture Bacterial Contaminants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction and Characterization of Crude Ethanolic Extracts from N. tabacum Leaf Surfaces
2.3. Separation and Quantification via Thin Layer Chromatography (TLC) and High-Performance Liquid Chromatography (HPLC)
2.4. In Vitro Antifungal Activity of Crude Ethanolic Extracts against Phytopathogenic Fungi TLC-Bioautography and Microdilution Test
2.4.1. TLC-Bioautography
2.4.2. Microdilution Test
- (1)
- A sterility control of the culture medium (200 µL of culture medium).
- (2)
- A growth control for each pathogen (100 µL of culture medium and 100 µL of pathogen suspension).
- (3)
- A solvent control using DMSO (100 µL of culture medium, 100 µL of pathogen, and 100 µL of 3% DMSO with serial dilutions).
2.5. In Vitro Antibacterial Activity of Crude Ethanolic Extracts against Bacterial Contaminants of In Vitro Culture
- (1)
- A positive control (Kanamycin 50 µg·µL−1), where 10 µL (equivalent to 500 µg) was used.
- (2)
- A solvent control (commercial Ethanol 90%), with 25 µL applied.
2.6. Statistical Analysis
3. Results
3.1. Obtaining Ethanolic Crude Extracts of Selected Tobacco Accessions
3.2. In Vitro Antifungal Activity of Crude Ethanolic Extracts against Phytopathogenic Fungi
3.3. In Vitro Antibacterial Activity of Plant Extracts against Bacterial Contaminants of In Vitro Culture
4. Discussion
4.1. Diterpenoids Composition of Ethanolic Crude Extracts
4.2. Antifungal Activities of Plants Crude Extracts and Diterpenoids Obtained from the Leaf Surface of Tobacco
4.3. Antibacterial Activities of Plants Crude Extracts Obtained from the Leaf Surface of Tobacco
- (1)
- Number of Hydroxyl Groups: Compounds with more hydroxyl groups may exhibit higher antimicrobial activity.
- (2)
- Degree of Unsaturation: The presence of double bonds or macrocyclic structures in the compounds can also influence their activity.
- (3)
- Type and Position of Substituents: The type and location of chemical substituents on the compound’s structure can affect its antimicrobial properties.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- López-Dávila, E.; Martínez, Y.; Romero, O. Characteristics and adverse consequences on human health of agrochemicals used in Cuban agriculture. Rev. Cuba. De Salud Pública 2022, 48, e2810-7. [Google Scholar]
- Nava-Pérez, E.; García-Gutiérrez, C.; Camacho-Báez, J.R.; Vázquez-Montoya, E.L. Biopesticides: An option for the biological pest control. Rev. Ra Ximhai 2012, 8, 17–29. [Google Scholar] [CrossRef]
- Boedeker, W.; Watts, M.; Clausing, P.; Marquez, E. The global distribution of acute unintentional pesticide poisoning: Estimations based on a systematic review. BMC Public Health 2020, 20, 1875. [Google Scholar] [CrossRef]
- Pérez-Consuegra, N.; Montano-Pérez, M. Los plaguicidas altamente peligrosos en Cuba. IPEN/ACTAF/RAPAL. La Habana. Ed. Agroecol. 2021, 56. [Google Scholar]
- Cen, X.; Ding, W.; Ding, J. Preliminary studies on the activity of crude extracts from Nicotiana tabacum stems against Tetranychus cinnabar inus. Plant Prot. 2009, 35, 156–158. [Google Scholar]
- Jassbi, A.R.; Zare, S.; Asadollahi, M.; Schuman, M.C. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana. Chem. Rev. 2017, 117, 12227–12280. [Google Scholar] [CrossRef]
- Lewis, R.S. Nicotiana tabacum L.: Tobacco. In Medicinal, Aromatic and Stimulant Plants; Springer: Cham, Switzerland, 2020; pp. 345–375. [Google Scholar]
