Distribution of Anthocyanins in Papaver rhoeas L. (corn) Petals: A Column Chromatography Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Determination of Color
2.3. Column Chromatography
2.4. Thin-Layer Chromatography
2.5. Absorption Spectroscopy
2.6. Circular Dichroism Spectroscopy
2.7. Statistical Analysis
3. Results
3.1. Color Analysis
3.2. Column Chromatography Elution Profile
3.3. UV–vis Spectral Analysis
3.3.1. Anthocyanins in Red Petal Segments
3.3.2. Anthocyanins in the Black Basal Area
3.3.3. Pigments in the Lateral Peripheral Area of Poppy Petals
3.4. Circular Dichroism Spectra
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, E.L.; Maia, B.H.L.N.S.; Ferriani, A.P.; Teixeira, S.D. Flavonoids: Classification, Biosynthesis and Chemical Ecology. Flavonoids-Biosynth. Hum. Health 2017, 78–94. [Google Scholar] [CrossRef]
- van der Kooi, C.J.; Stavenga, D.G. Vividly Coloured Poppy Flowers Due to Dense Pigmentation and Strong Scattering in Thin Petals. J. Comp. Physiol. A 2019, 205, 363–372. [Google Scholar] [CrossRef]
- Koski, M.H.; Ashman, T.L. An Altitudinal Cline in UV Floral Pattern Corresponds with a Behavioral Change of a Generalist Pollinator Assemblage. Ecology 2015, 96, 3343–3353. [Google Scholar] [CrossRef]
- Richter, R.; Dietz, A.; Foster, J.; Spaethe, J.; Stöckl, A. Flower Patterns Improve Foraging Efficiency in Bumblebees by Guiding Approach Flight and Landing. Funct. Ecol. 2023, 37, 763–777. [Google Scholar] [CrossRef]
- Dafni, A.; Lehrer, M.; Keyan, P.G. Spatial Flower Parameters and Insect Spatial Vision. Biol. Rev. 1997, 72, 239–282. [Google Scholar] [CrossRef]
- Grotewold, E. The Genetics and Biochemistry of Floral Pigments. Annu. Rev. Plant Biol. 2006, 57, 761–780. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Brown, L.T. The impact of floral spot and ring markings on pollinator foraging dynamics. J. Pollinat. Ecol. 2021, 15, 112–120. [Google Scholar] [CrossRef]
- Wu, J.-F.; Chen, Z.-Q.; Wang, X.-L.; Tu, Y.-L.; Wang, L.-L.; Yang, Y.-P.; Meng, L.-H.; Duan, Y.-W. From a Bee’s Eye: Effects of UV Bullseye Size on Reproductive Success in a Dioecious Vine Herpetospermum pedunculosum (Cucurbitaceae). Plant Divers. 2024, 46, 766–773. [Google Scholar] [CrossRef]
- Tunes, P.; Camargo, M.G.G.; Guimarães, E. Floral UV Features of Plant Species from a Neotropical Savanna. Front. Plant Sci. 2021, 12, 618028. [Google Scholar] [CrossRef]
- Dudek, B.; Schneider, B.; Hilger, H.H.; Stavenga, D.G.; Martínez-Harms, J. Highly Different Flavonol Content Explains Geographic Variations in the UV Reflecting Properties of Flowers of the Corn Poppy, Papaver rhoeas (Papaveraceae). Phytochemistry 2020, 178, 112457. [Google Scholar] [CrossRef]
- Pinke, G.; Kapcsándi, V.; Czúcz, B. Iconic Arable Weeds: The Significance of Corn Poppy (Papaver rhoeas), Cornflower (Centaurea cyanus), and Field Larkspur (Delphinium consolida) in Hungarian Ethnobotanical and Cultural Heritage. Plants 2023, 12, 84. [Google Scholar] [CrossRef]
