Vestibulo-Oculomotor Reflex Dysfunction in Children with Cerebral Palsy Correlates with Gross Motor Function Classification System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Participants
2.3. Measurements
2.3.1. Gross Motor Function Classification System
2.3.2. Instrumental Assessment of the VOR
2.3.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child. Neurol. Suppl. 2007, 109, 8–14. [Google Scholar] [PubMed]
- Bax, M.C.O.; Flodmark, O.; Tydeman, C. Definition and classification of cerebral palsy. From syndrome toward disease. Dev. Med. Child. Neurol. Suppl. 2007, 109, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Anaby, D.; Hand, C.; Bradley, L.; DiRezze, B.; Forhan, M.; DiGiacomo, A.; Law, M. The effect of the environment on participation of children and youth with disabilities: A scoping review. Disabil. Rehabil. 2013, 35, 1589–1598. [Google Scholar] [CrossRef] [PubMed]
- Bedell, G.; Coster, W.; Law, M.; Liljenquist, K.; Kao, Y.-C.; Teplicky, R.; Anaby, D.; Khetani, M.A. Community participation, supports, and barriers of school-age children with and without disabilities. Arch. Phys. Med. Rehabil. 2012, 94, 315–323. [Google Scholar] [CrossRef]
- Cullen, K.E. Vestibular motor control. Handb. Clin. Neurol. 2023, 195, 31–54. [Google Scholar] [CrossRef]
- Politi, L.; Salerni, L.; Bubbico, L.; Ferretti, F.; Carucci, M.; Rubegni, G.; Mandalà, M. Risk of falls, vestibular multimodal processing, and multisensory integration decline in the elderly–Predictive role of the functional head impulse test. Front. Neurol. 2022, 13, 964017. [Google Scholar] [CrossRef]
- Biju, K.; Oh, E.; Rosenberg, P.; Xue, Q.-L.; Dash, P.; Burhanullah, M.H.; Agrawal, Y. Vestibular Function Predicts Balance and Fall Risk in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2022, 86, 1159–1168. [Google Scholar] [CrossRef]
- Choi, S.-Y.; Choi, K.-D.; Choi, J.-H.; Kim, J.-S. Abnormal vestibular-evoked myogenic potentials as a risk factor for unpredicted falls in spinocerebellar ataxia: A preliminary study. J. Neurol. 2024, 271, 2539–2546. [Google Scholar] [CrossRef]
- Fazzi, E.; Signorini, S.G.; LA Piana, R.; Bertone, C.; Misefari, W.; Galli, J.; Balottin, U.; Bianchi, P.E. Neuro-ophthalmological disorders in cerebral palsy: Ophthalmological, oculomotor, and visual aspects. Dev. Med. Child Neurol. 2012, 54, 730–736. [Google Scholar] [CrossRef]
- Tinelli, F.; Guzzetta, A.; Purpura, G.; Pasquariello, R.; Cioni, G.; Fiori, S. Structural brain damage and visual disorders in children with cerebral palsy due to periventricular leukomalacia. NeuroImage Clin. 2020, 28, 102430. [Google Scholar] [CrossRef]
- Galli, J.; Loi, E.; Calza, S.; Micheletti, S.; Molinaro, A.; Franzoni, A.; Rossi, A.; Semeraro, F.; Merabet, L.B.; Fazzi, E. Natural history of cerebral visual impairment in children with cerebral palsy. Dev. Med. Child Neurol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Duke, R.E.; Nwachukuw, J.; Torty, C.; Okorie, U.; Kim, M.J.; Burton, K.; Gilbert, C.; Bowman, R. Visual impairment and perceptual visual disorders in children with cerebral palsy in Nigeria. Br. J. Ophthalmol. 2020, 106, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Longridge, N.S.; Mallinson, A.I. A New Perspective to Interpret How the Vestibular Efferent System Correlates the Complexity of Routine Balance Maintenance with Management of Emergency Fall Prevention Strategies. Audiol. Res. 2024, 14, 518–544. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Mukherjee, A.L.; Crunkhorn, R.; Dawabah, S.; Aslier, N.G.; Ratnayake, S.; Manzari, L. Video Head Impulse Test in Children—A Systematic Review of Literature. J. Clin. Med. 2025, 14, 369. [Google Scholar] [CrossRef]
