In Vivo Validation of a Computer-Assisted Bowel Length Measurement System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bowel Length Measurement System (BMS)
2.2. Study Design
2.3. Experimental Setup
2.4. Data Analysis
3. Results
4. Discussion
4.1. In Vivo Bowel Length Measurement
- Adequate illumination of the surgical site;
- Laparoscope-to-bowel distance of 5 cm;
- Colon or small bowel in the image background;
- Horizontal alignment of the bowel;
- Only two laparoscopic instruments in the image.
4.2. Limitations
4.3. Translational Factors
4.4. Quantitative Laparoscopy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colon Cancer Laparoscopic or Open Resection Study Group; Buunen, M.; Veldkamp, R.; Hop, W.C.J.; Kuhry, E.; Jeekel, J.; Haglind, E.; Påhlman, L.; Cuesta, M.A.; Msika, S.; et al. Survival after Laparoscopic Surgery versus Open Surgery for Colon Cancer: Long-Term Outcome of a Randomised Clinical Trial. Lancet Oncol. 2009, 10, 44–52. [Google Scholar] [CrossRef]
- Kitano, S.; Shiraishi, N.; Fujii, K.; Yasuda, K.; Inomata, M.; Adachi, Y. A Randomized Controlled Trial Comparing Open vs Laparoscopy-Assisted Distal Gastrectomy for the Treatment of Early Gastric Cancer: An Interim Report. Surgery 2002, 131, S306–S311. [Google Scholar] [CrossRef]
- Keus, F.; de Jong, J.; Gooszen, H.G.; Laarhoven, C.J. Laparoscopic versus Open Cholecystectomy for Patients with Symptomatic Cholecystolithiasis. In Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; ISBN 1465-1858. [Google Scholar]
- Ballantyne, G.H.M. The Pitfalls of Laparoscopic Surgery: Challenges for Robotics and Telerobotic Surgery. Surg. Laparosc. Endosc. Percutaneous Tech. 2002, 12, 1–5. [Google Scholar] [CrossRef]
- Sørensen, S.M.D.; Savran, M.M.; Konge, L.; Bjerrum, F. Three-Dimensional versus Two-Dimensional Vision in Laparoscopy: A Systematic Review. Surg. Endosc. 2016, 30, 11–23. [Google Scholar] [CrossRef]
- Ajao, M.O.; Larsen, C.R.; Manoucheri, E.; Goggins, E.R.; Rask, M.T.; Cox, M.K.B.; Mushinski, A.; Gu, X.; Cohen, S.L.; Rudnicki, M.; et al. Two-Dimensional (2D) versus Three-Dimensional (3D) Laparoscopy for Vaginal Cuff Closure by Surgeons-in-Training: A Randomized Controlled Trial. Surg. Endosc. 2019, 34, 1237–1243. [Google Scholar] [CrossRef]
- Kinoshita, H.; Nakagawa, K.; Usui, Y.; Iwamura, M.; Ito, A.; Miyajima, A.; Hoshi, A.; Arai, Y.; Baba, S.; Matsuda, T. High-Definition Resolution Three-Dimensional Imaging Systems in Laparoscopic Radical Prostatectomy: Randomized Comparative Study with High-Definition Resolution Two-Dimensional Systems. Surg. Endosc. 2015, 29, 2203–2209. [Google Scholar] [CrossRef]
- Kanaji, S.; Suzuki, S.; Harada, H.; Nishi, M.; Yamamoto, M.; Matsuda, T.; Oshikiri, T.; Nakamura, T.; Fujino, Y.; Tominaga, M.; et al. Comparison of Two- and Three-Dimensional Display for Performance of Laparoscopic Total Gastrectomy for Gastric Cancer. Langenbecks Arch. Surg. 2017, 402, 493–500. [Google Scholar] [CrossRef]
- Bagan, P.; De Dominicis, F.; Hernigou, J.; Dakhil, B.; Zaimi, R.; Pricopi, C.; Le Pimpec Barthes, F.; Berna, P. Complete Thoracoscopic Lobectomy for Cancer: Comparative Study of Three-Dimensional High-Definition with Two-Dimensional High-Definition Video Systems. Interact. Cardiovasc. Thorac. Surg. 2015, 20, 820–824. [Google Scholar] [CrossRef]
