On the Origin of Cultivated Roses: DNA Authentication of the Bourbon Rose Founding Pedigree
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Definition of the DNA Profile of ‘Rose Edouard’
3.2. Identification of the Damask Parent of ‘Rose Edouard’
Locus (LG) | Old Blush | Quatre Saisons | Edouard | Bourbon Jacques | Bourbon Queen |
---|---|---|---|---|---|
RMS070 (LG1) | 150 170 | 168 174 186 | 150 168 170 174 | 150 170 174 |
152 170 174 186 |
RMS015 (LG1) | 153.5 171.5 | 130 145 166 | 130 153.5 166 171.5 | 166 171.5 | 153.3 166 171.5 |
RMS065 (LG2) | 109 117 | 96.5 105 114.5 124 | 105 109 117 124 | 96.5 109 124 | 112.5 114.5 117 124 |
RMS132 (LG2) | 181 192 | 167 173 177 196.5 | 167 173 181 191 | 167 176 181 197 | 173 177 191 196 |
Rh58 (LG3) | 247 287.5 | 226 231 252.5 264 | 226 231 287.5 | 252.5 287.5 | 226 231 |
Rh50 (LG3) | 302 331.5 | 275 299 333.5 348.5 | 275 299 302 331.5 | 302 331.5 333.5 | 275 299 302 331.5 |
Rw55E12 (LG4) | 164.5 179–181 | 113.5 156 173 | 164.5 173 179–181 | 173 179–181 | 173 179–181 |
Rw52D4 (LG5) | 209 212 | 203 212 | 209 212/212 | 209 212 | 203 209 |
RhAB38 (LG5) | 134 140 | 103.5 142 148.5 160 | 103.5 134 140 160 | 103.5 117 140 | 103.5 134 140 158 |
CL2980 (LG6) | 222.5 | 211 214.5 236.5 | 211.5 222.5 236.5 | 223 237 | 211.5 222.5 |
H10D03 (LG7) | 222 232.5 | 208 225.5 239 | 222 225.5 232.5 | 208.5 222.5 | 222.5 225.5 233 239 |
3.3. Identification of the Chinese Parent of ‘Rose Edouard’
3.4. Authentication of ‘Rose Edouard’ Parents
3.5. Identification of First-Generation Descendants of ‘Rose Edouard’
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babaei, A.; Tabaei-Aghdaei, S.R.; Khosh-Khui, M.; Omidbaigi, R.; Naghavi, M.R.; Esselink, G.D.; Smulders, M.J.M. Microsatellite analysis of Damask rose (Rosa damascena Mill.) accessions from various regions in Iran reveals multiple genotypes. BMC Plant Biol. 2007, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Jian, H.; Zhao, L.; Zhang, H.; Ma, C.; Wang, Q.; Yan, H.; Qui, X.; Zhou, N.; Zhang, T. Phylogeography and population genetics of Rosa chinensis var. spontanea and R. lucidissima complex, the important ancestor of modern roses. Front. Plant Sci. 2022, 13, 851396. [Google Scholar] [CrossRef] [PubMed]
- Kiani, M.; Zamani, Z.; Khalighi, A.; Fatahi, R.; Byrne, D.H. Wide genetic diversity of Rosa damascena germplasm in Iran as revealed by RADP analysis. Scent Hortic. 2008, 115, 386–392. [Google Scholar] [CrossRef]
- Singh, S.; Dhyani, D.; Nag, A.; Sharma, R.K. Morphological and molecular characterization revealed high species level diversity among cultivated, introduced and wild roses (Rosa sp.) of western Himalayan region. Genet. Resour. Crop Evol. 2017, 64, 515–530. [Google Scholar] [CrossRef]
- Tan, J.; Wang, J.; Luo, L.; Yu, C.; Xu, T.; Wu, Y.; Cheng, T.; Wang, J.; Pan, H.; Zhang, Q. Genetic relationships and evolution of old Chinese garden roses based on SSRs and chromosome diversity. Sci. Rep. 2017, 7, 15437. [Google Scholar] [CrossRef] [PubMed]