- Weber, K.P.; MacDougall, H.G.; Halmagyi, G.M.; Curthoys, I.S. Impulsive testing of semicircular-canal function using video-oculography. Ann. N. Y. Acad. Sci. 2009, 1164, 486–491. [Google Scholar] [CrossRef]
- Curthoys, I.S.; Halmagyi, G.M. Vestibular function testing. Lancet Neurol. 2008, 7, 954–965. [Google Scholar]
- Janky, K.L.; Patterson, J.; Thomas, M.; Al-Salim, S.; Robinson, S. The effects of vestibular dysfunction on balance and self-concept in children with cochlear implants. Int. J. Pediatr. Otorhinolaryngol. 2023, 171, 111642. [Google Scholar] [CrossRef]
- Tramontano, M.; Ferri, N.; Turolla, A.; Bustos, A.S.O.; Conti, L.C.; Sorge, C.; Pillastrini, P.; Manzari, L. Video head impulse test in subacute and chronic stroke survivors: New perspectives for implementation of assessment in rehabilitation. Eur. Arch. Oto-Rhino-Laryngol. 2024, 281, 5129–5134. [Google Scholar] [CrossRef]
- Tramontano, M.; Conti, L.C.; Bustos, A.S.O.; Ferri, N.; Lelli, T.; Nocentini, U.; Grasso, M.G.; Turolla, A.; Pillastrini, P.; Manzari, L. Abnormal Vestibulo–Ocular Reflex Function Correlates with Balance and Gait Impairment in People with Multiple Sclerosis. Audiol. Res. 2024, 14, 799–808. [Google Scholar] [CrossRef]
- Taylor, R.L.; Wise, K.J.; Taylor, D.; Chaudhary, S.; Thorne, P.R. Patterns of vestibular dysfunction in chronic traumatic brain injury. Front. Neurol. 2022, 13, 942349. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Tofani, M.; Candeloro, C.; Sabbadini, M.; Field, D.; Frascarelli, F.; Lucibello, L.; Valente, D.; Galeoto, G.; Castelli, E. A study validating the Italian version of the Level of Sitting Scale in children with cerebral palsy. Clin. Rehabil. 2019, 33, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Palisano, R.J.; Rosenbaum, P.; Bartlett, D.; Livingston, M.H. Content validity of the expanded and revised Gross Motor Function Classification System. Dev. Med. Child Neurol. 2008, 50, 744–750. [Google Scholar] [CrossRef]
- MacDougall, H.G.; McGarvie, L.A.; Halmagyi, G.M.; Curthoys, I.S.; Weber, K.P. Application of the video head impulse test to detect vertical semicircular canal dysfunction. Otol. Neurotol. 2013, 34, 974–979. [Google Scholar] [CrossRef]
- MacDougall, H.G.; McGarvie, L.A.; Halmagyi, G.M.; Rogers, S.J.; Manzari, L.; Burgess, A.M.; Curthoys, I.S.; Weber, K.P. A new saccadic indicator of peripheral vestibular function based on the video head impulse test. Neurology 2016, 87, 410–418. [Google Scholar] [CrossRef]
- Manzari, L.; Tramontano, M. Suppression Head Impulse Paradigm (SHIMP) in evaluating the vestibulo-saccadic interaction in patients with vestibular neuritis. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 3205–3212. [Google Scholar] [CrossRef]
- Shen, Q.; Magnani, C.; Sterkers, O.; Lamas, G.; Vidal, P.-P.; Sadoun, J.; Curthoys, I.S.; de Waele, C. Saccadic Velocity in the New Suppression Head Impulse Test: A New Indicator of Horizontal Vestibular Canal Paresis and of Vestibular Compensation. Front. Neurol. 2016, 7, 160. [Google Scholar] [CrossRef]
- Money-Nolan, L.E.; Flagge, A.G. Factors affecting variability in vestibulo-ocular reflex gain in the Video Head Impulse Test in individuals without vestibulopathy: A systematic review of literature. Front. Neurol. 2023, 14, 1125951. [Google Scholar] [CrossRef]
- Curthoys, I.S.; Manzari, L.; Rey-Martinez, J.; Dlugaiczyk, J.; Burgess, A.M. Enhanced Eye Velocity in Head Impulse Testing—A Possible Indicator of Endolymphatic Hydrops. Front. Surg. 2021, 8, 666390. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 18; StataCorp LLC: College Station, TX, USA, 2023; Available online: https://www.stata.com/ (accessed on 10 October 2024).