- Schwab, K.E.; Curtis, N.J.; Whyte, M.B.; Smith, R.V.; Rockall, T.A.; Ballard, K.; Jourdan, I.C. 3D Laparoscopy Does Not Reduce Operative Duration or Errors in Day-Case Laparoscopic Cholecystectomy: A Randomised Controlled Trial. Surg. Endosc. 2019, 34, 1745–1753. [Google Scholar] [CrossRef]
- Currò, G.; Malfa, G.L.; Caizzone, A.; Rampulla, V.; Navarra, G. Three-Dimensional (3D) Versus Two-Dimensional (2D) Laparoscopic Bariatric Surgery: A Single-Surgeon Prospective Randomized Comparative Study. Obes. Surg. 2015, 25, 2120–2124. [Google Scholar] [CrossRef]
- Kozlov, Y.; Kovalkov, K.; Nowogilov, V. 3D Laparoscopy in Neonates and Infants. J. Laparoendosc. Adv. Surg. Tech. 2016, 26, 1021–1027. [Google Scholar] [CrossRef]
- Lee, K.; Youn, S.I.; Won, Y.; Min, S.-H.; Park, Y.S.; Ahn, S.-H.; Park, D.J.; Kim, H.-H. Prospective Randomized Controlled Study for Comparison of 2-Dimensional versus 3-Dimensional Laparoscopic Distal Gastrectomy for Gastric Adenocarcinoma. Surg. Endosc. 2021, 35, 934–940. [Google Scholar] [CrossRef]
- Zhao, B.; Lv, W.; Mei, D.; Luo, R.; Bao, S.; Huang, B.; Lin, J. Comparison of Short-Term Surgical Outcome between 3D and 2D Laparoscopy Surgery for Gastrointestinal Cancer: A Systematic Review and Meta-Analysis. Langenbecks Arch. Surg. 2020, 405, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Hermosa, J.I.; Ranea, A.; Delisau, O.; Planellas-Giné, P.; Cornejo, L.; Pujadas, M.; Codony, C.; Gironès, J.; Codina-Cazador, A. Three-Dimensional (3D) System versus Two-Dimensional (2D) System for Laparoscopic Resection of Adrenal Tumors: A Case-Control Study. Langenbecks Arch. Surg. 2020, 405, 1163–1173. [Google Scholar] [CrossRef]
- Stoyanov, D.; Mylonas, G.P.; Deligianni, F.; Darzi, A.; Yang, G.Z. Soft-Tissue Motion Tracking and Structure Estimation for Robotic Assisted MIS Procedures. Med. Image Comput. Comput. Assist. Interv. 2005, 8, 139–146. [Google Scholar]
- Lin, B.; Sun, Y.; Qian, X.; Goldgof, D.; Gitlin, R.; You, Y. Video-Based 3D Reconstruction, Laparoscope Localization and Deformation Recovery for Abdominal Minimally Invasive Surgery: A Survey. Int. J. Med. Robot. Comput. Assist. Surg. 2016, 12, 158–178. [Google Scholar] [CrossRef]
- Penza, V.; Ortiz, J.; Mattos, L.S.; Forgione, A.; Momi, E.D. Dense Soft Tissue 3D Reconstruction Refined with Super-Pixel Segmentation for Robotic Abdominal Surgery. Int. J. CARS 2016, 11, 197–206. [Google Scholar] [CrossRef]
- Maier-Hein, L.; Groch, A.; Bartoli, A.; Bodenstedt, S.; Boissonnat, G.; Chang, P.L.; Clancy, N.T.; Elson, D.S.; Haase, S.; Heim, E.; et al. Comparative Validation of Single-Shot Optical Techniques for Laparoscopic 3-D Surface Reconstruction. IEEE Trans. Med. Imaging 2014, 33, 1913–1930. [Google Scholar] [CrossRef]
- Kowalczuk, J.; Meyer, A.; Carlson, J.; Psota, E.T.; Buettner, S.; Pérez, L.C.; Farritor, S.M.; Oleynikov, D. Real-Time Three-Dimensional Soft Tissue Reconstruction for Laparoscopic Surgery. Surg. Endosc. 2012, 26, 3413–3417. [Google Scholar] [CrossRef]