- Duan, S.; Du, Y.; Hou, X.; Yan, N.; Dong, W.; Mao, X.; Zhang, Z. Chemical Basis of the Fungicidal Activity of Tobacco Extracts against Valsa mali. Molecules 2016, 21, 1743. [Google Scholar] [CrossRef]
- Ruiz, Y.; Ramos, P.L.; Soto, J.; Rodríguez, M.; Carlos, N.; Reyes, A.; Fuentes, A. The M4 insulator, the TM2 matrix attachment region, and the double copy of the heavy chain gene contribute to the enhanced accumulation of the PHB-01 antibody in tobacco plants. Transgenic Res. 2020, 29, 171–186. [Google Scholar] [CrossRef]
- Uzelac, B.; Stojičić, D.; Budimir, S. Glandular Trichomes on the Leaves of Nicotiana tabacum: Morphology, Developmental Ultrastructure, and Secondary Metabolites. In Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry; Ramawat, K.G., Ekiert, H.M., Goyal, S., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Tissier, A. Plant secretory structures: More than just reaction bags. Curr. Opin. Biotechnol. 2018, 49, 73–79. [Google Scholar] [CrossRef]
- Tissier, A. Glandular trichomes: What comes after expressed sequence tags. Plant J. 2012, 70, 51–68. [Google Scholar] [CrossRef]
- Sallaud, C.; Giacalone, C.; Topfer, R.; Goepfert, S.; Bakaher, N.; Rosti, S.; Tissier, A. Characterization of two genes for the biosynthesis of the labdane Z-abienol in tobacco (Nicotiana tabacum). Plant J. 2012, 72, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.W.; Bass, W.T.; Houtz, R.L.; Wagner, G.J. Phylloplanins of Tobacco Are Defensive Proteins Deployed on Aerial Surfaces by Short Glandular Trichomes. Plant Cell 2005, 17, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Gomi, K.; Kaku, H.; Abe, H.; Seto, H.; Nakatsu, S.; Neya, M.; Kobayashi, M.; Nakaho, K.; Ichinose, Y.; et al. Identification of Natural Diterpenes that Inhibit Bacterial Wilt Disease in Tobacco, Tomato and Arabidopsis. Plant Cell Physiol. 2012, 53, 1432–1444. [Google Scholar] [CrossRef]
- Cedeño, L.; Carrero, C.; Ruíz, R.; Fermín, G.; Pino, H.; Quintero, K. Primer reporte de Stemphylium solani en Lisiantus. Fitopatol. Venez. 2011, 24, 38–41. [Google Scholar]
- Giraldo, A.; Gené, J.; Sutton, D.A.; Madrid, H.; de Hoog, G.S.; Cano, J.; Decock, C.; Crous, P.W.; Guarro, J. Phylogeny of Sarocladium (Hypocreales). Persoonia 2015, 34, 10–24. [Google Scholar] [CrossRef]
- Emara, A.R.; Ibrahim, H.M.; Masoud, S.A. The role of storage on Mancozeb fungicide formulations and their antifungal activity against Fusarium oxysporum and Rhizoctonia solani. Arab. J. Chem. 2021, 14, 103322. [Google Scholar] [CrossRef]
- Vidigal, P.G.; Müsken, M.; Becker, K.A.; Häussler, S.; Wingender, J.; Steinmann, E.; Kehrmann, J.; Gulbins, E.; Buer, J.; Rath, P.M.; et al. Effects of Green Tea Compound Epigallocatechin-3-Gallate against Stenotrophomonas maltophilia Infection and Biofilm. PLoS ONE 2014, 9, e92876. [Google Scholar] [CrossRef]
- Yan, N.; Du, Y.; Liu, X.; Zhang, H.; Liu, Y.; Shi, J.; Xue, S.J.; Zhang, Z. Analyses of effects of α-cembratrien-diol on cell morphology and transcriptome of Valsa mali var. mali. Food Chem. 2017, 214, 110–118. [Google Scholar] [CrossRef]
- Yang, C.; Xie, S.; Ni, L.; Du, Y.; Liu, S.; Li, M.; Yang, X.K. Chemical Constituents from Nicotiana tabacum L. and Their Antifungal Activity. Nat. Prod. Commun. 2021, 16, 1–5. [Google Scholar] [CrossRef]