- Ghai, S.; Hakim, M.; Dannenbaum, E.; Lamontagne, A. Prevalence of Vestibular Dysfunction in Children with Neurological Disabilities: A Systematic Review. Front. Neurol. 2019, 10, 1294. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, A.; Cochrane, G.; Christy, J. Vestibular and oculomotor function in children with CP: Descriptive study. Int. J. Pediatr. Otorhinolaryngol. 2019, 119, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Yun, A.; Wang, A.; Brodsky, J.R. Comparing Video Head Impulse Testing with Rotary Chair in Pediatric Patients: A Controlled Trial. Otolaryngol. Neck Surg. 2024, 171, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Christy, J.B.; Vogtle, L.; Almutairi, A. Vestibular and Oculomotor Function in Children with Cerebral Palsy: A Scoping Review. Semin. Hearth 2018, 39, 288–304. [Google Scholar] [CrossRef]
- Mohamed, S.T.; Hazzaa, N.; Rahman, T.A.; Eldin, D.M.E.; Elhusseiny, A.M. Efficacy of vestibular rehabilitation program in children with balance disorders and sensorineural hearing loss. Int. J. Pediatr. Otorhinolaryngol. 2024, 179, 111931. [Google Scholar] [CrossRef]
- Melo, R.S.; Lemos, A.; Paiva, G.S.; Ithamar, L.; Lima, M.C.; Eickmann, S.H.; Ferraz, K.M.; Belian, R.B. Vestibular rehabilitation exercises programs to improve the postural control, balance and gait of children with sensorineural hearing loss: A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2019, 127, 109650. [Google Scholar] [CrossRef]
- Lotfi, Y.; Rezazadeh, N.; Moossavi, A.; Haghgoo, H.A.; Rostami, R.; Bakhshi, E.; Badfar, F.; Moghadam, S.F.; Sadeghi-Firoozabadi, V.; Khodabandelou, Y. Preliminary evidence of improved cognitive performance following vestibular rehabilitation in children with combined ADHD (cADHD) and concurrent vestibular impairment. Auris Nasus Larynx 2017, 44, 700–707. [Google Scholar] [CrossRef]
- Tramontano, M.; Medici, A.; Iosa, M.; Chiariotti, A.; Fusillo, G.; Manzari, L.; Morelli, D. The Effect of Vestibular Stimulation on Motor Functions of Children with Cerebral Palsy. Mot. Control. 2017, 21, 299–311. [Google Scholar] [CrossRef]
- Halmagyi, G.M.; Curthoys, I.S. A Clinical Sign of Canal Paresis. Arch. Neurol. 1988, 45, 737–739. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Kim, H.-J.; Kim, J.-S. Recent advances in head impulse test findings in central vestibular disorders. Neurology 2018, 90, 602–612. [Google Scholar] [CrossRef]
Female (n, %) | 8 (61.54) |
Age (years ± SD) | 7.76 ± 2.65 |
Clinical characteristics (n, %) | |
Ataxia | 3 (25.00) |
Diplegia | 4 (33.33) |
Hemiplegia | 2 (16.67) |
Other | 7 (43.00) |