- Wagner, M.; Mayer, B.F.B.; Bodenstedt, S.; Stemmer, K.; Fereydooni, A.; Speidel, S.; Dillmann, R.; Nickel, F.; Fischer, L.; Kenngott, H.G. Computer-Assisted 3D Bowel Length Measurement for Quantitative Laparoscopy. Surg. Endosc. 2018, 32, 4052–4061. [Google Scholar] [CrossRef]
- Marcus, H.J.M.; Payne, C.J.; Hughes-Hallett, A.M.; Gras, G.M.; Leibrandt, K.M.; Nandi, D.D.; Yang, G.-Z. Making the Leap: The Translation of Innovative Surgical Devices From the Laboratory to the Operating Room. Ann. Surg. 2016, 263, 1077–1078. [Google Scholar] [CrossRef]
- Wagner, M.; Mayer, B.F.B.; Bodenstedt, S.; Kowalewski, K.F.; Nickel, F.; Speidel, S.; Kenngott, H.G.; Müller-Stich, B.P. Comparison of Conventional Methods for Bowel Length Measurement in Laparoscopic Surgery to a Novel Computer-Assisted 3D Measurement System. Obes. Surg. 2021, 31, 4692–4700. [Google Scholar] [CrossRef]
- Cleary, K.; Peters, T.M. Image-Guided Interventions: Technology Review and Clinical Applications. Annu. Rev. Biomed. Eng. 2010, 12, 119–142. [Google Scholar] [CrossRef]
- National Research Council (US). Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-15400-0. [Google Scholar]
- Clutton, R.E.; Blissitt, K.J.; Bradley, A.A.; Camburn, M.A. Comparison of Three Injectable Anaesthetic Techniques in Pigs. Vet. Rec. 1997, 141, 140–146. [Google Scholar] [CrossRef]
- Tacchino, R.M. Bowel Length: Measurement, Predictors, and Impact on Bariatric and Metabolic Surgery. Surg. Obes. Relat. Dis. 2015, 11, 328–334. [Google Scholar] [CrossRef]
- Bessell, J.R.; Flemming, E.; Kunert, W.; Buess, G. Maintenance of Clear Vision during Laparoscopic Surgery. Minim. Invasive Ther. Allied Technol. 1996, 5, 450–455. [Google Scholar] [CrossRef]
- Kunert, W.; Storz, P.; Kirschniak, A. For 3D Laparoscopy: A Step toward Advanced Surgical Navigation: How to Get Maximum Benefit from 3D Vision. Surg. Endosc. 2013, 27, 696–699. [Google Scholar] [CrossRef]
- Stoyanov, D.; Scarzanella, M.V.; Pratt, P.; Yang, G.-Z. Real-Time Stereo Reconstruction in Robotically Assisted Minimally Invasive Surgery. Med. Image Comput. Comput. Assist. Interv. 2010, 13, 275–282. [Google Scholar]
- Maier-Hein, L.; Mountney, P.; Bartoli, A.; Elhawary, H.; Elson, D.; Groch, A.; Kolb, A.; Rodrigues, M.; Sorger, J.; Speidel, S.; et al. Optical Techniques for 3D Surface Reconstruction in Computer-Assisted Laparoscopic Surgery. Med. Image Anal. 2013, 17, 974–996. [Google Scholar] [CrossRef]
- Chen, X.; Xu, L.; Wang, Y.; Wang, H.; Wang, F.; Zeng, X.; Wang, Q.; Egger, J. Development of a Surgical Navigation System Based on Augmented Reality Using an Optical See-through Head-Mounted Display. J. Biomed. Inform. 2015, 55, 124–131. [Google Scholar] [CrossRef]
- Sui, C.; Wu, J.; Wang, Z.; Ma, G.; Liu, Y.-H. A Real-Time 3D Laparoscopic Imaging System: Design, Method, and Validation. IEEE Trans. Biomed. Eng. 2020, 67, 2683–2695. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Matsui, T.; Furukawa, H.; Yao, T.; Sakurai, T.; Mitsuyasu, T. A New Stereoscopic Endoscopy System: Accurate 3-Dimensional Measurement in Vitro and in Vivo with Distortion-Correction Function. Gastrointest. Endosc. 2002, 55, 412–420. [Google Scholar] [CrossRef]