- Severson, R.F.; Arrendale, R.F.; Chortyk, O.T.; Johnson, A.W.; Jackson, D.M.; Gwynn, G.R.; Chaplain, J.F.; Stephenson, M.G. Quantitation of the major cuticular components from green leaf of different tobacco types. J. Agric. Food Chem. 1984, 32, 566–570. [Google Scholar] [CrossRef]
- Capdesuñer, Y.; Rivas, M.; Rodríguez, E.; Gallo, M.; Quiñones-Galvez, J.; Yanes, E.; Hernández, M. In vitro antibacterial effect of tobacco leaf exudates against two bacterial plant pathogens. Rev. Colomb. De Biotecnol. 2015, 17, 91–100. [Google Scholar] [CrossRef]
- Capdesuñer, Y.; García-Brizuela, J.; Mock, H.P.; Hernández, K.V.; Hernández de la Torre, M.; Santiesteban-Toca, C.E. Accessing to the Nicotiana tabacum leaf antimicrobial activity: In-silico and in-vitro investigations. Plant Physiol. Biochem. 2019, 139, 591–599. [Google Scholar] [CrossRef]
- Wagner, H.; Bladt, S. Plant drug analysis: A Thin Layer Chromatography Atlas (Segunda Ed.); Springer: Berlin/Heidelberg, Germany, 1996; ISBN 3-540-58676-8. [Google Scholar]
- Feng, Y.; Jia, H.; Guan, H.; Zhang, W.; Zhou, Y.; Liu, K.; Wang, Y.; Li, Q.; Chen, W.; Sohail, M.A.; et al. Extraction, purification and anti-TMV effects of α (β)-2,7,11-cembratriene-4,6-diol from tobacco leaves. bioRxiv 2021. [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Terras, F.R.; Schoofs, H.M.; De Bolle, M.F.; Van Leuven, F.; Rees, S.B.; Vanderleyden, J.; Cammue, B.P.; Broekaert, W.F. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J. Biol. Chem. 1992, 267, 15301–15309, ISSN: 0021-9258. [Google Scholar] [CrossRef] [PubMed]
- Capdesuñer, Y.; Rivas, M.; Quiñones-Galvez, J.; Gallo, M.; Rodríguez, E.; Pérez, J.L.; Yanes-Paz, E.; Hernández, M. Análisis comparativo de indicadores químicos de la hoja y diterpenos de exudados foliares de Nicotiana tabacum L. Cultiv. Trop. 2016, 37, 127–135. [Google Scholar]
- Cui, H.; Zhang, S.T.; Yang, H.J.; Ji, H.; Wang, X.J. Gene expression profile analysis of tobacco leaf trichomes. BMC Plant Biol. 2011, 11, 76. [Google Scholar] [CrossRef]
- Iglesias, D.; Ojito-Ramos, K.; Linares, C.; Portal, O. Actividad antifúngica in vitro de extractos de hojas de Citrus spp. frente a Stemphyllium solani Weber. Cent. Agrícola 2017, 44, 5–12. [Google Scholar]
- Arif, T.; Bhosale, J.D.; Kumar, N.; Mandal, T.K.; Bendre, R.S.; Lavekar, G.S.; Dabur, R. Natural products—Antifungal agents derived from plants. J. Asian Nat. Prod. Res. 2009, 11, 621–638. [Google Scholar] [CrossRef]
- Meera, T.; Balabaskar, P. Antifungal activity of botanicals against Sarocladium oryzae causing rice sheath rot disease. Int. J. Food Agric. Vet. Sci. 2012, 2, 121–127. [Google Scholar]
- Kutchan, T.M.; Gershenzon, J.; Møller, B.L.; Gang, D.R. Natural products. In Biochemistry and Molecular Biology of Plants, 2nd ed.; Buchanan, B.B., Gruissem, W., Jones, R.L., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2015; pp. 1133–1134. [Google Scholar]
- Al-Askar, A.A. In vitro antifungal activity of three Saudi plant extracts against some phytopathogenic fungi. J. Agric. Chem. Biotechnol. 2012, 3, 277–284. [Google Scholar]
- Joshi, D.R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Kapoor, A.; Kaur, G.; Kaur, R. Antimicrobial activity of different herbal plants extracts: A review. World J. Pharm. Pharm. Sci. 2015, 4, 422–459. [Google Scholar]
- Oskay, M.; Oskay, D.; Kalyoncu, F. Activity of Some Plant Extracts Against Multi-Drug Resistant Human Pathogens. Iran. J. Pharm. Res. 2009, 8, 293–300. [Google Scholar]