- Butnariu, M.; Quispe, C.; Herrera-Bravo, J.; Pentea, M.; Sarac, I.; Küşümler, A.S.; Özçelik, B.; Painuli, S.; Semwal, P.; Imran, M.; et al. Papaver Plants: Current Insights on Phytochemical and Nutritional Composition Along with Biotechnological Applications. Oxid. Med. Cell Longev. 2022, 2022, 2041769. [Google Scholar] [CrossRef]
- Oh, J.H.; Ha, I.J.; Lee, M.Y.; Kim, E.O.; Park, D.; Lee, J.H.; Lee, S.G.; Kim, D.W.; Lee, T.H.; Lee, E.J.; et al. Identification and Metabolite Profiling of Alkaloids in Aerial Parts of Papaver rhoeas by Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry. J. Sep. Sci. 2018, 41, 2517–2527. [Google Scholar] [CrossRef]
- Grauso, L.; de Falco, B.; Motti, R.; Lanzotti, V. Corn Poppy, Papaver rhoeas, L.: A Critical Review of Its Botany, Phytochemistry and Pharmacology. Phytochem. Rev. 2021, 20, 227–248. [Google Scholar] [CrossRef]
- Hillenbrand, M.; Zapp, J.; Becker, H. Depsides from the Petals of Papaver rhoeas. Planta Med. 2004, 70, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Dudek, B.; Warskulat, A.-C.; Schneider, B. The Occurrence of Flavonoids and Related Compounds in Flower Sections of Papaver nudicaule. Plants 2016, 5, 28. [Google Scholar] [CrossRef]
- Lunau, K.; Ren, Z.X.; Fan, X.Q.; Trunschke, J.; Pyke, G.H.; Wang, H. Nectar Mimicry: A New Phenomenon. Sci. Rep. 2020, 10, 7039. [Google Scholar] [CrossRef] [PubMed]
- Harborne, J.B. Biochemistry of Plant Pollination. In Introduction to Ecological Biochemistry; Academic Press: Cambridge, UK; London, UK, 1993; pp. 36–70. [Google Scholar] [CrossRef]
- McNaughton, I.H.; Harper, J.L. The comparative biology of closely related species living in the same area. New Phytol. 1960, 59, 15–26. [Google Scholar] [CrossRef]
- Abrol, D.P. Biochemical Basis of Plant-Pollination Interaction. In Pollination Biology; Springer: Dordrecht, The Netherlands, 2012; pp. 413–458. [Google Scholar] [CrossRef]
- Xue, H.; Zhao, J.; Wang, Y.; Shi, Z.; Xie, K.; Liao, X.; Tan, J. Factors Affecting the Stability of Anthocyanins and Strategies for Improving Their Stability: A Review. Food Chem. X 2024, 24, 101883. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.; Basílio, N.; Mateus, N.; De Freitas, V.; Pina, F. Natural and Synthetic Flavylium-Based Dyes: The Chemistry behind the Color. Chem. Rev. 2022, 122, 1416–1481. [Google Scholar] [CrossRef]
- Harborne, J.B. Spectral Methods of Characterizing Anthocyanins. Biochem. J. 1958, 70, 22–28. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Anthocyanins and Other Flavonoids. Nat. Prod. Rep. 2001, 18, 310–333. [Google Scholar] [CrossRef]
- Taghavi, T.; Patel, H.; Rafie, R. Comparing PH Differential and Methanol-Based Methods for Anthocyanin Assessments of Strawberries. Food Sci. Nutr. 2022, 10, 2123–2131. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Carlomagno, T. NMR in Natural Products: Understanding Conformation, Configuration and Receptor Interactions. Nat. Prod. Rep. 2012, 29, 536–554. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Yang, X.; Zhang, N.; Chen, P.; Sun, J.; Harnly, J.M.; Zhang, M. Study of UV–Vis Molar Absorptivity Variation and Quantitation of Anthocyanins Using Molar Relative Response Factor. Food Chem. 2024, 444, 138653. [Google Scholar] [CrossRef] [PubMed]
