Generation of Maize 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Variants with Improved Glyphosate Tolerance
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of EPSPS Variants at Positions 101, 102 and 106
2.2. Identification of Novel EPSPS Glyphosate-Resistant Variants from Site-Saturated Mutagenesis (SSM)
2.3. Aro-A Bacterial Screen
2.4. Novel Variants Combined with Variants at Positions 101, 102, 106
2.5. Expression and Purification of EPSPS Variants
2.6. EPSPS Activity Assay
2.7. EPSPS Enzyme Kinetics
2.8. Production and Propagation of R0 and R1 Transgenic Maize Plants Expressing EPSPS Variants
3. Results
3.1. Enzyme Kinetics of EPSPS Variants
3.2. Glyphosate Resistance of Transgenic Maize Expressing EPSPS Variants
4. Discussion
4.1. Protein Engineering Is a Useful Technique to Improve Crops
4.2. New EPSPS Variants Show Useful Parameters That Can Be Applied to Plant Biotechnology
Author Contributions
Funding
Conflicts of Interest
References
- Lichtfouse, E. Sustainable Agriculture Reviews Vol. 31; Springer: New York, NY, USA, 2018. [Google Scholar]
- Lichtfouse, E. Sustainable Agriculture Reviews Vol. 15; Springer: New York, NY, USA, 2015. [Google Scholar]
- Busi, R.; Vila-Aiub, M.M.; Beckie, H.J.; Gaines, T.A.; Goggin, D.E.; Kaundun, S.S.; Lacoste, M.; Neve, P.; Nissen, S.J.; Norsworthy, J.K.; et al. Herbicide-resistant weeds: From research and knowledge to future needs. Evol. Appl. 2013, 6, 1218–1221. [Google Scholar] [CrossRef]
- Nandula, V.K.; Riechers, D.E.; Ferhatoglu, Y.; Barrett, M.; Duke, S.O.; Dayan, F.E.; Goldberg-Cavalleri, A.; Tetard-Jones, C.; Wortley, D.J.; Onkokesung, N.; et al. Herbicide metabolism: Crop selectivity, bioactivation, weed resistance, and regulation. Weed Sci. 2019, 67, 149–175. [Google Scholar] [CrossRef]
- Peterson, M.A.; Collavo, A.; Ovejero, R.; Shivrain, V.; Walsh, M.J. The challenge of herbicide resistance around the world: A current summary. Pest Manag. Sci. 2018, 74, 2246–2259. [Google Scholar] [CrossRef]
- Pannell, D.J.; Tillie, P.; Rodríguez-Cerezo, E.; Ervin, D.; Frisvold, G.B. Herbicide resistance: Economic and environmental challenges. AgBioForum 2016, 19, 136–155. [Google Scholar]
- Nandula, V.K. Herbicide resistance traits in maize and soybean: Current status and future outlook. Plants 2019, 8, 337. [Google Scholar] [CrossRef]
- Larue, C.T.; Ream, J.E.; Zhou, X.; Moshiri, F.; Howe, A.; Goley, M.; Sparks, O.C.; Voss, S.T.; Hall, E.; Ellis, C.; et al. Microbial HemG-type protoporphyrinogen IX oxidase enzymes for biotechnology applications in plant herbicide tolerance traits. Pest Manag. Sci. 2020, 76, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Beckie, H.J.; Ashworth, M.B.; Flower, K.C. Herbicide resistance management: Recent developments and trends. Plants 2019, 8, 161. [Google Scholar] [CrossRef] [PubMed]
- Baird, D.D.; Upchurch, R.P.; Homesly, W.B.; Franz, J.E. Introduction of anew broad-spectrum post emergence herbicide of a new broad spectrum post emergence herbicide class with utility for herbaceous perennial weed control. In Proceedings of the 26th North Central Weed Control Conference, Miami Beach, FL, USA, 7–9 December 1971; pp. 64–68. [Google Scholar]
- Delannay, X.; Bauman, T.T.; Beighley, D.H.; Buettner, M.J.; Coble, H.D.; Defelice, M.S.; Derting, C.W.; Diedrick, T.J.; Griffin, J.L.; Hagood, E.; et al. Yield evaluation of a glyphosate-tolerant soybean line after treatment with glyphosate. Crop Sci. 1995, 35, 1461–1467. [Google Scholar] [CrossRef]
- Gianessi, L.P. Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manag. Sci. 2005, 61, 241–245. [Google Scholar] [CrossRef]