GMFCS (n, %) | |
Level I | 6 (46.15) |
Level II | 4 (30.77) |
Level III | 3 (23.08) |
Level IV | 0 (0.00) |
Level V | 0 (0.00) |
Abnormal aVOR Gain (n, %) | |
---|---|
Left Horizontal | 4 (30.77) |
Right Horizontal | 4 (30.77) |
HIMP aVOR Gain | Total Canals (n) | Mean ± SD | 95% CIs |
---|---|---|---|
Left Horizontal | 13 | 0.80 ± 0.17 | [0.69, 0.90] |
Right Horizontal | 13 | 0.90 ± 0.17 | [0.79, 1.01] |
Left Anterior | 1 | 0.86 | NA |
Right Anterior | 1 | 1.22 | NA |
Left Posterior | 1 | 0.92 | NA |
Right Posterior | 1 | 0.60 | NA |
SHIMP aVOR gain | Total canals (n) | Mean ± SD | 95% CIs |
Left Horizontal | 3 | 0.73 ± 0.19 | NA |
Right Horizontal | 3 | 0.85 ± 0.07 | NA |
Left Horizontal | p-Value | Right Horizontal | p-Value | |
---|---|---|---|---|
GMFCS | −0.73 | 0.0092 | −0.68 | 0.0114 |
HIMP aVOR Gain | Total Canals (n) | Mean ± SD | |
---|---|---|---|
GMFCS 1 | Left Horizontal | 6 | 0.91 ± 0.09 |
Right Horizontal | 6 | 1.02 ± 0.09 | |
GMFCS 2 | Left Horizontal | 4 | 0.75 ± 0.18 |
Right Horizontal | 4 | 0.86 ± 0.17 | |
GMFCS 3 | Left Horizontal | 3 | 0.65 ± 0.18 |
Right Horizontal | 3 | 0.73 ± 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casagrande Conti, L.; Ferri, N.; Manzari, L.; Lelli, T.; Mangeruga, M.; Dal Piaz, M.; Manzotti, A.; Verrecchia, L.; Tramontano, M. Vestibulo-Oculomotor Reflex Dysfunction in Children with Cerebral Palsy Correlates with Gross Motor Function Classification System. Audiol. Res. 2025, 15, 21. https://doi.org/10.3390/audiolres15020021
Casagrande Conti L, Ferri N, Manzari L, Lelli T, Mangeruga M, Dal Piaz M, Manzotti A, Verrecchia L, Tramontano M. Vestibulo-Oculomotor Reflex Dysfunction in Children with Cerebral Palsy Correlates with Gross Motor Function Classification System. Audiology Research. 2025; 15(2):21. https://doi.org/10.3390/audiolres15020021
Chicago/Turabian StyleCasagrande Conti, Laura, Nicola Ferri, Leonardo Manzari, Tommaso Lelli, Maria Mangeruga, Margherita Dal Piaz, Andrea Manzotti, Luca Verrecchia, and Marco Tramontano. 2025. "Vestibulo-Oculomotor Reflex Dysfunction in Children with Cerebral Palsy Correlates with Gross Motor Function Classification System" Audiology Research 15, no. 2: 21. https://doi.org/10.3390/audiolres15020021
APA StyleCasagrande Conti, L., Ferri, N., Manzari, L., Lelli, T., Mangeruga, M., Dal Piaz, M., Manzotti, A., Verrecchia, L., & Tramontano, M. (2025). Vestibulo-Oculomotor Reflex Dysfunction in Children with Cerebral Palsy Correlates with Gross Motor Function Classification System. Audiology Research, 15(2), 21. https://doi.org/10.3390/audiolres15020021