- Schellman, J.A. Symmetry Rules for Optical Rotation. Acc. Chem. Res. 1968, 1, 144–151. [Google Scholar] [CrossRef]
- Hong, V. Characterization of Anthocyanins in Fruit Juices and Natural Colorants. Ph.D. Thesis, Oregon State University, OR, USA, 1987. [Google Scholar]
- Kovinich, N.; Kayanja, G.; Chanoca, A.; Riedl, K.; Otegui, M.S.; Grotewold, E. Not All Anthocyanins Are Born Equal: Distinct Patterns Induced by Stress in Arabidopsis. Planta 2014, 240, 931–940. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Harborne, J.B. Anthocyanins and Their Sugar Components. Fortschr. Chem. Org. Naturst. 1962, 20, 165–199. [Google Scholar] [CrossRef]
- Fossen, T.; Rayyan, S.; Holmberg, M.H.; Nimtz, M.; Andersen, Ø.M. Covalent Anthocyanin–Flavone Dimer from Leaves of Oxalis Triangularis. Phytochemistry 2007, 68, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Toki, K.; Saito, N.; Iimura, K.; Suzuki, T.; Honda, T. (Delphinidin 3-Gentiobiosyl) (Apigenin 7-Glucosyl) Malonate from the Flowers of Eichhornia Crassipes. Phytochemistry 1994, 36, 1181–1183. [Google Scholar] [CrossRef]
- Bloor, S.J.; Falshaw, R. Covalently Linked Anthocyanin–Flavonol Pigments from Blue Agapanthus Flowers. Phytochemistry 2000, 53, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Harborne, J.B.; Waterman, P.G. Malonylated Flavonoids and Blue Flower Colour in Lupin. Phytochemistry 1993, 34, 421–423. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Sun, B.; Yang, Y.; Wang, S.; Feng, Z.; Li, J. The Structure of Anthocyanins and the Copigmentation by Common Micromolecular Copigments: A Review. Food Res. Int. 2024, 176, 113837. [Google Scholar] [CrossRef]
- Chandra Singh, M.; Probst, Y.; Price, W.E.; Kelso, C. Relative Comparisons of Extraction Methods and Solvent Composition for Australian Blueberry Anthocyanins. J. Food Compos. Anal. 2022, 105, 104232. [Google Scholar] [CrossRef]
- Andersen, Ø.M. Anthocyanins in Fruits of Vaccinium oxycoccus L. (Small Cranberry). J. Food Sci. 1989, 54, 383–384. [Google Scholar] [CrossRef]
- Strack, D.; Akavia, N.; Reznik, H. High Performance Liquid Chromatographic Identification of Anthocyanins. Z. Naturforschung-Sect. C J. Biosci. 1980, 35, 533–538. [Google Scholar] [CrossRef]
- Han, F.L.; Xu, Y. Effect of the Structure of Seven Anthocyanins on Self-Association and Colour in an Aqueous Alcohol Solution. S. Afr. J. Enol. Vitic. 2015, 36, 105–116. [Google Scholar] [CrossRef]
- Saha, S.; Singh, J.; Paul, A.; Sarkar, R.; Khan, Z.; Banerjee, K. Anthocyanin Profiling Using UV-Vis Spectroscopy and Liquid Chromatography Mass Spectrometry. J. AOAC Int. 2020, 103, 23–39. [Google Scholar] [CrossRef]
- Velickovic, J.M.; Mitic, M.N.; Arsic, B.B.; Paunovic, D.Đ.; Stojanovic, T.; Veljkovic, J.N.; Dimitrijevic, D.S.; Stevanovic, S.D.; Kostic, D.A. HPLC Analysis of Extracts of Fresh Petals of Papaver rhoeas L. Stud. UBB Chem. 2019, 64, 239–247. [Google Scholar] [CrossRef]
- Tanchev, S.; Ioncheva, N. Products of Thermal Degradation of the Anthocyanins Cyanidin-3-Glucoside, Cyanidin-3-Rutinoside and Cyanidin-3-Sophoroside. Food / Nahr. 1976, 20, 889–893. [Google Scholar] [CrossRef]