- Hibrand Saint-Oyant, L.; Ruttink, T.; Hamama, L.; Kirov, I.; Lakhwani, D.; Zhou, N.N.; Bourke, P.M.; Daccord, N.; Leus, L.; Schulz, D.; et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat. Plants 2018, 4, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Liorzou, M.; Pernet, A.; Li, S.; Chastellier, A.; Thouroude, T.; Michel, G.; Malécot, V.; Gaillard, S.; Briée, C.; Foucher, F.; et al. Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background. J. Exp. Bot. 2016, 67, 4711–4725. [Google Scholar] [CrossRef] [PubMed]
- Raymond, O.; Gouzy, J.; Just, J.; Badouin, H.; Verdenaud, M.; Lemainque, A.; Vergne, P.; Moja, S.; Choisne, N.; Pont, C.; et al. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 2018, 50, 772–777. [Google Scholar] [CrossRef]
- Rusanov, K.; Kovacheva, N.; Atanassov, A.; Atanassov, I. Rosa damascena Mill., the oil-bearing Damask rose: Genetic resources, diversity and perpectives for molecular breeding. Floric. Ornam. Biotechnol. 2009, 3, 14–20. [Google Scholar]
- Wagner, A.; Frederick, C.; Morvillo, N. Investigation of the origin of ‘Champneys’ Pink Cluster’, ‘Blush Noisette’ and ‘Napoleon’ roses using randomly amplified polymorphic DNA (RADP) analysis. Proc. Fla. State Hortic. Soc. 2002, 115, 120–122. [Google Scholar]
- Widrlechner, M.P. History and utilization of Rosa damascena. Econ. Bot. 1981, 35, 42–58. [Google Scholar] [CrossRef]
- Pirsiyedi, S.M.; Mardi, M.; Davadzahemani, S.; Kermani, M.J.; Mohammadi, S.A. Analysis of the genetic diversity 12 Iranian Damask rose (Rosa damascena Mill.) genotypes using amplified fragment length polymorphism markers. Iran. J. Biotechnol. 2005, 3, 225–230. [Google Scholar]
- Yousefi, B. Screening of Rosa damascena Mill. landraces for flower yield and essential oil content in cold climates. Folia Hortic. 2016, 28, 31–40. [Google Scholar] [CrossRef]
- Wang, G.A. A study on the history of Chinese roses from ancient works and images. Acta Hortic. 2005, 751, 347–356. [Google Scholar] [CrossRef]
- Iwata, H.; Gaston, A.; Remay, A.; Thouroude, T.; Jeauffre, J.; Kawamura, K.; Hibrand Saint-Oyant, L. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J. 2012, 69, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Soufflet-Freslon, V.; Araou, E.; Jeauffre, J.; Thouroude, T.; Chastellier, A.; Michel, G.; Mikanagi, Y.; Kawamura, K.; Banfield, M.; Oghina-Pavie, C.; et al. Diversity and selection of the continuous-flowering gene, roKSN, in rose. Hortic. Res. 2021, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Rousseau-Guertin, M.; Lerceteau-Köhler, E.; Barrot, L.; Sargent, D.J.; Monfort, A.; Simpson, D.; Arus, P.; Guerin, G.; Denoyes-Rothan, B. Comparative genetic mapping between octoploid and diploid Fragaria species reveals a high level of collinearity between their genomes and the essentially disomic behavior of the cultivated octoploid strawberry. Genetics 2008, 179, 2045–2060. [Google Scholar] [CrossRef] [PubMed]
- Hibrand Saint-Oyant, L.; Crespel, L.; Rajapakse, S.; Zhang, L.; Foucher, F. Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering. Tree Genet. Genomes 2008, 4, 11–23. [Google Scholar] [CrossRef]