- Duke, S.O. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction. Pest Manag. Sci. 2015, 71, 652–657. [Google Scholar] [CrossRef]
- Padgette, S.R.; Kolacz, K.H.; Delannay, X.; Re, D.B.; LaVallee, B.J.; Tinius, C.N.; Rhodes, W.K.; Otero, Y.I.; Barry, G.F.; Eichholtz, D.A.; et al. Development, identification, and characterization of a Glyphosate-tolerant soybean line. Crop Sci. 1995, 35, 1451–1461. [Google Scholar] [CrossRef]
- Comai, L.; Sen, L.C.; Stalker, D.M. An altered aroA gene product confers resistance to the herbicide glyphosate. Science 1983, 221, 370–371. [Google Scholar] [CrossRef]
- Larson-Kelly, N.; Comai, L.; Kiser, J.; Mau, C.; Pokalsky, A.R.; McBride, K.; Jones, A.; Shewmaker, C.; Stalker, D.M. Chloroplast delivery of a bacterial EPSP synthase in transgenic plants and tolerance to glyphosate. SAAS Bull. Biochem. Biotechnol. 1988, 1, 37–40. [Google Scholar]
- Stalker, D.M. Producing herbicide-resistant plants by gene transfer technology. In Target Sites of Herbicide Action; Boger, P., Sandmann, G., Eds.; CRC Press: Boca Raton, FL, USA, 1989; pp. 147–163. [Google Scholar]
- Arnaud, L.; Sailland, A.; Lebrun, M.; Pallett, K.; Ravanel, P.; Nurit, F.; Tissut, M. Physiological behavior of two tobacco lines expressing EPSP synthase resistant to glyphosate. Pest Biochem. Physiol. 1998, 62, 27–39. [Google Scholar] [CrossRef]
- Alibhai, M.F.; Cajacob, C.; Feng, P.C.C.; Heck, G.R.; Qi, Y.; Flasinski, S.; Stallings, W.C. Glyphosate Resistant Class I 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS). WO2004074443A3, 16 December 2004. [Google Scholar]
- Baerson, S.R.; Rodriguez, D.J.; Tran, M.; Feng, Y.M.; Biest, N.A.; Dill, G.M. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 2002, 129, 1265–1275. [Google Scholar] [CrossRef]
- Yu, Q.; Jalaludin, A.; Han, H.P.; Chen, M.; Sammons, R.D.; Powles, S.B. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance. Plant Physiol. 2015, 167, 1440–1447. [Google Scholar] [CrossRef]
- Chen, J.C.; Huang, H.J.; Zhang, C.X.; Wei, S.H.; Huang, Z.F.; Chen, J.Y.; Wang, X. Mutations and amplification of EPSPS gene confer resistance to glyphosate in goosegrass (Eleusine indica). Planta 2015, 242, 859–868. [Google Scholar] [CrossRef]
- Han, A.; Vila-Aiub, M.M.; Jalaludin, A.; Yu, Q.; Powles, S.B. A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost. Plant Cell Environ. 2017, 40, 3031–3042. [Google Scholar] [CrossRef]
- Reed, K.B.; Kim, W.; Hongyuan, L.; Larue, C.T.; Guo, S.; Brooks, S.M.; Montez, M.R.; Wagner, J.M.; Zhang, Y.J.; Alper, H.S. Evolving dual-trait EPSP synthase variants using a synthetic yeast selection system. Proc. Natl. Acad. Sci. USA 2024, 121, e2317027121. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.C.; Varadarajan, R. A rapid, efficient, and economical inverse polymerase chain reaction-based method for generating a site saturation mutant library. Anal. Biochem. 2013, 449, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, M.J.; Rodriguez, B.; Zapatero, C.; Tew, D.G. Determination of phosphate in nanomolar range by an enzyme-coupling fluorescent method. Anal. Biochem. 2003, 320, 292–298. [Google Scholar] [CrossRef]
- Deist, B.R.; Rausch, M.A.; Fernandez-Luna, M.T.; Adang, M.J.; Bonning, B.C. Bt toxin modification for enhanced efficacy. Toxins 2014, 6, 3005–3027. [Google Scholar] [CrossRef] [PubMed]
- Engqvist, M.K.M.; Rabe, K.S. Applications of protein engineering and directed evolution in plant research. Plant Physiol. 2019, 179, 907–917. [Google Scholar] [CrossRef]