- Santos, D.T.; Cavalcanti, R.N.; Rostagno, M.A.; Queiroga, C.L.; Eberlin, M.N.; Meireles, M.A.A. Extraction of Polyphenols and Anthocyanins from the Jambul (Syzygium cumini) Fruit Peels. Int. J. Mol. Sci. 2010, 11, 4066–4078. [Google Scholar] [CrossRef]
- Cabrita, L.; Fossen, T.; Andersen, Ø.M. Colour and Stability of the Six Common Anthocyanidin 3-Glucosides in Aqueous Solutions. Food Chem. 2000, 68, 101–107. [Google Scholar] [CrossRef]
- Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Oyama, K.I.; Kondo, T. Structure of Polyacylated Anthocyanins and Their UV Protective Effect. Recent Adv. Polyphen. Res. 2016, 5, 171–192. [Google Scholar] [CrossRef]
- Gençdağ, E.; Özdemir, E.E.; Demirci, K.; Görgüç, A.; Yılmaz, F.M. Copigmentation and Stabilization of Anthocyanins Using Organic Molecules and Encapsulation Techniques. Curr. Plant Biol. 2022, 29, 100238. [Google Scholar] [CrossRef]
- Taniguchi, M.; LaRocca, C.A.; Bernat, J.D.; Lindsey, J.S. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. J. Nat. Prod. 2023, 86, 1087–1119. [Google Scholar] [CrossRef]
- Houghton, A.; Appelhagen, I.; Martin, C. Natural Blues: Structure Meets Function in Anthocyanins. Plants 2021, 10, 726. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fan, Y.; Yang, Y.; Zhang, H.; Li, M.; Sun, P.; Zhang, X.; Xue, Z.; Jin, W. Classification of rose petal colors based on optical spectrum and pigment content analyses. Hortic. Environ. Biotechnol. 2023, 64, 153–166. [Google Scholar] [CrossRef]
- Matysik, G.; Benesz, M. Thin-Layer Chromatography and Densitometry of Anthocyanins in the Petals of Red Poppy during Development of the Flowers. Chromatographia 1991, 32, 19–22. [Google Scholar] [CrossRef]
- Laoué, J.; Fernandez, C.; Ormeño, E. Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites under Climate Stress. Plants 2022, 11, 172. [Google Scholar] [CrossRef] [PubMed]
- Shomali, A.; Das, S.; Arif, N.; Sarraf, M.; Zahra, N.; Yadav, V.; Aliniaeifard, S.; Chauhan, D.K.; Hasanuzzaman, M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. Plants 2022, 11, 3158. [Google Scholar] [CrossRef] [PubMed]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Mori, M.; Kondo, T. Blue Flower Color Development by Anthocyanins: From Chemical Structure to Cell Physiology. Nat. Prod. Rep. 2009, 26, 884–915. [Google Scholar] [CrossRef]
- Turatbekova, A.; Nazarova, O.; Khujaev, O.; Ergashev, O.; Turapov, S.; Allenova, I.; Kuvvatova, N.; Khudayberganov, E. Study on the Frequency of Ultraviolet (UV) Light Reflectance and Absorption in Native and Nonnative Flowering Plants. E3S Web Conf. 2023, 434, 03004. [Google Scholar] [CrossRef]
- Yan, H.; Pei, X.; Zhang, H.; Li, X.; Zhang, X.; Zhao, M.; Chiang, V.L.; Sederoff, R.R.; Zhao, X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int. J. Mol. Sci. 2021, 22, 3103. [Google Scholar] [CrossRef]