- Bernal, E.; Casado, S.; Grasa, Ó.G.; Montiel, J.M.M.; Gil, I. Computer Vision Distance Measurement from Endoscopic Sequences: Prospective Evaluation in Laparoscopic Ventral Hernia Repair. Surg. Endosc. 2014, 28, 3506–3512. [Google Scholar] [CrossRef]
Success Rate | Relative Error | |||
---|---|---|---|---|
1. Light source power [Watt] | n | Mean ± SD [%] | n | Mean ± SD [%] |
30 | 70 | 97.1 ± 16.8 | 68 | 16.3 ± 17.5 |
60 | 70 | 97.1 ± 16.8 | 68 | 24.5 ± 23.3 |
90 | 70 | 98.6 ± 12 | 69 | 25.5 ± 33.3 |
120 | 69 | 97.1 ± 16.9 | 67 | 24.9 ± 27.1 |
150 | 68 | 97.1 ± 17 | 66 | 30.7 ± 31.7 |
180 | 70 | 94.3 ± 23.4 | 66 | 23.7 ± 36 |
210 | 70 | 94.3 ± 23.4 | 66 | 23 ± 21 |
240 | 69 | 97.1 ± 16.9 | 67 | 29.3 ± 29.6 |
270 | 69 | 94.2 ± 23.5 | 65 | 26.5 ± 25.8 |
300 | 70 | 95.7 ± 20.4 | 67 | 26.8 ± 28.1 |
2. Distance to bowel [cm] | ||||
3 | 48 | 91.7 ± 27.9 | 44 | 9.5 ± 36.3 |
5 | 69 | 100 ± 0 | 69 | 18 ± 38.5 |
7 | 70 | 100 ± 0 | 70 | 29.7 ± 35.9 |
9 | 62 | 88.7 ± 31.9 | 55 | 47.9 ± 55.1 |
11 * | 26 | 73.1 ± 45.2 | 19 | 37.6 ± 19.2 |
3. Bowel rotation | ||||
0° in x-plane | 68 | 100 ± 0 | 68 | 7.3 ± 36.2 |
45° in x-plane | 69 | 96.7 ± 20.5 | 66 | 4.1 ± 37.8 |
90° in x-plane | 70 | 100 ± 0 | 69 | −24 ± 24.3 |
135° in x-plane | 65 | 93.9 ± 24.2 | 61 | −13.1 ± 22.8 |
0° in y-plane | 64 | 84.4 ± 36.6 | 54 | 4 ± 21 |
45° in y-plane | 59 | 79.7 ± 40.6 | 47 | 15.8 ± 40.4 |
4. Background | ||||
Liver | 69 | 91.3 ± 28.4 | 63 | 15.6 ± 34 |
Colon | 67 | 95.5 ± 20.8 | 64 | 10.3 ± 27.2 |
Small bowel | 68 | 100 ± 0 | 68 | 15.2 ± 23.4 |
5. Surgical objects | ||||
Control group ** | 69 | 97.1 ± 16.9 | 67 | 24.9 ± 27.1 |
Clips | 67 | 92.5 ± 26.5 | 62 | 8.8 ± 42.2 |
Overholts | 70 | 91.4 ± 28.2 | 64 | 26.3 ± 18.2 |
Third instrument in image background | 70 | 97.1 ± 16.8 | 68 | 1.1 ± 46.6 |
Third instrument on bowel surface | 69 | 95.7 ± 20.5 | 66 | 1.5 ± 35.2 |
Trocar | 68 | 83.2 ± 37.1 | 57 | 28.6 ± 40 |
Compress | 10 | 100 ± 0 | 10 | 23.8 ± 25.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayer, B.F.B.; Bodenstedt, S.; Mietkowski, P.; Rempel, R.; Schulte, L.M.; Speidel, S.; Kenngott, H.G.; Kowalewski, K.F. In Vivo Validation of a Computer-Assisted Bowel Length Measurement System. Surg. Tech. Dev. 2024, 13, 347-358. https://doi.org/10.3390/std13040027
Mayer BFB, Bodenstedt S, Mietkowski P, Rempel R, Schulte LM, Speidel S, Kenngott HG, Kowalewski KF. In Vivo Validation of a Computer-Assisted Bowel Length Measurement System. Surgical Techniques Development. 2024; 13(4):347-358. https://doi.org/10.3390/std13040027
Chicago/Turabian StyleMayer, Benjamin F. B., Sebastian Bodenstedt, Patrick Mietkowski, Rudolf Rempel, Lena M. Schulte, Stefanie Speidel, Hannes G. Kenngott, and Karl F. Kowalewski. 2024. "In Vivo Validation of a Computer-Assisted Bowel Length Measurement System" Surgical Techniques Development 13, no. 4: 347-358. https://doi.org/10.3390/std13040027
APA StyleMayer, B. F. B., Bodenstedt, S., Mietkowski, P., Rempel, R., Schulte, L. M., Speidel, S., Kenngott, H. G., & Kowalewski, K. F. (2024). In Vivo Validation of a Computer-Assisted Bowel Length Measurement System. Surgical Techniques Development, 13(4), 347-358. https://doi.org/10.3390/std13040027