- Dos Santos, E.C.G.; Donnici, C.L.; da Silva Camargos, E.R.; de Rezende, A.A.; de Aguiar Andrade, E.H.; Soares, L.A.L.; de Macêdo Farias, L.; de Carvalho, M.A.R.; das Graças Almeida, M. Effects of Copaifera duckei Dwyer oleoresin on the cell wall and cell division of Bacillus cereus. J. Med. Microbiol. 2013, 62, 1032–1037. [Google Scholar] [CrossRef]
- Mesa, V.A.M.; Marín, P.; Ocampo, O.; Calle, J.; Monsalve, Z. Fungicidas a partir de extractos vegetales: Una alternativa en el manejo integrado de hongos fitopatógenos. Rev. De Investig. Agropecu. 2019, 45, 23–30. [Google Scholar]
- Wang, J.; Xu, K.; Zhang, J.; Ren, G.; Yang, X.; Zhang, Z.; Zhang, Y.; Xiao, Y.; Du, Y. Systematic activity-oriented separation and structure-activity relationship of tobacco cembranoids. Ind. Crops Prod. 2021, 173, 114136. [Google Scholar] [CrossRef]
Fungi | Time of incubation (h) | Nic 1015 | BHmN | ||
---|---|---|---|---|---|
IC50 (µg·µL−1) | MIC (µg·µL−1) | IC50 (µg·µL−1) | MIC (µg·µL−1) | ||
Rhizoctonia solani | 24 | 1.67 | <0.078 | >2.5 | 0.156 |
48 | 1.47 | <0.078 | >2.5 | 0.156 | |
72 | 2.14 | <0.078 | >2.5 | 0.156 | |
Stemphylium solani | 24 | 2.14 | 0.625 | >2.5 | 1.25 |
48 | 2.02 | 0.625 | >2.5 | 1.25 | |
72 | 1.84 | 0.625 | >2.5 | 1.25 | |
Sarocladium oryzae | 24 | 2.10 | 1.25 | >2.5 | 1.25 |
48 | 2.08 | 1.25 | -* | - | |
72 | 2.18 | 1.25 | - | - |
Bacteria Bacillus licheniformis | Kanamycin (500 µg) | Ethanol (25 µL) | Nic 1015 (500 µg) | BHmN (500 µg) |
---|---|---|---|---|
(cm) | 3.2 | – | 1.2 | 1.2 |
(cm) | 1.6 | – | 0.6 | 0.6 |
IA (cm2) | 8.0 a | - | 1.1b | 1.1 b |
Stenotrophomonas maltophilia | ||||
3.2 | – | 1.1 | 1.1 | |
1.6 | – | 0.6 | 0.6 | |
IA (cm2) | 8.0 a | - | 1.1 b | 1.1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capdesuñer, Y.; Linares, C.; Schöne, J.; El-Hasan, A.; Vögele, R.; Yanes-Paz, E.; Ortega-Delgado, E.; Martínez-Montero, M.E.; Rodríguez, E.; Quiñones-Gálvez, J. Tobacco Leaf-Surface Extracts: Antimicrobial Potential against Phytopathogenic Fungi and In Vitro Culture Bacterial Contaminants. Int. J. Plant Biol. 2023, 14, 1017-1033. https://doi.org/10.3390/ijpb14040074
Capdesuñer Y, Linares C, Schöne J, El-Hasan A, Vögele R, Yanes-Paz E, Ortega-Delgado E, Martínez-Montero ME, Rodríguez E, Quiñones-Gálvez J. Tobacco Leaf-Surface Extracts: Antimicrobial Potential against Phytopathogenic Fungi and In Vitro Culture Bacterial Contaminants. International Journal of Plant Biology. 2023; 14(4):1017-1033. https://doi.org/10.3390/ijpb14040074
Chicago/Turabian StyleCapdesuñer, Yanelis, Claudia Linares, Jochen Schöne, Abbas El-Hasan, Ralf Vögele, Ermis Yanes-Paz, Eduardo Ortega-Delgado, Marcos Edel Martínez-Montero, Erinelvis Rodríguez, and Janet Quiñones-Gálvez. 2023. "Tobacco Leaf-Surface Extracts: Antimicrobial Potential against Phytopathogenic Fungi and In Vitro Culture Bacterial Contaminants" International Journal of Plant Biology 14, no. 4: 1017-1033. https://doi.org/10.3390/ijpb14040074
APA StyleCapdesuñer, Y., Linares, C., Schöne, J., El-Hasan, A., Vögele, R., Yanes-Paz, E., Ortega-Delgado, E., Martínez-Montero, M. E., Rodríguez, E., & Quiñones-Gálvez, J. (2023). Tobacco Leaf-Surface Extracts: Antimicrobial Potential against Phytopathogenic Fungi and In Vitro Culture Bacterial Contaminants. International Journal of Plant Biology, 14(4), 1017-1033. https://doi.org/10.3390/ijpb14040074