- Yan, Z.; Denneboom, C.; Hattendorf, A.; Dolstra, O.; Debener, T.; Stam, P.; Visser, P.B. Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor. Appl. Genet. 2005, 110, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Ueckert, J.A. Understanding and Manipulating Polyploidy in Garden Roses. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2014; p. 102. [Google Scholar]
- Soules, V.A. Analysis of Genetic Diversity and Relationships in the China Rose Group. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2009; p. 70. [Google Scholar]
- Roberts, A.V.; Blake, P.S.; Lewis, R.; Taylor, J.M.; Dunstan, D.I. The effect of gibberellins on flowering in roses. J. Plant Growth Regul. 1999, 18, 113–119. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Ploidy | Origin | Location |
---|---|---|---|
Old Blush | 2N = 14 | China, Song Dynasty (960–1279) Imported to Europe in 1752 | Rosarium experimental de Colmar, France |
Old Blush climbing | 2N = 14 | Unknown origin, occurred during the 19th Century Climbing sport of Old Blush | Rosarium experimental de Colmar, France |
Slater’s Crimson | 3N = 21 | China, Old Imported to Europe in 1792 | Rosarium experimental de Colmar, France |
Bengal Crimson | 2N = 14 | China, Old Grown in Reunion prior 1800 | Rosarium experimental de Colmar, France |
Kazanlik | 4N = 28 | Iran, non-recurrent Damask | Rosarium experimental de Colmar, France |
Quatre Saisons | 4N = 28 | Very Old recurrent sport of Kazanlik, most probably | Rosarium experimental de Colmar, France |
Rose Edouard (Colmar) | 4N = 28 | found by Bréon, Réunion, 1817 | Rosarium experimental de Colmar, France |
Rose Edouard (BM, India) | 4N = 28 | India | Rose collection of Viru and Girija Viraraghavan, India The same clone is growing at La Bonne Maison, near Lyon (the rose collection of Odile Masquelier) |
Rose Edouard (BR1, Réunion) | 4N = 28 | Réunion | Rose collection of Bruno Ricquebourg, Réunion |
Rose Edouard (JBM, Réunion) | 4N = 28 | Réunion | Jardin Botanique Mascarin, Réunion |
Rose Edouard (COL1, Réunion) | 4N = 28 | Réunion | Found in Colimaçon, near Saint-Leu, Réunion |
Bourbon Jacques | 4N = 28 | seeds from Bréon, 1817, raised by A. Jacques, France | Rosarium experimental de Colmar, France |
Reine des Ile-Bourbon (syn. Bourbon Queen) | 4N = 28 | Mauget 1834, France | Rosarium experimental de Colmar, France |
Champneys’ Pink Cluster | 2N = 14 | Champneys 1802, Charleston, United States | Rosarium experimental de Colmar, France |
moschata | 2N = 14 | moschata, the original clone from Leonie Bell, United States | Rosarium experimental de Colmar, France |
Stanwell Perpetual | 4N = 28 | Lee, pre-1821, Stanwell, UK | Rosarium experimental de Colmar, France |
Locus (LG) | Edouard Colmar | Edouard BM/India | Edouard BR1 | Edouard JBM | Edouard COL1 |
---|---|---|---|---|---|
RMS070 (LG1) | 150 168 170 174 | 150 168 170 174 | 150 168 170 174 | 150 170 174 |
164 170 |
RMS065 (LG2) | 105 109 117 124 | 105 109 117 124 | 105 109 117 124 | 105 | - |
Rh50 (LG3) | 275 299 302 331.5 | 275 299 302 331.5 | 275 299 302 331.5 | 275 301 331.5 | - |
Rw55E12 (LG4) | 164.5 173 179–181 | 164.5 173 179–181 | 164.5 173 179–181 | 173 179–181 | 164.5 |
Rw52D4 (LG5) | 209 212/212 | 209 212/212 | 209 212/212 | 210 213 | 210 |