- Tian, Y.S.; Xu, J.; Peng, R.H.; Xiong, A.S.; Xu, H.; Zhao, W.; Fu, X.Y.; Han, H.J.; Yao, Q.H. Mutation by DNA shuffling of 5-enolpyruvylshikimate-3-phosphate synthase from Malus domestica for improved glyphosate resistance. Plant Biotechnol. J. 2013, 11, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Xie, H.; Chen, S.; Valverde, B.E.; Qiang, S. Error-prone PCR mutation of Ls-EPSPS gene from Liriope spicata conferring to its enhanced glyphosate-resistance. Pestic. Biochem. Physiol. 2017, 141, 90–95. [Google Scholar] [CrossRef]
- Larue, C.T.; Goley, M.; Shi, L.; Evdokimov, A.G.; Sparks, O.C.; Ellis, C.; Wollacott, A.M.; Rydel, T.J.; Halls, C.E.; Van Scoyoc, B.; et al. Development of enzymes for robust aryloxyphenoxypropionate and synthetic auxin herbicide tolerance traits in maize and soybean crops. Pest Manag. Sci. 2019, 75, 2086–2094. [Google Scholar] [CrossRef]
- Ku, H.-K.; Ha, S.-H. Improving Nutritional and Functional Quality by Genome Editing of Crops: Status and Perspectives. Front. Plant Sci. 2020, 11, 577313. [Google Scholar] [CrossRef] [PubMed]
Kinetics | ||||||
---|---|---|---|---|---|---|
kcat (s−1) | Km (PEP) μM | Specificity Constant (kcat/Km) | I0.5 (mM) | kcat*I0.5/Km | % kcat*I0.5/Km of CP4 | |
Control | 10.4 | 18.6 | 0.6 | 0.6 | 0.3 | 0.4 |
T102I-P106S (TIPS) | 5.2 | 9.4 | 0.6 | 14.2 | 7.8 | 10.3 |
CP4 | 8.6 | 15.9 | 0.5 | 140.0 | 76.2 | 100.0 |
T102I-P106A (TIPA) | 4.3 | 8.4 | 0.5 | 19.9 | 10.3 | 13.5 |
T102G-P106S (TGPS) | 11.7 | 23.0 | 0.5 | 7.8 | 4.0 | 5.2 |
T102V-P106S (TVPS) | 11.7 | 23.0 | 0.5 | 7.8 | 4.0 | 5.2 |
T102I-P106T (TIPT) | 6.9 | 11.7 | 0.6 | 19.4 | 11.5 | 15.1 |
T102G-P106W (TGPW) | 10.0 | 18.4 | 0.5 | 13.2 | 7.2 | 9.4 |
T102L-P106V | 8.9 | 14.2 | 0.6 | 10.4 | 6.5 | 8.6 |
T102G-P106W-L280R | 10.3 | 16.0 | 0.6 | 10.5 | 6.8 | 4.8 |
R60E-T102G-P106S | 6.4 | 58.5 | 0.1 | 12.0 | 1.3 | 1.7 |
T102I-A103V-P106G-L107T | 5.2 | 29.8 | 0.2 | 20.8 | 3.6 | 4.7 |
T102G-A103V-P106S-L107V | 13.6 | 20.5 | 0.7 | 12.0 | 8.0 | 10.5 |
T102I-P106A-L280R | 4.9 | 14.0 | 0.4 | 17.6 | 6.2 | 8.1 |
P106I-L107S | 5.2 | 48.4 | 0.1 | 1.4 | 0.1 | 0.1 |
N28T-T102G-P106S | 7.3 | 33.3 | 0.2 | 14.1 | 3.1 | 3.1 |
N28Q-T102G-P106S | 9.9 | 67.9 | 0.1 | 11.2 | 1.6 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duff, S.M.G.; Shi, L.; Guo, S.; Hall, E.; Voss, S.; Sparks, O.; Asmar-Rovira, G.A.; Larue, C.T.; Varagona, M.J. Generation of Maize 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Variants with Improved Glyphosate Tolerance. Int. J. Plant Biol. 2025, 16, 106. https://doi.org/10.3390/ijpb16030106
Duff SMG, Shi L, Guo S, Hall E, Voss S, Sparks O, Asmar-Rovira GA, Larue CT, Varagona MJ. Generation of Maize 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Variants with Improved Glyphosate Tolerance. International Journal of Plant Biology. 2025; 16(3):106. https://doi.org/10.3390/ijpb16030106
Chicago/Turabian StyleDuff, Stephen M. G., Lei Shi, Shirley Guo, Erin Hall, Steven Voss, Oscar Sparks, Guillermo A. Asmar-Rovira, Clayton T. Larue, and Marguerite J. Varagona. 2025. "Generation of Maize 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Variants with Improved Glyphosate Tolerance" International Journal of Plant Biology 16, no. 3: 106. https://doi.org/10.3390/ijpb16030106
APA StyleDuff, S. M. G., Shi, L., Guo, S., Hall, E., Voss, S., Sparks, O., Asmar-Rovira, G. A., Larue, C. T., & Varagona, M. J. (2025). Generation of Maize 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Variants with Improved Glyphosate Tolerance. International Journal of Plant Biology, 16(3), 106. https://doi.org/10.3390/ijpb16030106