- Brock, M.T.; Lucas, L.K.; Anderson, N.A.; Rubin, M.J.; Cody Markelz, R.J.; Covington, M.F.; Devisetty, U.K.; Chapple, C.; Maloof, J.N.; Weinig, C. Genetic Architecture, Biochemical Underpinnings and Ecological Impact of Floral UV Patterning. Mol. Ecol. 2016, 25, 1122–1140. [Google Scholar] [CrossRef]
- Martínez-Harms, J.; Hadar, R.; Márquez, N.; Menzel, R.; Shmida, A.; Stavenga, D.G.; Vorobyev, M. Enhanced UV-Reflection Facilitated a Shift in the Pollination System of the Red Poppy, Papaver rhoeas (Papaveraceae). Plants 2020, 9, 927. [Google Scholar] [CrossRef]
Color | Test Statistic | df | Sig. a,b |
---|---|---|---|
RGBB | 18.756 | 8 | 0.016 |
RGBG | 17.556 | 8 | 0.025 |
RGBR | 18.356 | 8 | 0.019 |
Color | RGBB | RGBG | RGBR | ||||
---|---|---|---|---|---|---|---|
Subset | 1 | 2 | 1 | 2 | 1 | 2 | |
Sample a | Area 5 | 3.333 | 6.500 | 6.500 | 4.500 | 4.500 | |
Area 6 | 3.667 | 5.167 | 5.167 | 5.000 | |||
Area 3 | 4.167 | 2.333 | 5.500 | ||||
Area 4 | 4.333 | 3.500 | 3.500 | 6.500 | |||
Area 7 | 4.500 | 5.000 | 5.000 | 6.667 | |||
Area 1 | 4.667 | 6.333 | 6.333 | 4.833 | |||
Area 2 | 5.167 | 5.167 | 5.167 | 4.833 | |||
Area 8 | 6.167 | 6.167 | 3.500 | 3.500 | 6.167 | ||
Area 9 | 9.000 | 7.500 | 1.000 | ||||
Test Statistic | 5.444 | 6.000 | 11.833 | 11.833 | 6.000 | 4.944 | |
Sig. b | 0.606 | 0.014 | 0.106 | 0.106 | 0.014 | 0.667 | |
Adjusted Sig. b | 0.606 | 0.063 | 0.106 | 0.106 | 0.063 | 0.667 |
Pigments Classified by Elution Order | λmaxUV, nm * | λmaxVis, nm | A440/AmaxVis | Color, Possible Anthocyanin Species |
---|---|---|---|---|
first | 262, 362 | 512 | 0.43 | Pelargonidin 5-glycoside [33], dark orange color |
second | 269, 281, 347 | 517 | 0.51 | Bright red color attributed probably to a less polar cyanidin derivative |
third | 270, 280, 359 | 526 | 0.30 | Cyanidin 3-monoglucoside |
fourth | 269, 281, 362 | 526 | 0.45 | A polar derivative of cyanidin |
fifth | 361 | 527 | 0.62 | Cyanic color |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpeza, P.; Yiotis, C.; Gatsios, O.; Staratzis, E.; Kyrkas, D.; Mantzos, N.; Papantzikos, V.; Mantzoukas, S. Distribution of Anthocyanins in Papaver rhoeas L. (corn) Petals: A Column Chromatography Study. Int. J. Plant Biol. 2025, 16, 99. https://doi.org/10.3390/ijpb16030099
Mpeza P, Yiotis C, Gatsios O, Staratzis E, Kyrkas D, Mantzos N, Papantzikos V, Mantzoukas S. Distribution of Anthocyanins in Papaver rhoeas L. (corn) Petals: A Column Chromatography Study. International Journal of Plant Biology. 2025; 16(3):99. https://doi.org/10.3390/ijpb16030099
Chicago/Turabian StyleMpeza, Paraskevi, Charilaos Yiotis, Orestis Gatsios, Emmanouil Staratzis, Dimitrios Kyrkas, Nikolaos Mantzos, Vasileios Papantzikos, and Spiridon Mantzoukas. 2025. "Distribution of Anthocyanins in Papaver rhoeas L. (corn) Petals: A Column Chromatography Study" International Journal of Plant Biology 16, no. 3: 99. https://doi.org/10.3390/ijpb16030099
APA StyleMpeza, P., Yiotis, C., Gatsios, O., Staratzis, E., Kyrkas, D., Mantzos, N., Papantzikos, V., & Mantzoukas, S. (2025). Distribution of Anthocyanins in Papaver rhoeas L. (corn) Petals: A Column Chromatography Study. International Journal of Plant Biology, 16(3), 99. https://doi.org/10.3390/ijpb16030099