RhAB38 (LG5) | 103.5 134 140 160 | 103.5 134 140 160 | 103.5 134 140 160 | 104.5 140 161 | 134 |
CL2980 (LG6) | 211.5 222.5 236.5 | 211 222.5 236.5 | 211 222.5 236.5 | 212 224.5 239 |
215 224 228.5 239 |
H10D03 (LG7) | 222 225.5 232.5 | 222.5 225.5 232.5 | 222.5 225.5 232.5 | 224.5 227.5 235 | 224.5 227.5 235 241.5 |
Locus (LG) | Old Blush Climbing | Old Blush | Edouard | Slater’s Crimson | Bengal Crimson |
---|---|---|---|---|---|
RMS070 (LG1) | 150 170 | 150 170 | 150 168 170 174 | 150 156.5 | 150 152.5 |
RMS065 (LG2) | 109 117 | 109 117 | 105 109 117 124 | 110.5 116.5 |
98 108.5 |
Rh50 (LG3) | 302 331.5 | 302 331.5 | 275 299 302 331.5 | 302 | 331.5 |
Rw55E12 (LG4) | 164.5 179–181 | 165 179–181 | 164.5 173 179–181 | 169 | 177.5 183.5 |
Rw52D4 (LG5) | 209 212 | 209 212 | 209 212/212 | 209 | 213 219 |
RhAB38 (LG5) | 134 140 | 134 140 | 103.5 134 140 160 | 137 179.5 183.5 | - |
CL2980 (LG6) | 222.5 | 222.5 | 211.5 222.5 236.5 | 223 232 | 212 222.5 |
H10D03 (LG7) | 222 233 | 222 232.5 | 222 225.5 232.5 | 222 | 222 211.5 217 |
Locus (LG) | Stanwell Perpetual | Quatre Saisons | Edouard | Old Blush | Champney’s Pink Cluster | Moschata |
---|---|---|---|---|---|---|
RMS070 (LG1) | 168 176 | 168 174 186 | 150 168 170 174 | 150 170 | 170 174 | 174 |
RMS015 (LG1) | 145 156 166 172 | 130 145 166 | 130 153.5 166 171.5 | 153.5 171.5 | 165.5 | |
RMS065 (LG2) | 96.5 107.5 114.5 122 | 96.5 105 114.5 124 | 105 109 117 124 | 109 117 | 96.5 117 | 96 |
RMS132 (LG2) | 171 173 177 181 | 167 173 177 196.5 | 167 173 181 191 | 181 192 | 192 197 | |
Rh58 (LG3) | 226 231 238 243 | 226 231 252.5 264 | 226 231 287.5 | 247 287.5 | 252 | |
Rh50 (LG3) | 275 299 317 333.5 | 275 299 333.5 348.5 | 275 299 302 331.5 | 302 331.5 | 302 333.5 | 315 332.5 |
Rw55E12 (LG4) | 113.5 156 184.5 | 113.5 156173 | 164.5 173 179–181 | 164.5 179–181 | 164.5 | 177 |
Rw52D4 (LG5) | 203 212 218 | 203 212 | 209 212/212 | 209 212 | 209 | 212 |
RhAB38 (LG5) | 103.5 130 160 178.5 | 103.5 142 148.5 160 | 103.5 134 140 160 | 134 140 | 134 140 162 | 162 |
CL2980 (LG6) | 214.5 236.5 | 211 214.5 236.5 | 211.5 222.5 236.5 | 222.5 | 222.5 236.5 | 236.5 |
H10D03 (LG7) | 208 218 239 | 208 225.5 239 | 222 225.5 232.5 | 222 232.5 |
208 222 | 197 207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alioua, A.; Heitzler, P. On the Origin of Cultivated Roses: DNA Authentication of the Bourbon Rose Founding Pedigree. Int. J. Plant Biol. 2023, 14, 1117-1130. https://doi.org/10.3390/ijpb14040082
Alioua A, Heitzler P. On the Origin of Cultivated Roses: DNA Authentication of the Bourbon Rose Founding Pedigree. International Journal of Plant Biology. 2023; 14(4):1117-1130. https://doi.org/10.3390/ijpb14040082
Chicago/Turabian StyleAlioua, Abdelmalek, and Pascal Heitzler. 2023. "On the Origin of Cultivated Roses: DNA Authentication of the Bourbon Rose Founding Pedigree" International Journal of Plant Biology 14, no. 4: 1117-1130. https://doi.org/10.3390/ijpb14040082
APA StyleAlioua, A., & Heitzler, P. (2023). On the Origin of Cultivated Roses: DNA Authentication of the Bourbon Rose Founding Pedigree. International Journal of Plant Biology, 14(4), 1117-1130. https://doi.org/10.3390/ijpb14040082